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Abstract The adult human skeleton is a multifunctional

organ undergoing continuous remodeling. Homeostasis of

bone mass in a healthy adult requires an exquisite balance

between bone resorption by osteoclasts and bone formation

by osteoblasts; disturbance of such balance is the root

cause for various bone disorders including osteoporosis. To

develop effective and safe therapeutics to modulate bone

formation, it is essential to elucidate the molecular mech-

anisms governing osteoblast differentiation and activity.

Due to their specialized function in collagen synthesis and

secretion, osteoblasts are expected to consume large

amounts of nutrients. However, studies of bioenergetics

and building blocks in osteoblasts have been lagging

behind those of growth factors and transcription factors.

Genetic studies in both humans and mice over the past

15 years have established Wnt signaling as a critical

mechanism for stimulating osteoblast differentiation and

activity. Importantly, recent studies have uncovered that

Wnt signaling directly reprograms cellular metabolism by

stimulating aerobic glycolysis, glutamine catabolism as

well as fatty acid oxidation in osteoblast-lineage cells.

Such findings therefore reveal an important regulatory axis

between bone anabolic signals and cellular bioenergetics.

A comprehensive understanding of osteoblast metabolism

and its regulation is likely to reveal molecular targets for

novel bone therapies.
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Introduction

The mammalian skeleton not only provides support and

protection, but also performs endocrine functions. The

homeostasis of adult bone mass under healthy conditions is

maintained through the exquisite balance of bone resorp-

tion by osteoclasts and bone formation by osteoblasts. With

aging or under pathological conditions bone resorption

dominates over formation, resulting in osteopenia (low

bone mass) or in the more severe cases, osteoporosis.

Conversely, conditions that favor bone formation over

resorption lead to high bone mass diseases such as scle-

rosteosis. Because osteoblasts are the chief cell type

producing bone materials, elucidating the mechanisms that

regulate osteoblast differentiation and activity is critical not

only for understanding bone physiology but also for

designing effective bone therapeutics. Extensive studies in

the area during the past several decades have mostly

focused on endocrine or paracrine signaling as well as

transcriptional regulation [1, 2]. Those studies have

uncovered the critical roles of growth factors such as Wnt

proteins and transcription factors including Runx2, Osterix,

and ATF4 during osteoblast differentiation [3–8]. How-

ever, relatively little is understood about how osteoblasts
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fulfill their key function of active protein synthesis and

matrix secretion, a process highly demanding not only in

building blocks but also in energy [9]. Recent studies have

discovered that the potent bone anabolic signal Wnt

directly reprograms multiple aspects of cellular metabolism

integral to osteoblast differentiation and activity. This

review summarizes those recent advances.

Wnt signaling

Wnt proteins are a family of secreted glycoproteins that are

critical regulators of osteoblast differentiation and activity

in both mice and humans [10–16]. Wnt signals are trans-

duced by a family of seven-pass transmembrane G-protein

coupled receptors of the frizzled (Fzd) family and a co-

receptor of the arrow/Lrp family (e.g., Lrp5 and Lrp6) or a

Ryk or Ror transmembrane tyrosine kinase [17, 18]. The

binding of a given Wnt to a Fzd receptor and coreceptor

activates multiple distinct intracellular signaling cascades,

historically divided into the canonical b-catenin-dependent
pathway and noncanonical b-catenin-independent path-

ways [19]. The best characterized is the canonical Wnt

pathway, which results in the stabilization and transloca-

tion of b-catenin into the nucleus. b-catenin (encoded by

Catnnb1) is an important transcriptional co-activator that

regulates gene transcription in response to Wnt signaling.

Normally, in cells not exposed to ligand, cytoplasmic

levels of b-catenin are kept low through interactions with

the b-catenin destruction complex [20]. The binding of

Wnt to a Fzd receptor complex results in phosphorylation

of the Lrp co-receptors and recruitment and tethering of

GSK-3b and Axin to the ligand-receptor complex. This

complex is subsequently endocytosed and inhibited

through sequestration into multivesicular endosomes

resulting in the stabilization and accumulation of cyto-

plasmic b-catenin [21]. Stabilized b-catenin translocates

into the nucleus and interacts with the Lymphoid-enhanc-

ing factor/T cell factor (Lef/Tcf) family of high mobility

group (HMG)-type transcription factors to stimulate

expression of target genes including Lef1, Tcf7, Nkd2, and

Axin2 [22–26]. Additionally, Wnt signaling can activate

multiple signaling cascades independent of b-catenin.
Here, Fzd seems to function more as a G-protein coupled

receptor, activating intracellular cascades involving the

GTPases Rho and Rac, the calcium calmodulin dependent

kinase 2 (CaMK2), c-Jun N-terminal kinase (JNK) and

p38, phospholipase-C, protein kinase C (PKC), protein

kinase A (PKA), PI3 K/AKT, and mTOR [11, 27–33]. The

pathway activated by a Wnt ligand is determined by many

factors including specific ligand-receptor interactions, dis-

tinct receptor/co-receptor pairs, or the presence of

intracellular proteins that regulate b-catenin activation

[34–37]. Wnt signaling is also regulated by a number of

secreted extracellular antagonists. These include Dickkopf

(e.g., Dkk1 and Dkk2) and Sclerostin (Sost) proteins that

bind to the extracellular domains of Lrp5 or Lrp6 and

interfere with their interaction with Wnt proteins [38–41].

In addition, the secreted frizzled related proteins (sFRPs)

bind directly to Wnt ligands and thus inhibit the formation

of Wnt–Fzd complexes [42–44]. Overall, Wnt signaling is

tightly controlled at multiple levels to ensure its proper

activity during normal development and tissue

homeostasis.

Wnt signaling in bone

The importance of Wnt signaling during bone formation has

been well documented [45]. The original discovery came

from human genetic studies where inactivating mutations in

the Wnt co-receptor Lrp5 results in osteoporosis pseu-

doglioma syndrome while gain-of-function mutations

causes osteosclerosis [15, 46, 47]. Moreover, mutations in

either coding or regulatory sequences of Sost cause high bone

mass in sclerosteosis or Van Buchem disease, respectively

[48–50]. Subsequent genome-wide association studies in

humans strongly support a role for Wnt signaling regulating

bonemineral density (BMD) [51–54].More recently, exome

sequencing in humans identified multiple mutations inWnt1

associated with early onset osteoporosis and osteogenesis

imperfecta [55, 56]. In addition, missense mutations in

Wnt16 are associated with decreased forearm and hip BMD

and increased fracture risk [57].

In keeping with those findings in humans, genetic

studies in mice have established a causal relationship

between Wnt signaling and bone formation. Mice lacking

Lrp5 either globally or in osteoblasts are characterized by

osteopenia whereas expression of mutant Lrp5 alleles

associated with human high-bone-mass syndromes increa-

ses bone mass in mice [58–60]. Activation of Wnt

signaling through deletion of Sfrp1, Sost or a single allele

of Dkk1 increases osteoblast number and activity [61–63].

In addition, multiple Wnts, including Wnt1, Wnt7b,

Wnt10b, and Wnt16 and the Frizzled receptors Fzd7 and

Fzd9, have been shown to regulate bone formation

[10, 11, 57, 64–66]. Moreover, targeted deletion of Gpr177

(also known as Wntless—Wls, required for the secretion of

all Wnt ligands) inhibits bone formation in mice [67, 68]. It

is worth noting that the bone phenotypes resulting from

loss of individual Wnt ligands or Fzd receptors are less

severe than those reported in Gpr177 knockout mice,

indicating significant functional redundancy among Wnt

ligands and Fzd receptors. This viewpoint is consistent

with the fact that osteoblast-lineage cells express multiple

Wnt ligands during development [13, 69].
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Genetic studies in mice have highlighted the importance

of b-catenin in mediating Wnt signaling in bone formation.

Multiple studies demonstrate that b-catenin is required for

bone formation and acts at multiple stages of osteoblast

differentiation to regulate both osteoblast and osteoclasts

[12, 13, 16, 70–74]. The direct target genes of b-catenin
during osteoblast differentiation are not fully elucidated,

but b-catenin together with Tcf1 has been shown to stim-

ulate Runx2 transcription directly [75]. In mature

osteoblasts, Opg, encoding an anti-osteoclastogenic factor,

is known to be a direct target of b-catenin [71]. While the

importance of b-catenin in bone is well established, the

contribution of b-catenin-independent Wnt signaling to

bone formation is becoming increasingly clear. For

example, Wnt7b can stimulate osteoblast differentiation

through activation of PKCdelta [11]. Multiple Wnt proteins

also activate the serine threonine kinase mammalian target

of rapamycin complex 1 (mTORC1) which promotes pro-

tein synthesis and bone formation [29, 76, 77]. The

stimulatory effect of mTORC1 in bone formation is further

supported by genetic studies that either abolish or enhance

mTORC1 activity in the mouse [78, 79]. In addition, Wnt

activates mTORC2 that is required for the optimal bone

accrual in response to mechanical loading or an anti-scle-

rostin neutralizing antibody [80–82]. Because the mTOR

pathways are central to nutrient sensing and metabolic

regulation, Wnt signaling has emerged as an important

mechanism for modulating cellular metabolism in

osteoblasts.

Glucose metabolism in osteoblasts

Glucose is the primary energy source for most mammalian

cell types. Glucose is transported into the cell via the Glut

family of facilitative glucose transporters. The Gluts transport

glucose down a concentration gradient independent of ATP

[83, 84]. Inside the cell, glucose is phosphorylated by hex-

okinase (Hk) to form glucose-6-phosphate (G6P). G6P can be

converted to glycogen for storage ormetabolized by disparate

pathways including hexosamine biosynthetic pathway (HBP),

pentose phosphate pathway (PPP), and glycolysis [85]. The

HBP is used to produce uridine diphosphate N-acetylglu-

cosamine (UDPGlcNAc) for protein glycosylation. The PPP

is important to generate NADPH and ribose-5-phosphate

important for nucleotide synthesis. Glycolysis occurs in the

cytosol and produces 2 molecules of pyruvate, 2 ATP, and 2

reducing equivalents in the form of NADH per glucose

molecule. Pyruvate can be converted into lactate by the

enzyme lactate dehydrogenase (Ldh) independent of oxygen.

This reaction regenerates oxidized NAD (NAD?) that is

necessary for further glycolysis. Alternatively, pyruvate can

be decarboxylated to form acetyl-CoA by the enzyme

pyruvate dehydrogenase (Pdh). Pyruvate oxidation in the tri-

carboxylic acid (TCA) cycle produces the most ATP per

glucose molecule through oxidative phosphorylation

(OXPHOS). Importantly, TCA intermediates are often

extracted from the cycle (cataplerosis) and used for lipid and

amino acid biosynthesis, redox regulation, and epigenetic

regulation of gene expression [86–88]. The TCA cycle inter-

mediates are replenished through metabolism of amino acids

or fatty acids, a process known as anaplerosis. Thus, glucose is

not only an important energy source but also a critical provider

of building blocks for biosynthetic reactions.

Glucose is an important nutrient for osteoblasts.

Osteoblasts express the glucose transporter Glut1 and

rapidly consume glucose in response to a variety of signals

[81, 89–94]. Recent work has revealed a feed-forward

mechanism between Glut1 and Runx2 expression, high-

lighting a critical role for glucose metabolism in osteoblast

differentiation [93]. Mature osteoblasts are known to pos-

sess numerous mitochondria and exhibit active OXPHOS

[95–97]. Interestingly, however, aerobic glycolysis appears

to be the dominant mode of glucose utilization in osteo-

blasts. For example, early studies using both bone slices

and isolated osteoblasts reveal that osteoblasts rapidly take

up glucose and metabolize it primarily into lactate

[98–101]. More recent studies have confirmed aerobic

glycolysis as a predominant mode of glucose metabolism

in primary calvarial osteoblasts despite increased OXPHOS

as the cells further differentiate to form mineralized nod-

ules in response to ascorbic acid and b-glycerophosphate
[96, 102]. Functionally, stimulating glycolysis through

activation of Hif1a signaling in preosteoblasts increases

bone formation in vivo, indicating that reprogramming

glucose metabolism is sufficient to promote osteoblast

differentiation [103]. Moreover, Hif1a activation has been

shown to promote bone healing partly through repro-

gramming of glucose metabolism, highlighting the clinical

implications of understanding metabolic regulation in

osteoblasts [104]. Recent studies have demonstrated that

aerobic glycolysis is directly stimulated in response to

osteogenic signals such as PTH and Wnt [81, 105]. For

example, Wnt rapidly increases Glut1 and Hk2 protein

levels to increase glucose consumption. Wnt further pro-

motes aerobic glycolysis by upregulating Ldha and Pdk1 to

favor lactate over acetyl-CoA production from pyruvate

(Fig. 1). Consistent with these observations, osteoblasts

from mice expressing the human Lrp5 high bone mass

mutation show increased glucose consumption and

expression of glycolytic enzymes. Conversely, Lrp5-/-

mice have decreased glycolytic enzyme expression and

lower serum lactate levels. Mechanistically, Wnt can

induce glycolysis independent of b-catenin activity, instead

through mTORC2 signaling [81]. It should be noted that b-
catenin has been shown to induce transcription of Pdk1 in
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cancer cells, indicating an additional mechanism for Wnt to

stimulate aerobic glycolysis [105]. Direct inhibition of

mTORC2 signaling by deletion of Rictor reduced both

physiological bone formation and Wnt-induced bone for-

mation in response to an anti-sclerostin neutralizing

antibody [80, 107]. It is important to note that increased

aerobic glycolysis contributes to Wnt-induced osteoblast

differentiation in vitro as Ldha or Pdk1 knockdown

impaired induction of osteoblast differentiation marker

genes [81]. Likewise, dichloroacetate, which inhibits Pdk1

and promotes glucose metabolism through the TCA cycle,

reduced bone formation in vivo in response to Hif1a

overexpression or anabolic PTH treatment [91, 103].

Overall, both Wnt and PTH stimulate aerobic glycolysis as

a mechanism to promote bone anabolism.

The reasons for osteoblasts to prefer aerobic glycolysis

are not fully understood at present. From the bioenergetics

viewpoint, aerobic glycolysis is a less efficient means of

producing ATP compared to metabolism through the TCA

cycle and OXPHOS. Cancer cells display a similar meta-

bolic reprogramming, which is postulated to provide

nucleotides, amino acids, and lipids needed to support cell

division [106]. Mature osteoblasts, however, generally

exhibit little proliferation in vivo [107]. Increased aerobic

glycolysis may help reducing reactive oxygen species or

generate more amino acids to support protein synthesis in

osteoblasts. Moreover, glycolytic changes could directly

exert epigenetic regulation to influence osteoblast differ-

entiation. We have recently demonstrated a link between

increased aerobic glycolysis and gene suppression in

response to Wnt. Increased aerobic glycolysis limits the

amount of citrate exiting the TCA cycle, resulting in

decreased nuclear levels of both citrate and acetyl-CoA.

This leads to a large scale decrease in histone acetylation

and suppression of adipogenic or chondrogenic transcrip-

tion factors, thus favoring osteogenic differentiation over

the alternative fates in the multipotent progenitors [108].

Further studies are warranted to elucidate the full mecha-

nism whereby aerobic glycolysis promotes the osteoblast

phenotype.

Amino acid metabolism in osteoblasts

Amino acids are not only the building block of proteins,

but also an important energy source. The cellular amino

acid pool is derived from multiple sources including import

of extracellular amino acids, degradation of intracellular

protein, and de novo synthesis. Based on their mode of

catabolism, amino acids can be categorized as glucogenic

or ketogenic or both. Whereas ketogenic amino acids are

broken down into acetyl-coA or acetoacetate, glucogenic

amino acids are broken down into either pyruvate, or dif-

ferent TCA intermediates including oxaloacetate, a-
ketoglutarate, fumarate, and succinyl-coA. Thus, amino

acids can contribute directly to ATP production via the

TCA cycle and OXPHOS. Indeed, amino acid catabolism

through the TCA cycle is required in many contexts

including cancer cell proliferation, pluripotent progenitor

maintenance, and differentiation [109–113].

Initial studies in bone explants and calvarial osteoblasts

focused on amino acid uptake. These studies defined multi-

ple transport systems in bone, including systemA, system L,

and system ASC, and suggested differences in amino acid

transport between adult and fetal bone [114–119]. Amino

acid uptake is regulated in osteoblasts, being stimulated by

cAMP and various growth factors and hormones [118–124].

More recent studies have implicated individual amino acid

transporters in bone biology. For example, the cystine/glu-

tamate antiporter xCT normally suppresses osteoblast

differentiation likely through decrease of glutathione pro-

duction [125–127]. Amino acid uptake is also regulated

transcriptionally by the transcription factor Atf4, a critical

transcription factor that can be activated by unfolded protein

Fig. 1 Wnt signaling promotes aerobic glycolysis through mTORC2

activation. Wnt signaling through Frizzled (Fz) and Lrp5/6 induces

mTORC2 activity downstream of PI3K-Rac1 signaling whereas

mTORC2 activation acutely increases the protein abundance of

metabolic enzymes (in red) without changing their mRNA levels. Glc

glucose, Glc-6-P glucose 6-phosphate, Fruc-6-P fructose 6-phos-

phate, Fruc-1,6-P fructose 1,6-bisphosphate, Pyr pyruvate, Lac

lactate, Hk2 hexokinase 2, Pfk1 phosphofructokinase 1, Ldha lactate

dehydrogenase A, Pdk1 pyruvate dehydrogenase kinase 1, PDC

pyruvate dehydrogenase complex, TCA tricarboxylic acid cycle. See

original reference for details [81]
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in the endoplasmic reticulum (ER) or amino acid depletion

[7, 128, 129]. Atf4 stimulates osteoblast differentiation in

part through increasing amino acid import to support colla-

gen synthesis [130–132]. The importance of amino acid

import is highlighted by the observation that a high protein

diet or amino acid supplementation corrects differentiation

defects and bone loss in Atf4-/- osteoblasts [130]. Besides

direct contribution to protein translation, amino acids also

act as a growth signal to activate mTORC1, a critical regu-

lator of osteoblast differentiation and bone formation

[29, 76, 79, 133–138]. Thus, amino acids regulate bone

formation through multiple mechanisms.

The amino acid glutamine has emerged as an important

regulator of osteoblasts. Glutamine is the most abundant

free amino acid in circulation and is not only an important

oxidative fuel, but also a precursor for the synthesis of non-

essential amino acids, nucleotides, and the anti-oxidant

glutathione. Initial studies in isolated calvaria and long

bones demonstrated an active consumption and metabolism

of glutamine [139]. Glutamine was later shown to be

required in calvarial osteoblasts for matrix mineralization

[140]. Decreased glutamine consumption by bone marrow

stromal cells has been linked with impaired osteoblast

differentiation associated with aging [141]. Moreover,

increased glutathione production from glutamine in

response to Hif1a has been shown to improve cell survival

and bone repair in a critical-size tibial defect model [104].

In differentiating osteoblasts, glutamine anaplerosis fulfills

part of the energetic requirement of bone formation in

response to Wnt signaling. Wnt increases glutamine

anaplerosis into the TCA cycle by rapidly increasing glu-

taminase (Gls) protein levels and activity (Fig. 2).

Strikingly, increased glutamine anaplerosis reduces intra-

cellular glutamine levels, leading to activation of Gcn2.

This results in Atf4 activation which stimulates both the

uptake and the de novo synthesis of amino acids to promote

protein synthesis. Mechanistically, this cascade of events is

dependent on mTORC1 activity downstream of Wnt.

Importantly, pharmacological inhibition of Gls reduces

bone formation in the Lrp5A214V/? high bone mass mouse

model demonstrating a critical role for glutamine

anaplerosis to support excessive bone anabolism [133].

Whether Gls and glutamine anaplerosis are required for

physiological bone formation remains unknown as a sys-

tematic analysis of the bones is yet to be performed with

the Gls knockout mice [142].

Fatty acid metabolism in osteoblasts

Lipids are another important carbon and energy source in

mammalian cells. Lipids can be synthesized de novo or

acquired either as free fatty acids that are taken up by cell

surface transporters or as lipoprotein particles bound by

LDL receptor family members. Once transported into the

cell, fatty acids can be metabolized in the mitochondrial

matrix through b-oxidation that sequentially cleaves off

two carbons as acetyl-coA that enters the TCA cycle. Fatty

acids are first transported into the mitochondria by the

carnitine shuttle. Here the rate limiting enzyme carnitine

palmitoyltransferase 1 (CPT1) generates acyl-carnitine by

transferring the acyl group of a long-chain fatty acyl-CoA

to the hydroxyl group of carnitine. Acyl-carnitine is then

shuttled inside the mitochondria in exchange for carnitine

and converted back to acyl-CoA on the inner mitochondrial

membrane by CPT2. Inside the mitochondrial matrix, acyl-

coA can then undergo b-oxidation. Even chain fatty acids

can be completely oxidized into acetyl-CoA whereas odd

chain fatty acids ultimately form acetyl-CoA and succinyl-

CoA which enter the TCA cycle. Complete oxidation of

lipids by b-oxidation yields the most ATP per molecule

compared to glucose or amino acids.

The role and regulation of lipid metabolism in osteo-

blasts is understudied. However, it has been reported that

bone takes up the second highest amount of postprandial

Fig. 2 Wnt signaling stimulates glutamine catabolism through the

TCA cycle. Wnt signaling through Frizzled (Fz) and Lrp5/6 activates

mTORC1 in a PI3K-Akt dependent manner; mTORC1 increases the

protein abundance of glutaminase (Gls) and stimulates glutamine

oxidation for ATP production. The increase in glutamine consump-

tion results in lower intracellular glutamine levels that activate the

Gcn2-Atf4 stress pathway and up-regulate the transcription of genes

important for protein translation. Gln glutamine, Glu glutamate, a-KG
a-ketoglutarate. See original reference for details [76, 77]
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lipoproteins behind liver in the mouse [143]. Moreover,

lipid supplementation of serum-free medium was sufficient

to support proliferation of osteoblastic cells in vitro [144].

Whether this requirement reflects an energetic or synthetic

need for lipids was not clear, but another study estimated

that fatty acid oxidation provided 40–80% of the energy

derived from glucose in rat calvarial osteoblasts [145].

Furthermore, fatty acid oxidation increases during osteo-

blast differentiation in both murine and porcine models,

implicating lipid metabolism in energy production

[146, 147]. Interestingly, recent studies have implicated

Wnt signaling in the regulation of lipid metabolism in

bone. Osteoblasts lacking the Wnt co-receptor Lrp5 exhibit

decreased both expression of lipid metabolism genes and

lipid oxidation. Conversely, expression of the Lrp5G171V

allele or stimulation with the ligand Wnt10b increases lipid

metabolism gene expression and stimulates lipid oxidation

in bone. Mechanistically, the regulation by Wnt appears to

be b-catenin dependent as GSK3b inhibition or b-catenin
overexpression is sufficient to stimulate lipid oxidation in

osteoblasts [147]. It appears that Wnt promotes fatty acid

oxidation to fuel the TCA cycle and OXPHOS while also

stimulating aerobic glycolysis and glutamine anaplerosis.

Further studies are warranted to determine the physiolog-

ical importance of lipid oxidation for osteoblast

differentiation and bone formation in vivo.

Summary

Here, we have highlighted data exploring the role and

molecular regulation of cellular metabolism in osteoblasts

by Wnt signaling. Recent evidence has indicated that Wnt

signaling stimulates aerobic glycolysis, glutamine

anaplerosis, and b-oxidation of fatty acids in osteoblast-

lineage cells. It is likely that b-oxidation and glutamine

anaplerosis contribute to ATP production via OXPHOS to

sustain protein synthesis during bone formation. The

mechanism through which aerobic glycolysis contributes to

the osteoblast phenotype is likely multifaceted and cer-

tainly warrants further investigation. Similarly, future

studies on the role of the various metabolic pathways

during physiological bone formation are necessary. It is

tempting to speculate that metabolic dysregulation at the

cellular level might be involved in various bone patholo-

gies such as ectopic ossification, vascular calcification,

skeletal aging or diabetes-associated bone disorders. The

potential link with diabetes is of particular clinical signif-

icance as patients with either type I or type II diabetes

exhibit increased risk in bone fracture [148, 149]. Although

the mechanisms for diabetes-related bone fragility are

undoubtedly complex, pharmaceutical targeting of

osteoblast metabolism may be a promising direction

towards novel therapies to improve bone health in diabetic

patients.
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