
Personalized Learning: From Neurogenetics of Behaviors to 
Designing Optimal Language Training

Patrick C. M. Wong,
Dept of Linguistics & Modern Languages and Brain and Mind Institute, The Chinese University of 
Hong Kong

Loan Vuong, and
Dept of Linguistics & Modern Languages and Brain and Mind Institute, The Chinese University of 
Hong Kong

Kevin Liu
Feinberg School of Medicine, Northwestern University

Abstract

Variability in drug responsivity has prompted the development of Personalized Medicine, which 

has shown great promise in utilizing genotypic information to develop safer and more effective 

drug regimens for patients. Similarly, individual variability in learning outcomes has puzzled 

researchers who seek to create optimal learning environments for students. “Personalized 

Learning” seeks to identify genetic, neural and behavioral predictors of individual differences in 

learning and aims to use predictors to help create optimal teaching paradigms. Evidence for 

Personalized Learning can be observed by connecting research in pharmacogenomics, cognitive 

genetics and behavioral experiments across domains of learning, which provides a framework for 

conducting empirical studies from the laboratory to the classroom and holds promise for 

addressing learning effectiveness in the individual learners. Evidence can also be seen in the 

subdomain of speech learning, thus providing initial support for the applicability of Personalized 

Learning to language.
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Introduction

Research in educational sciences and related clinical disciplines has strived to identify the 

most efficacious educational and interventional programs. Results from numerous high-
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quality empirical studies provided converging evidence for many areas of best educational 

practices, ranging from early childhood cognitive development to mathematics, sciences and 

literacy. In asking what factors and interventions predict and produce the best learning 

outcomes, high-quality research in educational science often focuses on learners as a group. 

More recently, research has begun to examine the impact that individual differences and 

learning-centered factors may have on responsivity to a given intervention.

This review discusses Personalized Learning, a translational line of inquiry that stands in 

parallel with pharmacogenomics and Personalized Medicine (Wang et al., 2011). The 

concept of using genetic information to improve patient outcomes has already been 

established by pharmacogenomic research. This concept has great potential to be extended 

to developing personalized educational practices as well as personalized treatment of 

behavioral disorders, communication disorders and learning disabilities (see also Gabrieli, 

Ghosh, & Whitfield-Gabrieli, 2015). Recent advances in genomics have expanded beyond 

understanding of the molecular genetics of cellular functions and diseases (McCormack et 

al., 2011; Pare et al., 2010) directly relevant to drug therapies and have begun to also shed 

light onto the genetic basis of higher order human functions, including executive functions 

and memory (Papassotiropoulos and de Quervain, 2011) as well as domain-specific 

behaviors, such as motor learning (Adkins et al., 2006). Exploring how genetic, neural and 

behavioral predictors can be used to customize learning paradigms across various modalities 

of learning would lay the foundation for optimizing both learning and behavioral treatment 

to the individual, a shift away from learning paradigms that focus on cognitive training at the 

group level. After briefly reviewing Personalized Medicine, the framework for Personalized 

Learning will be discussed followed by an example of personalized language learning in the 

subdomain of speech learning and general considerations for implementations.

Personalized Medicine

Recognizing individual variability in drug responsivity and safety, researchers and clinicians 

in fields of medicine have begun to seek ways to tailor medical treatments to patients on an 

individual level. Often termed Individualized Medicine, Personalized Medicine and more 

recently Precision Medicine (Collins & Vamus, 2015), this new area of intensive research 

has resulted in a number of treatment strategies that have shown great promise in improving 

patient outcomes (Ma and Lu, 2011; Wang et al., 2011). Facilitated by recent developments 

and reduced costs in human genomics, researchers have demonstrated that in the 

pharmacological treatment of certain diseases, genetic variation contributes to differences in 

patients' responses to medication (Mallal et al., 2008). A well-studied example of genetic 

polymorphisms affecting treatment response in Personalized Medicine is warfarin, an 

anticoagulant whose responsivity is associated with variants of CYP2C9, a group of genes 

that encode enzymes that are responsible for the metabolic clearance of warfarin, and 

VKORC1, which encodes for an enzyme involved in recycling vitamin K-, a cofactor 

necessary for the formation of various clotting factors. These discoveries have led to FDA 

approval of clinical tests for genetic variants and labeling changes on medication that 

provide considerations of CYP2C9 and VKORC1 polymorphisms in deciding on a dosing 

regimen (Schwarz et al., 2008). Other pharmacological therapies that have shown similar 

successes in treatment responses include abacavir (Mallal et al., 2008), gefitinib (Lynch et 
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al., 2004), clopidogrel (Mega et al., 2010; Pare et al., 2010), carbamazepine (McCormack et 

al., 2011; Phillips and Mallal, 2011), and hepatitis C treatments (Thomas et al., 2009). These 

successes in Personalized Medicine can potentially be extended to domains of learning.

Personalized Learning: The Framework

Personalized Learning depends on three conditions. First, individual differences in learning 

need to be identified, demonstrating that not every person learns optimally under the same 

training paradigm. Second, genotypic, endogenotypic (neural) and/or behavioral (e.g., 

cognitive-perceptual) factors that are predictive of individual differences in learning should 

be determined. Third, these predictors should be used to place learners into the most optimal 

training conditions, individualized to their specific learning needs.

Individual Differences in Learning

Research on cognition and across domains of learning has shown individual degrees of 

success in learning vary, even under the same learning paradigms. Widespread individual 

differences have been found in learning achievement across mathematics, science and 

reading literacy (Halberda et al., 2008; Martin & Mullis, 2013), from the learning of facts to 

the acquisition of skill (Ackerman, 2007), in explicit forms as well as implicit forms of 

learning (Kaufman et al., 2010). Individual differences exist in how fast children normally 

acquire their native language (Bates et al., 1995) and in native language attainment (Street & 

Dabrowska, 2010). Compared to first language acquisition, individual differences are even 

more pervasive in second language acquisition (Birdsong, 2004). In clinical populations, 

treatment outcomes have also demonstrated variability. For example, children who are 

severely or profoundly deaf and have received cochlear implants have shown extensive 

variability in speech-and-language outcomes (Peterson et al., 2010).

It is worth mentioning that the identification of individual differences in learning outcomes 

is not the sole focus of Personalized Learning. It is important to consider what is being 

learned and how learning occurs. In this regard, individual differences in learning outcomes 

per se may be less useful for the goals of Personalized Learning than individual differences 

in the determinants (i.e., predictors) of learning (see next section). This is because the 

existence of individual differences in learning outcomes suggests that not everyone learns 

optimally under certain conditions, but these differences alone give little information as to 

why some learners do not succeed. Individual differences in predictors of learning are 

important because these differences can further elucidate the learning conditions that may 

impede or facilitate learning. Such differences can ultimately be used to improve learning. 

Important questions arise: To what extent can individual differences in learning be 

predicted? Are there available objective predictors that do not require extensive testing of 

individual performance? Can predictors be used to modify approaches to individual 

learning?

Predictors of Learning

In Personalized Medicine, genetic polymorphisms (genetic variations across individuals) 

have been shown to be predictive of patient responsivity to certain pharmacological 

Wong et al. Page 3

Neuropsychologia. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatments (Pare et al., 2010). These genomic advances have also extended beyond life-

threatening diseases that have clear molecular origins. In learning and higher-level functions, 

numerous studies have emerged that demonstrate the predictive ability of individual genetic 

differences on learning and cognition. Individual differences in episodic memory have been 

found to be associated with a cluster of genes related to the glutamate system (de Quervain 

and Papassotiropoulos, 2006; Papassotiropoulos and de Quervain, 2011). Individual 

differences in various aspects of procedural learning have been tied to polymorphisms of 

genes in the dopaminergic D2 receptor and striatal systems (Frank et al., 2009; Klein et al., 

2007). Individual differences in working memory have also been linked to polymorphisms of 

dopaminergic D1 receptor genes (Egan et al., 2001; Rybakowski et al., 2005), such that 

homozygous carriers of the G allele of DRD1 seemed to show worse performance. Not 

suprisingly, some of these genes have recently been found to be associated with cognitive 

and psychiatric disorders (Bilder et al., 2011). As cognitive functions are strongly linked 

across domains of learning (Klahr et al., 2011), these cognition-related genes are likely to be 

predictive of aspects of learning although future studies are required to examine their actual 

predictive power.

Despite numerous cases of success (e.g., Franke et al., 2008; Gateva et al., 2009; Soronen et 

al., 2010), it is important to point out the enormous challenges in finding genetic predictors. 

For example, many previously identified associations based on genome-wide association 

studies (GWAS) have failed to replicate (Campa et al., 2012; Cousin et al., 2011; Molendijk 

et al., 2012). Even the best examples of replications only explain a small proportion of 

phenotypic variance (Queitsch et al., 2012). In a recent study, Harlaar et al. (2014) used a 

genome-wide association approach to identify genetic variants associated with individual 

differences in receptive language in a sample of 2329 children. No associations were found 

that survived the conventional statistical significance threshold correcting for multiple 

comparisons; it was suggested that larger sample sizes and newer sequencing methods are 

required for future studies.

As finding genetic predictors will continue to be challenging, Personalized Learning also 

aims to incorporate other predictors outside of genetic markers for successful learning. 

Among non-genetic markers, having been shown to have predictive powers across diverse 

areas of learning are general cognitive factors such as psychometric intelligence (Neisser et 

al., 1996), executive functioning (Bull et al., 2008) and working memory (Alloway & 

Alloway, 2010). For example, fluid intelligence measured at age 11 could predict academic 

achievement at age 16 across an extensive list of school subjects, from mathematics and 

sciences (physics, chemistry, biology) to arts and humanities that included native and foreign 

languages (Deary et al., 2007). Based on past behavioral studies, in addition to executive 

functioning and working memory, candidate markers of language learning may include 

measures of ability to learn specific associations between stimuli (Ellis, 2008) and also 

declarative memory (Ullman, 2005), implicit learning of sequential regularities (Kaufman et 

al., 2010) and also procedural memory (Ullman, 2005), and perceptual sensitivity such as 

pitch contour perception (Wong & Perrachione, 2007). Electrophysiological and 

neuroimaging studies further suggest that event-related negative response seen in younger 

infants can serve as a predictor of later language development (Kooijman et al., 2013) while 

volumes in the left Heschl's gyrus and white matter connectivity around Broca's area can 
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serve as predictors of phonetic learning and grammar learning, respectively (Golestani, 

2014).

The goal of Personalized Learning is not to find predictors to identify “good learners” 

regardless of the type of learning, but rather to predict learning outcomes under a particular 
learning paradigm. Personalized Learning crucially requires finding predictors of learning 

across different training paradigms within the same domain of learning and across different 

domains of learning. The same predictor (e.g., working memory) may predict better or 

worse learning, depending on the type of learning in question. For example, although higher 

working memory has been linked to better reading abilities (Carpenter and Daneman, 1980) 

and second language learning (Slevc & Miyake, 2006), individuals with higher working 

memory were found to require more trials to learn information-integration category 

structures compared to individuals with lower working memory; thus, higher working 

memory may sometimes result in less efficient learning (Decaro et al., 2008). Furthermore, 

connections between working memory and language learning may be more robust under 

explicit training contexts than under implicit ones (Tagarelli et al., 2011). Under the latter 

conditions, individuals with lower spans may perform similarly to individuals with higher 

spans (see also Unsworth & Engle, 2005). Thus, higher working memory or other cognitive 

and biological predictors does not always result in better learning. Finding predictors across 

learning paradigms and domains is crucial because it provides converging evidence for 

understanding which learning conditions best benefiting which learners and how.

Using Predictors for Optimizing Learning

The third and perhaps most crucial component of Personalized Learning is the ability to use 

predictors to place learners into the most optimal learning paradigm. A crucial assumption in 

this idea is that different kinds of training and processing strategies can lead to the same 

learning and behavioral outcome. Research studies across domains of learning and 

processing support this assumption. For example, although different ERP neural components 

were found in the processing of grammatical structures by native and high-proficiency non-

native speakers, both groups achieve the same level of accuracy in grammaticality judgment 

(Mueller et al., 2007). Similarly, both explicit and implicit language training could result in 

similar levels of proficiency, though the two types of training rely on different neural 

processes (e.g. Morgan-Short et al., 2012). More recently, Cohen and Schneidman (2013) 

found that changing teaching methods in visual learning could result in similarly high levels 

of learning. What is being highlighted in Personalized Learning is that different training 

could be optimally effective across individual learners.

This third component of Personalized Learning is also a component which directly shapes 

future educational practices and provides opportunities for future research. While ample 

evidence supports the first two components of Personalized Learning, direct empirical 

evidence for this component is relatively scarce. Series of recent studies in motor learning 

seem to provide partial support especially in the context of identifying viable genetic 

predictors. In the first of a series of experiments examining the brain-derived neurotrophic 

factor (BDNF) gene, subjects who were homozygous for the val allele (val/val) were found 

to have higher motor-evoked potentials and more expanded motor maps (see Figure 1A-B) 
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(Kleim et al., 2006) following fine-motor exercises relative to those subjects who were 

heterozygous for val (val/met) or homozygous for the met allele (met/met). This first 

establishes BDNF as a genetic predictor of fine-motor learning. Subsequently, sustained 

motor learning was found to help the met-group (val/met and met/met subjects) achieve the 

same level of cortical plasticity as the val/val group after 5 and 12 days of training (see 

Figure 1C) (McHughen et al., 2011). In other words BDNF polymorphisms were found to be 

associated with responsivity to the dosage of motor training and associated cortical 

plasticity. It is important to note, however, that these studies were not designed to directly 

test whether predictors of motor learning could be used to place learners into the most 

optimal learning situation. Furthermore, these studies focused on cortical plasticity as the 

outcome measure, rather than behavioral motor performance. Thus, support for Personalized 

Learning is not complete. However, they speak to the possibility that identification of a 

BDNF polymorphism before training could potentially help determine whether a stronger or 

weaker dosage of training should be prescribed.

In addition to the tremendous challenge in identifying genetic predictors, we must also 

acknowledge that it would be even more difficult to attempt to use genetic predictors for 

optimizing learning. Nevertheless, the motor learning evidence cited above provides an 

illustration of how genetic information could be useful. As discussed, predictors of learning 

can extend beyond genetic markers. Evidence from speech learning summarized below 

provides a further illustration for the feasibility of Personalized Learning in language.

Personalized Language Learning: An Example

The majority of world's languages mark word meanings based on pitch patterns of the 

speakers' voice (Yip, 2002). For example, in Mandarin Chinese, a tone language, the 

syllable /ma/ can have four different lexical meanings depending on the pitch of the syllable. 

Research from our group has focused on the acquisition of nonnative tones in adulthood. In 

a series of training studies, we have found marked individual differences in tone perception 

and acquisition (see Figure 2A). Individual differences in learning can be successfully 

predicted by a set of behavioral, neural, and possibly genetic markers (see Figure 2B-C). 

Preliminary research suggests that markers can be used to place learners into training 

paradigms that support personalized learning (see Figure 2D).

Individual differences in the acquisition of nonnative tones

In our studies, we taught native English-speaking adults to incorporate pitch in lexically 

meaningful contexts. For example, the syllable [peʃ] spoken with a high-level pitch pattern 

means ‘glass’ while the same syllable spoken with a rising pitch pattern means ‘pencil’ 

(Wong & Perrachione, 2007). We classified these adults into two groups, successful learners 

and less successful learners, based on whether they achieved a 95% accuracy learning 

criterion. As can be seen in Figure 2A, we found a range of learning success in these adults 

(see also Asaridou et al., 2016).
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Predictors of tone learning success

To identify predictors of tone learning success, we focused on pretraining variables that 

distinguished successful from less successful learners. In several behavioral studies, we 

found that successful learners were better at identifying pitch patterns in a pitch contour 

perception test (Wong & Perrachione, 2007), and they attended more to pitch directional 

cues than pitch height whereas less successful learners showed less marked difference in the 

relative weighting of these cues (Chandrasekaran, Sampath, & Wong, 2010). Furthermore, 

successful learners showed greater activation in bilateral auditory cortex (Wong, 

Perrachione, & Parrish, 2007) and had greater volume in the left Heschl's Gyrus (Wong, 

Warrier, Penhune, Roy, Sadehh, & Parrish, & Zatorre, 2008). When we considered the three 

predictors, pitch pattern perception, bilateral auditory cortex activation, and volume of left 

Heschl's Gyrus, all measured before training, we found about 61% of the variance in 

learning explained (see Figure 2C, Wong et al., 2008). Removal of each of these predictors 

from the regression model significantly impacted the amount of variance explained, 

suggesting the importance of each. Our work suggests that other markers of tone learning 

include large-scale functional brain connectivity (Sheppard, Wang, & Wong, 2012), 

spontaneous brain activity during resting state (Deng et al., 2016), and musical training 

(Wong, 2007), perhaps partially due to the fact that musicians showed more faithful pitch 

tracking as early as the auditory brainstem (Wong, Skoe, Russo, Dees, & Kraus, 2007).

Using predictors for optimizing tone learning

The above findings suggest that pretraining perceptual aptitude is a predictor of tone 

learning success. In an initial attempt at finding optimal training for individual learners, we 

compared the efficacy of two speech training paradigms for learners with stronger and 

weaker perceptual aptitude (see Figure 2D) (Perrachione et al., 2011). Prior to training, we 

divided listeners into two groups, better and poorer pitch perceivers, based on their 

performance on the pitch contour perception test. Listeners from both groups were equally 

assigned to a training paradigm emphasizing trial-by-trial stimulus variability or to low-

variability training, in either a single-talker or blocked-talker paradigm. The listeners were 

trained to asymptotic performance. Better pitch perceivers were found to better respond to 

high variability training, consistent with earlier work in this paradigm. However, poorer 

pitch perceivers were impaired by high variability. These listeners showed the greatest 

benefit when variability was limited. These results suggest that auditory perception ability 

could be used as a marker for placing learners into learning paradigms that differ in trial-by-

trial stimulus variability.

In another study, we used the same predictor (pretraining sensitivity to pitch patterns) but 

explored a different way to improve learning for poorer pitch perceivers (Ingvalson, Barr, & 

Wong, 2013). Prior to lexical pitch-to-word learning, both better and poorer perceivers 

received pitch-pattern training that emphasized differences among tone contrasts. Results 

showed that such training resulted in better learning than lexical training alone, primarily in 

the poorer perceivers. Thus, using predictors can help us find the right training paradigms 

especially for poorer learners. Although these studies examined non-genetic markers, it is 

interesting to note that in a recent study we found in an independent group of subjects an 

association between the abnormal spindle-like microcephaly-associated (ASPM) gene and 
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pitch pattern perception, making ASPM a potential genetic marker candidate for speech 

learning involving pitch (see Figure 2B; Wong et al., 2012).

Considerations for Implementation

The examples cited above in motor learning and speech learning provide some evidence for 

Personalized Learning as a concept but extensive testing in both laboratory and authentic 

learning settings remains to be completed. There are a number of challenges that need to be 

overcome before Personalized Learning can be implemented in practice.

Finding Predictors across Multiple Sources and Time Scales

Personalized Learning requires identification of predictors that are both efficient and 

objective measures. While earlier studies on individual differences of learning have 

identified cognitive predictors, other objective measurements such as genetic testing remain 

to be explored. As discussed above, several genetic markers have been found for different 

types of learning (Klein et al., 2007) and cognitive abilities (Egan et al., 2001), with support 

from multiple replication studies (Jocham et al., 2009). Clearly, one single-nucleotide 

polymorphism (SNP) alone cannot be perfectly mapped onto behaviors. Rather, the 

emphasis here is on identifying genotypic information from multiple sources along with 

other factors (e.g., neural and behavioral) for predicting learning success across a number of 

domains. Because the focus of Personalized Medicine is responsivity to molecular 

compounds, linking molecular genetics to drug treatments has quickly demonstrated its 

feasibility. However, the genetic basis of complex traits, including cognition and learning, is 

widely recognized as multifaceted. Nevertheless, recent advances in the genetic basis of 

higher-order behaviors show great promise in helping to identify genetic pathways and 

environmental factors that shape human cognition and learning. The development of newer 

technologies (e.g., whole genome sequencing) (Lupski et al., 2010) and analytic techniques 

(Manolio et al., 2009) will hopefully assist in finding the best predictors for Personalized 

Learning as they can likely increase the sensitivity and specifcity of the investigation.

In finding predictors, we must keep in mind the dynamics of learning. For example, the 

acquisition of cognitive skill has been characterized as proceeding through series of 

transitions, from declarative to procedural stages (Anderson, 1982) and from controlled 

processing to automatic processing (Shiffrin & Schneider, 1977). Language development 

involves vocabulary building (Marchman & Bates, 1994) and simple phrase learning (Lieven 

et al., 2003) which provide the basis for the emergence of grammar. As learning proceeds 

through phases, predictors of learning may change. For example, because the initial phase of 

skill acquisition poses high demand on general cognitive ability (e.g., required for 

understanding the task), general intelligence can be predictive of individual differences in 

skill acquisition during this phase; as cognitive demand decreases in subsequent stages the 

predictive power of general cognitive ability can decline with task practice (Ackerman, 

1988). Thus, it is important to attend to the dynamics of learning, and individual differences 

in this dynamics, in evaluating predictors for any aspects of learning.

In considering the use of predictors, a distinction needs to be made between predictiveness 

and usefulness. Predictors that are high on predictiveness are not necessarily most useful for 
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the goals of Personalized Learning1. General intelligence is an excellent predictor of 

learning achievement across multiple domains. However, as a complex measure of thinking 

ability it is not immediately obvious how this marker can be used for optimizing language 

learning. A more specific variable such as perceptual aptitude for speech may have poor 

predictive power beyond language but nevertheless can be useful for optimizing language 

learning, as shown above.

Frameworks for Optimizing Learning

Personalized Learning calls for optimization of learning for the individual learners based on 

predictors. Theoretical frameworks for guiding such an optimization process are needed. 

The declarative/procedural model (Ullman, 2004, 2005) is one potential framework for 

research on first and second language acquisition across normal development and disorders 

including Specific Language Impairment (Ullman & Pierpont, 2005). This model posits two 

distinct neurocognitive components supporting language learning, a declarative memory 

component (well-suited for vocabulary acquisition) and a procedural memory component 

(better suited for grammar acquisition). Recent development suggests that declarative 

memory can compensate for aspects of grammatical function when procedural memory is 

compromised (Ullman & Pullnam, 2015). Thus, according to the model, declarative/

procedural memory profiles can serve as predictors for language learning and these profiles 

can be used for optimizing language learning across individuals. For example, it is expected 

that individuals with functioning declarative memory and weak or otherwise compromised 

procedural memory would best benefit from grammar training paradigms that target the 

declarative component.

Computational models of learning and cognition could provide other avenues for guiding 

optimization. One notable example is the working memory-augmented model of 

reinforcement learning (Collins & Frank, 2012; Frank et al., 2009) which provides a 

unifying neurogenetic framework connecting aspects of motivation, learning and cognition. 

The model posits a reinforcement learning system for slow incremental learning from 

positive and negative feedback and a working memory (WM) component for maintaining 

encoded information in memory – the WM component has a faster learning rate but is 

subject to decay and capacity limitation. The model also makes specific predictions on the 

contribution of the components over the course of learning: Due to fast learning rate WM 

can predict outcomes better during initial acquisition but the incremental accumulation of 

reinforcement values would be predictive of outcomes over time. Extensive computational 

and empirical work has linked individual differences in WM to prefrontal dopamine function 

(associated, for example, with the COMT gene) and individual differences in reinforcement 

learning to striatal dopaminergic function – genetic polymorphisms associated with striatal 

D1 and D2 function, such as polymorphisms of the DARPP-32 gene and the DRD2 gene, 

have been found predictive of learning from positive and negative outcomes, respectively 

(e.g., Frank et al., 2007, Frank et al., 2009).

1We thank Michael Ullman for raising this point.
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These findings especially the identification of different neurogenetic components for 

learning from positive and negative feedback have important implications. In research on 

language learning, connectionist models have emphasized the role of (implicit) negative 

feedback (Rohde & Plaut, 1999); recent modeling work further attributed age-related 

differences in language learning to differential sensitivity to positive and negative evidence 

across age groups (whether the evidence is consistent or inconsistent with the learner's 

internal hypothesis, Rische & Komarova, 2016). In a preliminary study, we have found an 

association between the dopamine receptor D2 gene (DRD2) and learning of an artificial 

grammar modeled after Shimakonde, a Bantu language spoken in Mozambique (Wong, 

Ettlinger, & Zheng, 2013). DRD2-TAQ-IA polymorphism (rs1800497) is associated with 

dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 

allele carriers show reduced D2 receptor binding relative to carriers who are homozygous for 

the A2 allele. We found that learners who were homozygous for the A2 allele were better at 

learning the artificial grammar. These learners also had higher striatal responses relative to 

those who have at least one A1 allele. Connecting our findings to the reinforcement learning 

framework above, one potential venue for optimizing grammar learning is to build training 

paradigms that take into account the relative weightings of positive and negative feedback 

for individuals with DRD2 (and DARPP-32) polymorphisms.

With the appropriate theoretical framework for redesigning training paradigms, prospective 

studies can be conducted that assess how predictors can be used to place learners in the most 

effective learning environments.

Ecological Validity and Cost Effectiveness

As the vast majority of the studies cited are from laboratory-based learning, the ecological 

validity of the concept is called into question. While linking basic genetic information to 

actual authentic learning might seem far-fetched, one study has already demonstrated the 

increasing need of appropriate educational reading programs for children who are 

genetically predisposed to having reading problems (Taylor et al., 2010). Taylor et al. (2010) 

examined oral reading fluency in 280 monozygotic (MZ) and 526 dizygotic (DZ) twin pairs 

in the Florida Twin Project on Reading. They found an interesting interaction between 

estimates of genetic variance and teaching quality in predicting reading achievement such 

that when teacher quality is higher, the genetic variance associated with reading increases. 

Thus, measurably, high quality teaching is needed for learners to achieve their full genetic 

potential at least as far as reading in authentic learning environments is concerned.

Future studies should consider not only the applicability of Personalized Learning in 

authentic learning settings but also feasibility (e.g., costs). Although tailoring training to the 

individual learners may seem costly at first, sub-dividing learners into classrooms using 

different pedagogical methods that best suit their learning rather than duplicating the same 

methods across multiple classrooms could cost the same amount of funding. Furthermore, 

providing the most optimal training environment early on prevents the need for any 

additional teaching in the future to fill in gaps where initial training may have been lacking, 

and may ultimately prove to be more cost effective.
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In essence, Personalized Learning overlaps with several other conceptual ideas including the 

concept of “learning style” (e.g., visual vs. auditory learners; Kolb, 1985) and Differentiated 

Instruction (Hall, 2002). The concept of learning style has received a lot of interest in the 

education field; however, a review found that high-quality evidence for learning styles is 

virtually non-existent (Pashler et al., 2008), primarily because the research reviewed failed 

to find a learner-by-instruction interaction. Differentiated Instruction is an approach to 

teaching that aims to modify teaching and learning activities to address the needs of 

individual students. A descriptive review (Tomlinson et al., 2003) found favorable evidence 

while also pointing out that key evidence was missing – including which of various models 

of teaching and learning best suit individual students and the relative effect of differentiating 

instruction across learning profiles. Personalized Learning distinguishes from these 

approaches in highlighting the importance of evaluating predictors across learning 

paradigms and domains. In this respect, Personalized Learning is more similar to “aptitude-

treatment interaction research” (DeKeyser, 2012), which focuses on interactions between 

individual variables (such as aptitude and age) and linguistic as well as treatment variables 

(such as inductive or deductive teaching), although this research has been limited to 

investigating behavioral processes and outcomes of second language learning.

Ethical Considerations

Most critically, as in all research and practice concerning genetics and human performance, 

ethical considerations are paramount. The question addressed by Personalized Learning is 

not one that concerns who can or cannot learn, but one that seeks to determine how each and 

every individual can be provided with an optimal learning environment. It is worth 

emphasizing again that better cognitive abilities alone do not guarantee successful learning 

in all learning situations (Beilock and Carr, 2005; Decaro et al., 2008), so it is important to 

ascertain how training can be tailored to individuals. Perhaps, the most ethical and cost-

effective way of teaching is one that does not simply assume that everyone learns the same 

way.

To achieve optimal learning for each learner, effective teaching could include a combination 

of common classroom learning where all learners acquire a set of core skills, smaller tutorial 

sessions for subgroups of learners with different learning needs, and an e-learning platform 

for personalizing reviewing materials (Lindsey et al., 2014). Within the same classroom 

teachers who recognize learning differences could also structure learning activities to allow 

different degrees and types of lecture delivery, feedback, and questions to engage the 

diversity of learners in the classroom. Importantly, because the long-term retention of 

knowledge and skills requires practice and review (Soderstrom & Bjork, 2015), effective 

teaching and learning must go beyond the initial classroom experience. Lindsey et al. (2014) 

used a Bayesian inference model to determine review materials for individual students over 

one semester of Spanish as a foreign language. They found that personalized review resulted 

in better student retention (by 16.5%) over typical (massed) practice. Rather than being 

restricted to in-class arrangements, Personalized Learning can be implemented in activities 

outside the common classroom which nevertheless lie at the heart of promoting long-term 

learning and retention. Thus, we are not necessarily advocating a complete “segregation” of 

learners based on predictors of learning, but rather a form of inclusive learning that also 
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recognizes the possibility that individual learners indeed learn differently and can benefit 

from different forms of learning support.

Conclusions

Practitioners and researchers in educational sciences and behavioral health have observed 

individual differences in learning and treatment outcomes. The goal of this review is to bring 

forth representative efforts that demonstrate the feasibility of developing educational and 

treatment solutions that could enable each learner to learn optimally. Central to Personalized 

Learning, we argue that it is critical for us to attend to individual differences across domains 

of learning, to identify efficient and objective predictors of individual differences, and to use 

predictors to help design training paradigms that enable more effective learning at the 

individual level. This forward-looking framework is undoubtedly filled with challenges, 

especially in identification of genetic predictors and using such predictors to optimize 

learning. Implementation in authentic learning situations will require more empirical 

laboratory studies followed by studies conducted in the field. These studies will complement 

the numerous high-quality studies that have identified effective pedagogy and treatment at 

the group level.

By grounding our framework in biological (neural and genetic) and cognitive predictors and 

by using the appropriate experimental methodology to demonstrate learner-by-instruction 

interaction under clear and uniform outcome measures, we hope to propel a new era of high-

quality educational and health science research under Personalized Learning. In the end, we 

hope that it will prove to allow for better and more efficient learning for all learners. This 

framework not only can be applied to classroom learning, but also to behavioral health 

which often requires substantial rehabilitation of learning components such as in speech-

language, occupational, and physical therapies.
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Highlights

• Individual differences exist across diverse areas including language learning

• A new framework, Personalized Learning, is proposed for addressing such 

differences

• Evidence connecting cognitive genetics, neural and behavioral research is 

reviewed

• Implications for language learning are discussed
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Figure 1. BDNF val66met polymorphism is associated with responsivity to dosage of fine motor 
learning
(A) In one study, subjects performed exercises to improve movements of the first dorsal 

interosseous muscle (FDI) (Kleim et al., 2006). Cortical plasticity in the form of cortical 

motor map expansion was measured using transcranial magnetic stimulation. Subjects were 

trained for 30 minutes. Only subjects with the val/val genotype showed significant cortical 

map expansion: average data (*p < .05) and (B) cortical maps from representative subjects 

from each genotype group are depicted. (C) In a subsequent study performed by an 

independent laboratory, new subjects participated in a multi-day training program 

(McHughen et al., 2011). As in the initial study (Kleim et al., 2006), only the val/val group 

showed cortical changes after the first day of training. Most importantly, genotypic effects 

disappeared after 5 and 12 days of training (*p < .05).
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Figure 2. Applying Personalized Learning to Language
(A) Individual differences in tone learning success: In our studies, we taught native English-

speaking adults to incorporate pitch in lexically meaningful contexts. We found a range of 

learning success in these adults (Deng et al., in press). (B) Genetic association between tone 

perception and load of ASPM-G allele (Wong et al., 2013). (C) Neural markers of tone 

learning: Brain activation revealed by successful versus less successful learners in pre-

training contrast (Wong et al., 2007; upper panel). HG volume of successful versus less 

successful learners in the left and right hemispheres (Wong et al., 2008; lower panel, **p < 

0.007 and *p < 0.05). (D) Using predictors for optimizing tone learning: High variability 

training significantly enhanced learning for better pitch perceivers (HAL), whereas poorer 

pitcher perceivers (LAL) were significantly impaired by increased stimulus variability 

(Perrachione et al., 2011; left panel, ordinate values have been arcsine transformed). Lexical 

pitch-pattern training given before lexical training improved learning more than lexical 

training alone, and more so for poorer pitch perceivers (Ingvalson et al., 2013; right panel, 

arcsine-transformed accuracy, the dashed line indicates perfect identification performance, 

error bars represent SEM).
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