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Abstract

Background—After adjusting for age and body mass index (BMI), mammographic measures - 

dense area (DA), percent dense area (PDA) and non-dense area (NDA) - are associated with breast 

cancer risk. Our aim was to use longitudinal data to estimate the extent to which these risk-

predicting measures track over time.

Methods—We collected 4,320 mammograms (age range, 24-83 years) from 970 women in the 

Melbourne Collaborative Cohort Study and the Australian Breast Cancer Family Registry. Women 

had on average 4.5 mammograms (range, 1-14). DA, PDA and NDA were measured using the 

Cumulus software and normalised using the Box-Cox method. Correlations in the normalised risk-

predicting measures over time intervals of different lengths were estimated using nonlinear mixed-

effects modelling of Gompertz curves.

Results—Mean normalised DA and PDA were constant with age to the early 40s, decreased over 

the next two decades, and were almost constant from the mid 60s onwards. Mean normalised NDA 
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increased non-linearly with age. After adjusting for age and BMI, the within-woman correlation 

estimates for normalised DA were 0.94, 0.93, 0.91, 0.91 and 0.91 for mammograms taken 2, 4, 6, 

8 and 10 years apart, respectively. Similar correlations were estimated for the age and BMI 

adjusted normalized PDA and NDA.

Conclusion—The mammographic measures that predict breast cancer risk are highly correlated 

over time.

Impact—This has implications for etiologic research and clinical management whereby women 

at increased risk could be identified at a young age (e.g. early 40s or even younger) and 

recommended appropriate screening and prevention strategies.
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Introduction

How well a measure of interest is maintained over time within an individual is called 

‘tracking’ (1) and can be assessed by the correlations between measures taken at different 

time points. Risk-prediction biomarkers with strong tracking are particularly important 

because they allow characterising an individual's risk well before the onset of disease.

For women of the same age and body mass index (BMI), mammographic density (MD), the 

amount of white radiographic appearance of dense tissue as seen on a mammogram, is an 

established risk factor for breast cancer both as an absolute (dense area; DA) and a relative 

(percent dense area; PDA) measure (2-4). The association between the absolute amount of 

non-white appearance of breast tissue (non-dense area; NDA) and risk of breast cancer 

remains controversial (3). MD measures are also associated with the sensitivity of 

mammography by ‘masking’ tumours (5-7). Therefore, the extent to which a woman's risk-

associated MD measures (i.e. MD measures adjusted for age and BMI) change over time 

(i.e. ‘track’) is important. If tracking is high from early adulthood, it might be possible to 

identify at young ages women at increased risk of breast cancer and/or of having tumours 

‘masked’, and offer appropriate screening and prevention strategies.

When considering MD as a risk factor for breast cancer we need to adjust for age and BMI. 

This is because both age and BMI are negative confounders of the association between MD 

and risk; increasing age is associated with lower MD (both in terms of DA and PDA) and 

increasing BMI is associated with lower PDA while increasing age and BMI (at least post-

menopausal BMI) are associated with higher risk. Therefore, when investigating the changes 

over time in the risk-predicting MD measures we need to first adjust the MD measures for 

age and BMI.

In terms of change in mean values over time, studies have found that DA and PDA decreased 

with age (8-10) while NDA increased with age (9, 11) after adjusting for BMI. NDA was 

also found to increase with age without adjusting for BMI (12). Another study, which had 

investigated the effects of menopause, found that DA and PDA decreased with menopause 

and NDA increased with menopause after adjusting for height and weight (13). Two studies 
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found that, after adjusting for age, PDA decreased as BMI increased but found that DA did 

not vary with change in BMI (11, 14).

In terms of tracking, for MD measures adjusted for age and BMI the Australian 

Mammographic Density Twin Study (15) found the correlations between measures taken on 

average 8 years apart were about 0.8. Similarly, a UK longitudinal study (9) found 

correlations of about 0.8 for MD measures taken about 9 years apart but this estimate was 

obtained without adjusting for age and BMI. Both studies were of women older than 40 

years, and to our knowledge no previous study has considered tracking for women younger 

than 40 years.

In this study, we have quantified the degree of tracking of the MD measures that predict 

breast cancer risk (i.e. the age- and BMI-adjusted MD measures) using a longitudinal set of 

mammograms from a sample of Australian women.

Methods

Melbourne Collaborative Cohort Study (MCCS)

The MCCS, established in 1990-1994, includes 24,469 women living in Melbourne aged 

between 27 and 76 years at recruitment when information about lifestyle and demographic 

characteristics were obtained through administered structured questionnaires and weights 

and heights were measured (16). Participants were followed up from 1995-2002 by a postal 

questionnaire in which weights were self-reported, and from 2003-2007 with face-to-face 

interviews when weights were measured. The Cancer Council Victoria's Human Research 

Ethics Committee approved the study protocol.

In 2009, we conducted a linkage between female MCCS participants and BreastScreen 

Victoria (BSV), the government-funded mammographic screening program. We identified 

20,444 (84%) participants who had attended BSV at least once. These women were eligible 

for a nested case-control MD study (4). We randomly sampled 884 women from the nested 

case-control study (182 cases, 702 controls). After excluding mammograms taken after the 

end of follow-up at 31st December 2007 (288 mammograms, 7 women) and those taken 

within two years before diagnosis of breast cancer (173 mammograms, 31 women), there 

were 3,954 mammograms from 846 women.

Australian Breast Cancer Family Registry (ABCFR)

The ABCFR, initiated in 1992, includes a population-based case-control-family study 

conducted in Melbourne and Sydney (17-19). Cases with first primary invasive breast cancer 

were recruited from the respective population-based state cancer registries. Controls were 

sampled through electoral rolls and frequency matched for age. Cases and controls acted as 

probands for recruitment of relatives. Demographic and lifestyle characteristics and heights 

and weights were self-reported through questionnaires. At 10 year follow-up, weight was 

again self-reported. The Institutional Ethics Committees of The University of Melbourne, 

Cancer Council Victoria and the New South Wales Cancer Council approved the study 

protocol.
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Mammograms were retrieved from BSV, breast clinics and the ABCFR participants 

themselves. A total of 855 mammograms from 301 women (89 cases, 212 controls) were 

identified. After excluding mammograms taken at/after diagnosis of cases (75 

mammograms, 73 women) and mammograms taken within two years before diagnosis of 

breast cancer (11 mammograms, 10 women), 769 mammograms from 218 women remained.

Combined MCCS and ABCFR longitudinal MD studies

The combined sample included 4,714 mammograms from 1,064 women (9 mammograms 

were dropped because they were taken within the same year for a woman). Details of this 

sample are presented in Table 1. After dropping women for whom there was no information 

on their BMI, there were 4,320 mammograms from 970 women. Both of these datasets, 

before and after excluding missing BMI, were used to fit models to MD measures 

unadjusted for, and adjusted for BMI, respectively. For the 970 women, all mammograms 

were taken between the ages of 24 to 83 years (83.2% of the mammograms were taken 

between 50 to 74 years, the target age group for screening in Australia). Women had 

between 1 to 14 mammograms (average 4.5) and for those who had more than one 

mammogram, the time between the first and last mammogram ranged from 1.2 to 19.6 years 

(average 8.7 years).

Measurement of mammographic density

Mammograms were taken between years 1988 and 2009, 99% were craniocaudal views and 

84% were of the right breast. For all but four women, their mammograms were of the same 

breast. Mammograms were digitised and measured by the Australian Mammographic 

Density Research Facility (AMDRF) at The University of Melbourne. Lumysis 85 and Array 

scanners were used to digitise mammograms from the ABCFR and MCCS, respectively. MD 

was measured for the MCCS and ABCFR by three readers (JS, KK, CFE) and one reader 

(JS), respectively, using the Cumulus software (Imaging Research Program, Sunnybrook 

Health Sciences Centre, University of Toronto, Toronto, Canada) with readers blinded to 

participants' information. For each study, mammograms were randomized into read sets of 

about 100 mammograms each with about 10% repeated within each read set, and 

mammograms repeated in read set 1 were repeated across every 5th read set to estimate 

reliability within and between read sets. For MCCS mammograms, the between reader 

reliabilities were 0.86 for DA and 0.99 for total breast area. For ABCFR mammograms, the 

within reader reliabilities were 0.97 for DA and 0.98 for total breast area. Since the 

reliabilities of MCCS were high we used the average measures of all three readers for the 

analyses.

Statistical analysis

The Box-Cox method (20) was used to identify the appropriate transformations to achieve 

approximate normal distributions; DA and PDA were transformed to (DA0.2-1)/0.2 and 

(PDA0.2-1)/0.2, respectively while NDA was transformed to (NDA0.4-1)/0.4. We have 

transformed the mammographic measures to ensure that the assumption of the mixed-effects 

model that the residuals have an approximately normal distribution is met.
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Normalised variables, DA, PDA and NDA, were modelled as a function of age at 

mammogram. We considered five functions of age: 1) linear, 2) quadratic, 3) cubic, 4) 

logistic (with four parameters) and 5) Gompertz. The Gompertz function is described by 

four parameters: l, u, d and scale, example: Normalised DA = l + ((u - l)/exp(dexp(-

scale(age-60)))), where age is the age at mammogram (centralised about the mean age at 

mammogram of 60 years), l is the lower asymptote approached as age decreases, u is the 

upper asymptote approached as age increases, d is the displacement along the age axis, scale 

is the rate of change in the measure, and d and scale are constrained to be positive.

The best fitting model, according to the Bayesian information criteria (BIC), was the 

Gompertz function (results not shown). Consequently, we fitted the Gompertz function to 

each measure using a mixed-effects model, allowing: (i) the asymptotes to vary across 

women (i.e. allowing random effects for the lower and upper asymptotes); and (ii) the 

between-women variances of the lower and upper asymptotes to be correlated (i.e. the 

random effects for the asymptotes were allowed to depend on each other). Random effects 

for d and scale were not estimated given the limited number of women with mammograms 

taken within the age range during which the change occurred.

BMI at time of mammogram was estimated by linear interpolation and extrapolation of BMI 

measures available at study entry and follow-ups. BMI and other covariates (menarche, 

parity, family history and study) were fitted as fixed effects to explain the woman-to-woman 

variation in both the asymptotes.

A sensitivity analysis was done by restricting analyses to controls only.

The within-individual correlation for measures taken 2, 4, 6, 8 and 10 years apart were 

defined as Correlation(u)=1-(Variogram(u))/σ2, where Variogram(u) is the average of the 

half-squared differences across all pairs of residuals corresponding to u, the time between 

mammograms, and σ2 is the variance (1).

Nonparametric bootstrapping was applied to obtain the 95% confidence interval (CI) for 

each within-individual correlation estimate. For each measure, we ran 1,115 bootstrap 

replicates for each model. The number of bootstrap replicates that converged for each model 

and the 95% CIs derived using the bootstrap percentile method are reported in Tables 2-4.

Lowess (i.e. smoothed) curves were fitted and visually compared to the fitted Gompertz 

curves derived from the mixed-effects models. Lowess curves (bandwidth, 0.5) were plotted 

based on smoothed y variables obtained by applying separate weighted regression for each 

point (xi, yi) in the data. In the weighted regression at each point, regression is based on the 

point of interest and several points around the main point by giving the highest weight to the 

point of interest and decreasing weights for the points that are further away based on their 

distance on the x axis to the point of interest (21).

Statistical analyses were performed using R 3.0.2 (R Foundation for Statistical Computing, 

Vienna, Austria) and Stata 12.1 (Stata Corporation, College Station, TX).
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Results

Table 1 shows the characteristics of the study sample. The average ages at first and last 

mammogram were 55 years and 63 years, respectively. The average time interval between 

mammograms was 2.2 years (standard deviation (SD) = 1.0). The median time between the 

first and last mammogram was 8 years (SD = 5.0).

Figure 1 shows that, for all three mammographic measures, the fitted Gompertz curve was 

close to the smoothed Lowess curve. Both DA and PDA had a similar change in pattern over 

time; estimated mean DA and PDA were constant up to about the early 40s, decreased 

thereafter and became constant again from about the mid 60s onwards. NDA had a reversed 

pattern compared with DA and PDA; estimated mean NDA was constant up to the mid 30s, 

increased thereafter and became constant again from the early 70s onwards.

Table 2 shows estimates of normalised DA from fitting the Gompertz model. After back 

transformation, the estimated mean DA was constant at 17 cm2 until the early 40s, decreased 

over the next two decades and slowly plateaued to almost a constant of about 8 cm2 from the 

mid 60s onwards. From the age of 44 to 64 years, mean DA decreased at 0.44 cm2/year and 

from the age of 65 to 83 years it decreased at 0.03 cm2/year. Mean DA at the younger (i.e. 

early 40s and younger) and older ages (i.e. older than 83) varied across women (SD for 

normalised DA lower and upper asymptotes = 2.0).

The correlation over time intervals between mammograms for normalised DA measures, 

adjusted for age, BMI and other confounders (menarche, parity and family history), was 

0.94 (95% CI = 0.91 to 0.94) over 2 years and decreased slightly as the time between 

mammograms increased to be 0.91 (95% CI = 0.82 to 0.95) for mammograms taken 10 

years apart.

BMI and being parous were negatively associated with DA asymptotes at the younger and 

older ages. Women with a family history of breast cancer had on average a slightly higher 

DA at younger ages (by an average of 2 cm2), though 92% of the mammograms before age 

45 came from the ABCFR women and all had a family history of breast cancer.

The association of normalised PDA with age was similar to that above for DA (Table 3). 

Mean PDA was constant at 15% until age 40 years. From the age of 41 to 67 years, mean 

PDA decreased at a rate of 0.36%/year and from the age of 68 to 83 years it decreased at 

0.03%/year. The correlation over time intervals between normalised and adjusted PDA 

measures decreased slightly as the time between mammograms increased and was 0.91 

(95% CI = 0.80 to 0.95) for mammograms taken 10 years apart. Adjusting for BMI and the 

other confounders did not materially change the correlations. Higher BMI and parity were 

associated with lower PDA asymptotes at both the younger (i.e. 40 and younger) and older 

ages (i.e. older than 83). Later age at menarche was associated with a higher PDA asymptote 

at older ages and, similar to DA, women with family history had on average a higher PDA at 

younger ages.

Figure 2 represents data for women who had the largest increase (> 17 %), largest decrease 

(> 35 %) and minimum change (0 to 0.01%) in PDA from their first to last mammograms. 
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Only women with three mammograms or more were chosen. The figure shows the 

population mean curve and the individual predicted curve over time based on the fitted 

model. For these women, the individual predicted PDA measures over time based on the 

fitted model were close to the corresponding observed measures, regardless of a marked 

increase or decrease in PDA, or almost stable PDA.

For NDA, the pattern of association with age was generally in the opposite direction to that 

for DA and PDA (Table 4). Mean NDA was constant at 94 cm2 until 36 years of age, 

increased over the next four decades and slowly plateaued to be almost a constant of about 

151 cm2 by the age of 84 years. From the age of 37 to 71 years, mean NDA increased at 

1.54 cm2/year and from the age of 72 to 83 years it increased at 0.33 cm2/year. Mean NDA 

at the younger (i.e. mid 30s and younger) and older ages (i.e. older than 83) varied more 

than that of DA across women (SD for lower and upper asymptotes corresponding to 

normalised NDA: 3.54 and 3.19, respectively).

The correlation over time intervals between mammograms for normalised NDA measures, 

adjusted for all the measured confounders, decreased slightly as the time between 

mammograms increased and was 0.96 (95% CI = 0.93 to 0.98) for mammograms taken 10 

years apart.

BMI explained 30% and 18% of the variation across women in the NDA asymptotes at 

younger and older ages, respectively (SD for lower and upper asymptotes corresponding to 

normalised NDA dropped to 2.97 and 2.88, respectively, after adjusting for BMI). BMI was 

positively associated with the NDA asymptotes at the younger and older ages. Women 

whose age at menarche was earlier, and those who were parous, had higher NDA asymptotes 

at the older ages. There was no association between family history and NDA. Overall, the 

estimates of the parameters and the correlations over time intervals did not change 

considerably after adjusting for BMI and all the other confounders.

There was no evidence for heterogeneity of associations with age, or for correlations over 

time intervals, by study. Women in the ABCFR had lower NDA asymptotes at older ages 

than women in the MCCS. Restricting the analyses to controls did not change the results 

substantially.

Discussion

This study found that all of the three mammographic measures implicated in predicting 

breast cancer risk – DA, PDA and NDA adjusted for age and BMI - track strongly with age. 

The predicted correlations for mammograms taken 2 years apart were high, and the 

correlations attenuated only gradually as the time interval between measures increased, by 

about 0.4% per year, with correlations over 10 years intervals in excess of 0.9. If this rate of 

attenuation was maintained over 40 years, and under the Markov assumption that the 

changes over non-overlapping intervals are independent of one another, this would equate to 

a decrease of 15% to give a correlation in excess of 0.8 over that time interval. Given that the 

correlations do not differ across women of different ages, this means that the correlation 

between a woman's MD measures at age 30 and 70 years could be higher than the 
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correlation between monozygotic twin pairs measured at the same time (22-24). This strong 

tracking raises the possibility that MD measures (adjusted for age and BMI) could be used to 

identify young adult women who are at increased absolute breast cancer risk in later life and 

subsequently offer risk-appropriate prevention and screening strategies that might reduce 

mortality.

Our mean MD measures are virtually constant with age up until the menopausal years. 

Previous studies of women from their 40s through to mid 60s and older have generally fitted 

a linear association. Figure 1 shows that, while this is not necessarily a poor description of 

the relationships over that age interval, the fitted straight line does not extrapolate well to 

younger (e.g. 40s or younger) or older (mid 60s or older) ages. Furthermore, this shape for 

the age relationship is unaltered after adjusting for BMI.

This is consistent with MD, as a breast cancer risk factor, being established at least by early 

adulthood. A cross-sectional study has shown that, after adjusting for age and BMI, other 

breast cancer risk factors explain little variance in the MD risk-predicting measures (24). 

These observations suggest that MD as a risk factor might not be consistent with the Pike's 

model of tissue ageing (9).

Strengths of our study are the inclusion of a substantial number of young women (74 women 

had at least one mammogram taken before age 40 years), the wide range in the ages of 

mammograms (24-83 years) and the high proportion of women with multiple mammograms 

(71% had three or more mammograms). Almost all the mammograms were craniocaudal 

views which means that NDA is a reliable measure of adipose tissue in the breast with 

minimal influence from body fat (4). There is also minimal chance of differences in 

mammographic measures due to laterality and view of the mammogram influencing the 

mammographic readings of each woman because, for all but four of the women, all 

mammograms were of the same breast and 99% of the mammograms were of CC view.

A limitation was that there were insufficient women with mammograms taken from the ages 

of 40s to 60s, the age range during which changes in MD occurred, to estimate random 

effects (or between-women variation) for d and scale. BMI was not available at the time of 

each mammogram so we assigned a value obtained from the linear interpolation/

extrapolation of the measures available; this procedure was justified by the strong correlation 

of BMI with age: in MCCS, the spearman's rank correlation for BMI was 0.90 for measures 

taken at study entry and at the first follow-up 4 years later and 0.70 for measures taken at 

study entry and second follow-up occurring on average 11 years apart. In any case, any 

imprecision in interpolation/extrapolation would result in lower correlation estimates over 

time (i.e. weaker tracking), so the bias is if anything conservative. That is, if we had BMI 

measures at each mammogram the correlation estimates will only be higher. The 

mammogram machines may have varied over time and location, and this would only serve to 

weaken the correlations in mammographic measures of the breast over time. Therefore, the 

tracking could even be greater than we have estimated. The mammographic measures were 

also not adjusted for other potential variables that might have influenced the change in the 

measures, for example menopausal status and hormone replacement therapy. However, 

adjusting for these variables would likely make the tracking greater than observed.
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Our results are consistent with a prospective Australian twin study (15) and a longitudinal 

UK study (9) that reported correlations of about 0.8 between the MD measures taken about 8 

or 9 years apart. It has been speculated that the strong tracking with age may be because 

around 50% of the variance in MD and NDA appears to be explained by inherited genetic 

variants (22, 25, 26) that would have contributed to variation in MD measures before mid-

life (15).

Most screening programs invite women from age 50 years onwards. Our data show that MD-

based measures of risk track strongly with age, and from an age younger than when 

screening usually starts (such as before age 40 years). This has implications for etiologic 

research. It also raises the possibility that a mammogram taken early in adulthood could help 

identify women at increased risk of breast cancer later in life who might benefit from early 

prevention strategies or commencement of screening at a younger age.
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Figure 1. 
Normalised measures of dense area (DA), percent dense area (PDA) and non-dense area 

(NDA) as a function of age at mammogram showing the fitted Gompertz model and 

smoothed Lowess curve
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Figure 2. 
Observed, predicted population mean, and predicted individual percent dense area (PDA) as 

a function of age at mammogram for women with the largest increase (> 17%), largest 

decrease (> 35 %) and minimum change (0 to 0.01 %) in PDA from the first to the last 

mammogram and had 3 mammograms or more in total, plotted over the range of ages at 

mammograms relevant for each woman
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Table 1
Characteristics of participants in the study

Overall MCCS ABCFR

Number of women (number of mammograms) 1064 (4714) 846 (3951) 218 (763)

Number of mammograms per woman, median (range) 4 (1-14) 5 (1-10) 3 (1-14)

Number of women with one mammogram, N (%) 141 (13) 80 (9) 61 (28)

Mean (SD)

Time interval between mammograms, years 2.2 (1.0) 2.2 (0.8) 2.2 (1.7)

Age at first mammogram, years 55.8 (9.8) 58.9 (7.6) 44.0 (8.3)

Age at last mammogram, years 63.4 (10.7) 67.0 (7.8) 49.4 (8.7)

BMI at study entry, kg/m2 26.8 (5.1) 27.5 (5.1) 24.1 (4.3)

BMI at first mammogram, kg/m2 27.0 (5.6) 27.5 (5.1) 24.8 (6.9)

BMI at last mammogram, kg/m2 26.8 (5.1) 27.5 (5.1) 24.1 (4.3)

Median (25th-75th percentile)

Time between first and last mammograms, years 8.0 (5.0) 8.4 (4.9) 4.5 (4.8)

At first mammogram:

 Dense area, cm2 14.7 (4.5-30.3) 12.0 (3.3-26.7) 25.0 (14.4-38.0)

 Nondense area, cm2 116.0 (77.6-161.1) 122.6 (85.6-170.7) 83.2 (57.6-132.7)

 Total area, cm2 135.3 (100.6-179.7) 139.3 (107.8-187.7) 118.0 (82.1-162.5)

 Percent density, % 11.7 (3.0-26.1) 8.7 (2.3-21.8) 24.1 (12.3-34.7)

At last mammogram:

 Dense area, cm2 12.1 (3.5-25.7) 9.7 (2.8-21.7) 23.6 (11.4-36.6)

 Nondense area, cm2 131.0 (91.0-178.2) 138.7 (99.6-186.7) 93.7 (60.0-139.0)

 Total area, cm2 148.3 (110.4-195.6) 154.3 (118.1-200.9) 123.6 (83.8-165.9)

 Percent density, % 8.5 (2.4-20.4) 6.7 (1.6-16.7) 21.2 (8.7-31.4)

Difference between first and last mammogram

 Dense area, cm2 -0.7 (-6.0-0.6) -0.9 (-5.5-0.4) -0.4 (-8.1-2.9)

 Nondense area, cm2 11.2 (0-27.9) 13.1 (0-30.4) 0.7 (-4.4-18.7)

 Total area, cm2 8.5 (-1.2-24.4) 10.3 (-0.4-26.8) 0.0 (-4.5-13.4)

 Percent density, % -0.9 (-6.1-0.1) -1.0 (-5.3-0.1) -0.5 (-9.6-2.3)

N (%)

Case-Control statusa Cases 155 (15) 149 (18) 6 (3)

Controls 909 (85) 697 (82) 212 (97)

Menarche ≤12 382 (36) 311 (37) 71 (33)

13+ 680 (64) 533 (63) 147 (67)

Parity Nulliparous 120 (11) 107 (13) 13 (6)

Multiparous 908 (85) 739 (87) 169 (78)

Family history (number of women) Yes 318 (37) 149 (22) 169 (100)

No 541 (63) 541 (78) 0 (0)

a
Case-control status of participants refer to the status at selection of the nested case-control MD study
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Table 2
Estimates of the Gompertz mixed-effects model corresponding to normalised dense area

Unadjusted model Model adjusted for BMI Fully adjusted Modela

1064 women and 4714 
mammograms

970 women and 4320 
mammograms

859 women and 3847 
mammograms

Fixed effect, estimate (95% CI)

Lower asymptote (l) 3.85 (3.69, 4.00) 5.13 (4.66, 5.61) 5.30 (4.58, 6.03)

Upper asymptote (u) 2.56 (2.43, 2.69) 3.11 (1.72, 3.49) 3.52 (2.91, 4.13)

 Displacement along the age axis 0.27 (0.20, 0.33) 0.26 (0.19, 0.33) 0.29 (0.22, 0.37)

 Scale 0.24 (0.28, 0.20) 0.25 (0.29, 0.21) 0.25 (0.29, 0.21)

 BMI, kg/m2

  lower asymptote -0.05 (-0.07, -0.03) -0.04 (-0.06, -0.02)

  upper asymptote -0.02 (-0.03, -0.01) -0.02 (-0.03, -0.003)

 Menarche (13+ vs ≤ 12)

  lower asymptote -0.11 (-0.44, 0.22)

  upper asymptote 0.23 (-0.07, 0.53)

 Parity(1+ vs nulliparous)

  lower asymptote -0.78 (-1.26, -0.29)

  upper asymptote -0.82 (-1.28, -0.36)

Family history(Yes vs No)

  lower asymptote 0.68 (0.36, 1.01)

  upper asymptote 0.05 (-0.27, 0.37)

Random effect, estimate (95% CI)

 SD(lower asymptote) 1.98 (1.86, 2.11) 1.90 (1.78, 2.03) 1.91 (1.78, 2.05)

 SD(upper asymptote) 1.89 (1.79, 1.98) 1.89 (1.79, 1.99) 1.90 (1.79, 2.00)

 Correlation(l, u) 0.76 (0.69, 0.82) 0.77 (0.69, 0.83) 0.77 (0.69, 0.83)

Residuals, estimate (95% CI)

SD(Residual) 0.55 (0.53, 0.56) 0.55 (0.53, 0.56) 0.55 (0.53, 0.56)

Correlation between mammograms taken within an individual woman (95% CI)b

 2 years apart 0.94 (0.91, 0.94) 0.94 (0.91, 0.94) 0.94 (0.91, 0.94)

 4 years apart 0.93 (0.90, 0.93) 0.93 (0.89, 0.93) 0.93 (0.89, 0.93)

 6 years apart 0.92 (0.88, 0.93) 0.91 (0.88, 0.92) 0.92 (0.88, 0.93)

 8 years apart 0.92 (0.88, 0.94) 0.91 (0.88, 0.94) 0.91 (0.87, 0.94)

 10 years apart 0.91 (0.83, 0.95) 0.91 (0.83, 0.95) 0.91 (0.82, 0.95)

a
Model is adjusted for BMI at each mammogram, age at menarche, parity and family history.

b
95% CIs are obtained using nonparametric bootstrapping. Number of bootstrap replicates that converged; 1030 for unadjusted model, 893 for 

model adjusted for BMI and 776 for fully adjusted model.
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Table 3
Estimates of the Gompertz mixed-effects model corresponding to normalised percent 
dense area

Unadjusted model Model adjusted for BMI Fully adjusted Modela

1064 women and 4714 
mammograms

970 women and 4320 
mammograms

859 women and 3847 
mammograms

Fixed effect, estimate (95% CI)

Lower asymptote (l) 3.58 (3.41, 3.74) 5.82 (5.36, 6.28) 5.93 (5.23, 6.64)

Upper asymptote (u) 1.90 (1.76, 2.04) 2.92 (2.53, 3.31) 3.31 (2.71, 3.90)

 Displacement along the age axis 0.34 (0.28, 0.40) 0.33 (0.27, 0.40) 0.36 (0.29, 0.43)

 Scale 0.19 (0.22, 0.17) 0.21 (0.24, 0.19) 0.21 (0.25, 0.18)

BMI, kg/m2

  lower asymptote -0.09 (-0.10, -0.07) -0.08 (-0.09, -0.06)

  upper asymptote -0.03 (-0.05, -0.02) -0.03 (-0.05, -0.02)

Menarche (13+ vs ≤ 12)

  lower asymptote -0.03 (-0.36, 0.29)

  upper asymptote 0.33 (0.05, 0.62)

Parity(1+ vs nulliparous)

  lower asymptote -0.82 (-1.29, -0.36)

  upper asymptote -0.87 (-1.31, -0.42)

 Family history(Yes vs No)

  lower asymptote 0.71 (0.40, 1.02)

  upper asymptote 0.12 (-0.19, 0.44)

Random effect, estimate (95% CI)

 SD(lower asymptote) 2.06 (1.93, 2.20) 1.87 (1.74, 2.00) 1.86 (1.73, 2.00)

 SD(upper asymptote) 1.85 (1.75, 1.95) 1.82 (1.72, 1.92) 1.81 (1.71, 1.92)

 Correlation(l, u) 0.71 (0.64, 0.77) 0.71 (0.63, 0.78) 0.72 (0.64, 0.79)

Residuals, estimate (95% CI)

 SD(Residual) 0.52 (0.50, 0.53) 0.52 (0.50, 0.53) 0.52 (0.50, 0.53)

Correlation between mammograms taken within an individual woman (95% CI)b

2 years apart 0.94 (0.91, 0.94) 0.94 (0.90, 0.93) 0.94 (0.90, 0.93)

 4 years apart 0.93 (0.90, 0.93) 0.92 (0.88, 0.92) 0.92 (0.88, 0.92)

 6 years apart 0.92 (0.88, 0.93) 0.91 (0.86, 0.92) 0.91 (0.87, 0.92)

 8 years apart 0.92 (0.89, 0.94) 0.91 (0.87, 0.93) 0.91 (0.87, 0.93)

 10 years apart 0.91 (0.83, 0.95) 0.90 (0.81, 0.94) 0.91 (0.80, 0.95)

a
Model is adjusted for BMI at each mammogram, age at menarche, parity and family history.

b
95% CIs are obtained using nonparametric bootstrapping. Number of bootstrap replicates that converged; 1036 for unadjusted model, 928 for 

model adjusted for BMI and 821 for fully adjusted model.
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Table 4
Estimates of the Gompertz mixed-effects model corresponding to normalised non-dense 
area

Unadjusted model Model adjusted for BMI Modela Modelb

1064 w, 4714 m 970 w, 4320 m 859 w, 3847 m 859 w, 3847 m

Fixed effect, estimate (95% CI)

 Lower asymptote (l) 12.88 (12.59, 13.16) 7.82 (7.13, 8.51) 7.64 (6.55, 8.73) 7.57 (6.47, 8.67)

 Upper asymptote (u) 16.12 (15.87, 16.36) 12.95 (12.31, 13.59) 12.93 (11.96, 13.90) 12.84 (11.87, 13.81)

 Displacement along the age axis 0.44 (0.38, 0.50) 0.47 (0.40, 0.54) 0.46 (0.39, 0.54) 0.45 (0.38, 0.53)

 Scale 0.15 (0.16, 0.13) 0.17 (0.19, 0.15) 0.17 (0.19, 0.15) 0.17 (0.19, 0.14)

 BMI, kg/m2

  lower asymptote 0.20 (0.17, 0.22) 0.19 (0.17, 0.22) 0.20 (0.17, 0.22)

  upper asymptote 0.11 (0.09, 0.13) 0.11 (0.08, 0.13) 0.11 (0.08, 0.13)

 Menarche (13+ vs ≤ 12)

  lower asymptote -0.16 (-0.67, 0.34) -0.17 (-0.68, 0.34)

  upper asymptote -0.68 (-1.14, -0.22) -0.67 (-1.13, -0.21)

 Parity (1+ vs nulliparous)

  lower asymptote 0.71 (-0.03, 1.44) 0.68 (-0.06, 1.42)

  upper asymptote 0.67 (-0.04, 1.39) 0.76 (0.05, 1.48)

 Family history(Yes vs No)

  lower asymptote -0.41 (-0.91, 0.08) -0.50 (-1.19, 0.19)

  upper asymptote -0.34 (-0.84, 0.16) -0.03 (-0.60, 0.54)

 Study(ABCFR vs MCCS)

  lower asymptote 0.16 (-0.63, 0.94)

  upper asymptote -1.27 (-2.23, -0.30)

Random effect, estimate (95% CI)

 SD(lower asymptote) 3.54 (3.34, 3.76) 2.97 (2.79, 3.17) 2.98 (2.78, 3.19) 2.99 (2.79, 3.21)

 SD(upper asymptote) 3.19 (3.02, 3.38) 2.88 (2.71, 3.07) 2.86 (2.68, 3.05) 2.84 (2.66, 3.04)

 Correlation(l, u) 0.67 (0.59, 0.73) 0.67 (0.58, 0.74) 0.68 (0.58, 0.75) 0.70 (0.57, 0.75)

Residuals, estimate (95% CI)

 SD(Residual) 0.75 (0.73, 0.77) 0.75 (0.73, 0.77) 0.75 (0.73, 0.77) 0.75 (0.73, 0.77)

Correlation between mammograms taken within an individual woman (95% CI)c

 2 years apart 0.98 (0.97, 0.98) 0.97 (0.96, 0.97) 0.97 (0.96, 0.97) 0.97 (0.96, 0.97)

 4 years apart 0.98 (0.96, 0.98) 0.97 (0.95, 0.97) 0.97 (0.95, 0.97) 0.97 (0.95, 0.97)

 6 years apart 0.98 (0.97, 0.98) 0.97 (0.96, 0.97) 0.97 (0.96, 0.97) 0.97 (0.96, 0.97)

 8 years apart 0.98 (0.97, 0.98) 0.97 (0.96, 0.97) 0.97 (0.95, 0.97) 0.97 (0.95, 0.97)

 10 years apart 0.97 (0.94, 0.99) 0.97 (0.93, 0.98) 0.96 (0.93, 0.98) 0.96 (0.93, 0.98)

a
Model is adjusted for BMI at each mammogram, age at menarche, parity and family history.

b
Model is adjusted for BMI at each mammogram, age at menarche, parity, family history and study effect.

c
95% CIs are obtained using nonparametric bootstrapping. Number of bootstrap replicates that converged; 940 for unadjusted model, 641 for 

model adjusted for BMI, 410 for fully adjusted model and 305 for fully adjusted model including study effect.
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