
OPEN

REVIEW

A systematic review on the impact of diabetes mellitus on the
ocular surface
K Co Shih1,2, KS-L Lam2,3,4 and L Tong5,6,7,8

Diabetes mellitus is associated with extensive morbidity and mortality in any human community. It is well understood that the
burden of diabetes is attributed to chronic progressive damage in major end-organs, but it is underappreciated that the most
superficial and transparent organ affected by diabetes is the cornea. Different corneal components (epithelium, nerves, immune
cells and endothelium) underpin specific systemic complications of diabetes. Just as diabetic retinopathy is a marker of more
generalized microvascular disease, corneal nerve changes can predict peripheral and autonomic neuropathy, providing a window
of opportunity for early treatment. In addition, alterations of immune cells in corneas suggest an inflammatory component in
diabetic complications. Furthermore, impaired corneal epithelial wound healing may also imply more widespread disease. The non-
invasiveness and improvement in imaging technology facilitates the emergence of new screening tools. Systemic control of
diabetes can improve ocular surface health, possibly aided by anti-inflammatory and vasoprotective agents.
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INTRODUCTION
Diabetes mellitus (DM) is a significant public health problem. It is
estimated that more than 342 million people worldwide will suffer
from DM by 2030 and the total health burden incurred by DM will
be driven by the severity of diabetic complications in different
organs. The ocular surface, including the superficial and transpar-
ent cornea, is known to be involved in diabetes in various ways:
this includes common diseases like dry eye and recurrent corneal
erosions, previously reviewed elsewhere.1 However, new research
beyond 2008 has not been systematically reviewed, even after the
emergence of fairly recent review articles.2–19 This is an important
issue to address as new developments such as cellular, molecular
biology and animal genetics have advanced considerably in the
last few years. Here, we provide a systematic review of the recent
literature (published 2009–2015), which enlightens on the role of
the ocular surface and cornea in DM (Figure 1) and research on
potential treatment strategies.

MATERIALS AND METHODS
A literature search was conducted on the 5th of January 2016 in
the NCBI Entrez Pubmed database and included search terms
diabetes and cornea. Articles were limited to journal articles in
which the keywords ‘cornea’ or ‘conjunctiva’ occur in conjunction
with the keyword ‘diabetes’ in the textword (tw) field of the
search. We only examined journal articles published between 1st
of January 2009 and 31st of December 2016. The 234 articles
identified were then curated by two coauthors (KS and LT) for
relevance, via abstract or the full text of the article, and this
produced a list of 23 review articles, letters or commentaries (18

reviews) and 110 relevant original articles. For example, articles
that involved only the posterior segment of the eye (retina,
vitreous) or involving only ‘diabetes insipidus’ and not ‘diabetes
mellitus’ would be considered irrelevant. A total of 106 were
deemed irrelevant.

CORNEA EPITHELIAL DISEASE AND OCULAR SURFACE
ABNORMALITIES
It is known that diabetes is associated with impaired wound
healing. This is evident in the corneal epithelium. Diabetic eyes are
at increased risk of dry eye, superficial punctate keratitis, recurrent
corneal erosion syndrome and persistent epithelial defects.20,21 As
the corneal epithelium is the first layer of the eye, it is constantly
subjected to wear and tear and it needs to be constantly
regenerated. Any process that affects wound healing or the speed
of epithelial regeneration will have physiological impact and
increases morbidity including ocular pain and redness.22–25

Recently a human study conducted in a hospital showed for the
first time that tear levels of type 1 and 2 diabetic individuals had
significantly higher insulin-like growth factor binding protein
(IGFBP3) compared with age-matched normal adults. IGFBP3 is a
multifunctional protein that is known to play a negative regulatory
role in IGF signaling by binding and sequestrating it, competing
with its cellular receptor IGFR-1. In the wider context, IGFBP3 has
been known to regulate insulin resistance, apoptosis as well as
oxidative damage. The processes regulating the secretion of
IGFBP3 from corneal epithelial tissue is not known, but in
experiments with immortalized human corneal epithelial cells, it
was found that high levels of glucose in the culture medium can
induce the production of IGFBP3, suggesting that the
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hyperglycemia in patients may be the cause of the IGFBP3
upregulation. This paper did not examine other potential sources
of IGFBP3 such as lacrimal glands and immune cells. In addition,
the clinical examination results of the corneal epithelium of the
participants such as presence of epitheliopathy were not
reported.26

Two studies with C57 db/db mice27,28 and four studies involving
rats24,29–31 showed that hyperglycemia induced detrimental
effects on the cornea epithelium-basement membrane complex.
In these studies, decreases in corneal epithelial function were
documented by an increase in corneal thickness, and structural
changes were examined by electron microscopy.24,29,30 Since the
normal corneal epithelium plays an important barrier function
in excluding water from entering the stroma, a reduction in
the barrier function will manifest as edema and swelling
of the normally relatively dehydrated stroma. The component of
the epithelium forming the barrier is largely sub-served by tight
junctional complexes between cornea epithelial cells, visualized as
electron dense structures. Loss or disruption of these tight
junction structures or loss of basal corneal epithelial cells on
imaging would explain loss of epithelial function. The loss of
epithelial function can affect vision because the onset of edema
causes cornea opacification and will directly affect transmission of
light through the cornea.32

Use of diabetic animals has both advantages and constraints.
The obvious advantage is the ability to obtain ocular tissue, but
the main advantage of using these models is the possibility of
examining changes before and after induction of diabetes. Such
changes are almost impossible to evaluate in human patients as
they would not have come to the attention of health professionals
prior to the development of diabetes. The major limitation of
animal models is that the induction of DM occurs fairly rapidly
using one intervention compared with the more chronic, multi-
factorial DM in humans, and therefore the disturbance may not be
translatable to human disease. Induction of diabetes may be via
injection of streptozotocin in Sprague Dawley (SD) rats, or in some
cases, rats may be naturally diabetic such as Otsuka Long-Evans
Tokushima fatty (OLETF) rats. Streptozotocin destroys beta islet
cells in the pancreas of the animals, with reduction of insulin
secretion and consequent hyperglycemia. The hyperglycemia-
related effects as well as the oxidative stress associated with
ingestion of fat and ethanol in OLEFT rats then induce systemic
organ damage.22

One of the molecular changes detected in animal eyes is the
measurement of levels of advanced glycation end products
(AGE).30 This is an important pathological outcome as it is
considered to be the mediator for all chronic DM complications
including macrovascular and microvascular complications such as
diabetic retinopathy in the eye. The accumulation of AGE in the

Figure 1. Schematic showing pathogenesis of corneal disease in diabetes mellitus. Hyperglycemia and formation of advanced glycation end
products have distinct effects on different parts of the cornea, resulting in three principal types of tissue dysfunction with physiological effects
that can be measured. (1) Defective wound healing in the corneal epithelium, (2) abnormalities of sub-basal nerves and (3) loss of corneal
endothelial pump function. (1) Raised blood glucose promotes IGFBP3 release, which in turn competitively inhibits IGF-1, whereas TGFb3,
EGFR, CNTF are suppressed in hyperglycemic states. The consequential reduction in epithelial cell proliferation and increased apoptosis
impacts on epithelial wound healing. (2) Neuronal damage is a key defect in diabetes mellitus. Prolonged hyperglycemia results in the
accumulation of advanced glycation end products which promotes inflammation and oxidative stress. NGF and sphingolipids are key to
neuronal health and myelin formation, but their production are inhibited in hyperglycemic states. (3) Prolonged hyperglycemia also results in
endothelial cell loss and impairment in pump function. Apart from these processes, the swelling of the corneal stroma (the main bulk of the
cornea) may be due to loss of epithelial barrier, crosslinking of stromal collagen and matrix, and loss of the endothelial pump. CNTF, ciliary
neurotrophic factor; EGFR, epithelial growth factor receptor; IGF-1, insulin-like growth factor 1; NF-kB, nuclear factor kappa-light-chain-
enhancer of activated B cells transcription factor; NGF, nerve growth factor; TGFb3, transforming growth factor beta-3. Solid blue arrows—
activation/promotion, red stop arrows—inhibition or negative regulation.
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cornea epithelium-basement membrane shifts local cell signaling
towards pro-apoptotic and antiproliferative pathways, as well as
increases oxidative stress and inflammation. A typical way of
measuring oxidative stress in the ocular surface tissue is the
quantification of the level of the oxidized nucleotide 8-
hydroxydeoxyguanosine.30 A separate study found the gamma-
glutamyl transferase level in the tear to be reduced in 14 type 1
and 2 DM participants compared with 14 control participants.
However, in cornea buttons of cadavers, the tissue levels of the
enzyme were lower in type 1 DM than in type 2 DM and controls.
While these are interesting results in view of the possible role of
the transferase in oxidative stress, more studies are required to
determine the mechanistic significance.33

As DM is a chronic disease, it is important to differentiate
molecular changes that induce the disease as opposed to
molecules that mediate secondary complications. Distinct ultra-
structural tissue alterations may occur in pre-diabetic eyes as well
as in established DM.29 Here in vitro studies23,28 and animal
models30 are useful to chart the temporal changes as the corneal
levels of epithelial growth factor receptor, ciliary neurotrophic
factor and nuclear factor kappa B may be determined at different
stages of disease. TGFb3, epithelial growth factor receptor and
ciliary neurotrophic factor have already been found to promote
corneal epithelial wound healing in studies on wound healing and
found to be reduced in corneas of diabetic animals. The nuclear
factor kappa B on the other hand is an important transcription
factor that affects inflammation and cell development found to be
increased in corneas of diabetic animals.34–36

CORNEA NEUROPATHY
The sensory innervation of the cornea is a major determinant of
epithelial health and healing capacity.37 This may be mediated by
secretion of substance P by the nerves and binding to neurokinin-
1 receptor on the epithelial cells.38 Corneal nerves are branches of
the ophthalmic nerve, which is a branch of the trigeminal cranial
nerve. They perforate the corneal stroma at the medial and lateral
positions and branch into neurites that eventually sprout nerve
endings anteriorly into the corneal epithelium.3

The cornea is the most densely innervated structure in humans,
with nerve fibers playing an important neurotrophic role in the
development of a healthy corneal surface. Loss of neurotrophic
function may result in a non-healing or persistent cornea epithelial
defect or neurotrophic ulcer. This has associated cornea edema
and disturbance of visual function and is an important cause of
morbidity in cornea clinics.39

Unlike other areas of the body, corneal nerves can be easily
visualized in the transparent anterior corneal stroma by modern
imaging techniques in clinical scenarios without invasive biopsy
procedures. Essentially the in vivo findings have been confirmed
by cadaveric ex vivo studies.40

Advances in confocal imaging techniques
The most important advance in the last few years is the use of
modern scanning laser ophthalmoscopy. The most common form
of this in vivo confocal microscopy is the Heidelberg Retinal
Tomography (Heidelberg, Germany), which is performed in
conjunction with a corneal modular lens.10,11,14,41 Images acquired
are processed by imaging software for indices of nerve fiber
density, nerve fiber length, nerve branch density and nerve
tortuosity42 in the sub-basal nerve plexus because changes in this
layer are more relevant in DM than in intrastromal nerves. One
research group used NeuronJ, a plug-in for the NIH freeware
Image J43 whereas the other group used proprietary ACModule
and CCModule software developed in the University of
Manchester.

Specific nerve indices may have been found to be useful in a
particular region of the cornea for some clinical scenarios. Analysis
of the sub-basal nerve plexus44–49 can be performed in two
regions of the cornea: central cornea and the inferior whorl.50 For
example, it has also been reported that the nerve fiber density at
the inferior whorl region is more sensitive to early nerve fiber
damage than the central corneal region, in DM patients before
development of peripheral neuropathy.51

Scans can be evaluated manually (CCModule), in semiauto-
mated fashion (NeuronJ) or in a fully automated (ACCModule)
technique.52,53 All three methods were reported to have high
repeatability, which can be further improved with experience but
not by increasing magnification.54–60 The speed of image analysis
can be improved with use of automated quantification techniques
as well as wide-field imaging.13,61,62 Calculations from full
automation are well correlated to those by manual methods,
and so may be useful in communities without a manual
evaluator.5

Clinical studies
It is well known for many years that corneal nerve density is
reduced in type 1 DM.3 Recently both types of DM have been
associated with reduction of corneal nerve density and other
corneal nerve abnormalities (Table 1).19,45,47,63–65

Reduction in corneal nerve fiber density is a characteristic
manifestation of diabetic corneal neuropathy, with demonstrated
progression over time, in a 4 year cohort study of DM participants
from two countries (Australia and UK).66

An interesting question would be whether good glycemic
control restores the corneal nerve innervation and dysfunction?
Two clinical cohort studies have concluded that once DM (type 1
and type 2) was established, good glycemic control was able to
improve but not completely reverse corneal neuropathy.67,68

Corneal nerve parameters have been found to correlate to
diabetic peripheral neuropathy and autonomic neuropathy
(Table 2).43,46,48,49,66,69–73 Diabetic peripheral neuropathy, a
common complication in up to 54% of diabetic population, is a
significant cause of morbidity and poor quality of life in diabetic
patients. As such, early detection of high-risk patients can pre-
empt the course of the disease with measures such as better foot-
care to improve healthcare outcomes.
Conventional clinical diagnosis of diabetic peripheral neuro-

pathy includes clinical assessment and nerve conduction studies.
However, these tests detect large fiber deficits, rather than the
small unmyelinated C and thinly myelinated Aδ-nerve fibers which
are affected earlier in the course of the disease.15,74–76 The higher
density and the preponderance of small nerve fibers in the cornea
may explain why corneal nerve fiber changes can be detected
before awareness of diabetic peripheral neuropathy in the lower
limbs.6,16,17,45,77 Decreases in nerve fiber length in sub-basal nerve
plexus have also been found to be associated with subclinical
diabetic autonomic neuropathy which may be life-threatening,
including cardiovascular complications such as arrhythmias or
sudden cardiac deaths.46,71,72 The vagal function is used as a
measure of autonomic neurological function, assessed by the
change of heart rate in response to breathing and posture.

Mechanisms of corneal neuropathy
Broadly, peripheral neuropathies are considered microvascular DM
complications as a result of nerve ischemia. The conventional view
is that AGE initiates damage to the pericytes and endothelium of
capillaries and reduces microvascular supply to Schwann cells or
neurons. This consequently decreases neuronal function. If the
status of corneal nerves reflects peripheral nerve status, under-
standing the mechanism of the corneal neuropathy is vital.3

Microvascular abnormalities occur in the retina as well as in the
cornea. Reduction of corneal nerve fiber density or length have
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been shown to predict the development of diabetic retinopathy as
well as sight-threatening retinopathy.45,47,78

The formation of AGE may not be the initial trigger for pericyte
damage or neuronal loss. Inflammation may play a role as high
concentrations of Langerhans cells and dendritic cells, the main
antigen-presenting cells in the ocular surface, aggregate around
corneal nerve fibers early in the disease process.79,80 In addition,
levels of neurotrophic factors may be reduced in DM, for example,
reduction in serum nerve growth factor and lipids such as
sphingolipids have been detected in diabetic eyes compared with
controls.81,82

The cause or extent of immune dysfunction, if any, in humans
with type 2 DM is not known. It has been found that immune cell
infiltration of animal corneas may precede the induced hypergly-
cemia (ARVO 2015 e-abstract 3076). In fact, in a longitudinal rat
study, the pre-diabetic obese rats have already manifested a
similar amount of corneal nerve abnormalities with the diabetic
rats.67 This suggests that accumulation of AGE, which is
dependent on hyperglycemia and not present in pre-diabetic
animals, is unlikely to be the cause of immune dysfunction in
these animals. More animal studies with a mechanistic approach
would be necessary to determine the cause of immune
dysfunction in DM.
Do changes in corneal nerve structure lead to functional

alteration? To answer this question the newer studies in Tables 1
and 2 also included corneal esthesiometry. This is a method of

evaluation of corneal sensitivity which is a functional outcome of
nerve innervation. These studies, except one, employed Cochrat
Bonnet esthesiometry, which may not be as sensitive as a gas or
Belmonte esthesiometry. Nevertheless, the studies were able to
find an association between corneal nerve parameters and corneal
sensitivity.6,46,49,75,76,79

It is also well known that apart from being neurotrophic, loss of
corneal sensation also reduced lacrimal tear production since the
corneal receptors are the afferent limb of the lacrimal reflex arc.3

The reduction of corneal innervation has been linked to abnormal
tear function as well as more frequent and severe symptoms of
dry eye in DM patients.9,21,27,43,83–86 These studies included those
with or without previous surgical procedures such as LASIK and
cataract surgeries. In one study, abnormal corneal innervation
manifested as tear film dysfunction and debilitating, chronic
irritation of the eye in type 1 but not in type 2 DM.43

CORNEA STROMA AND BIOMECHANICS
The corneal structure underneath the epithelium and the
Bowman’s layer is called the stroma. The corneal stroma is
important because it accounts for 90% of the thickness of the
cornea and therefore its tensile strength and biomechanical
properties in general.87 The thickness of the human cornea is the
most frequently measured parameter in clinical biometry of the
eye. The main novelty in the recent clinical papers on corneal

Table 1. Studies comparing corneal nerve parameters in diabetic subtypes

Source Country Groupsa Sample size Method Parameter (mean)b Outcomesc Associations

Messmer et al.
(2010)45

Germany Type I and II
DM vs
controls

13/54/24 HRT II
Image J
Esthesiometer

NFD (no. mm− 2)
NFL (mm mm−2)
NBD (no. mm−2)
NT

DM1/DM2/C:
16.9/16.1/23.3
9.7/10.7/16.1
1.5/1.6/1.4

Increasing severity of nerve fiber
parameters with higher stages of
diabetic retinopathy, history of
nephropathy, peripheral neuropathy,
and decreased corneal sensation
predictive of abnormal CCM
parameters, first paper to demonstrate
abnormal CCM parameters in patients
with normal corneal and vibration
sensation

Ischibashi et al.
(2012)63

Japan Type I DM vs
controls

38/38 HRT III
Image J

NFD (no. mm−2)
NFL (mm mm−2)
NT
Beading (mm)

DM1/C:
25.32/36.62
9.80/13.65
3.13/1.74
22.38/30.44

HbA1c level and blood pressure were
an independent negative predictors of
NFL and NFD

Nitoda et al.
(2012)47

Greece Type II DM
(noDR/
NPDR/NPDR/
PDR) vs
controls

46/47/46/47 HRT II,
MATLAB

NFD (no. mm−2)
NBD (no. mm−2)
NFL (mm mm−2)
NT

DM2 noDR/NPDR/
PDR/C:
27.4/23.7/18.8/31.3
39.9/30.6/25/45.1
14.8/12.3/10.4/16.6
1.8/1.9/1.9/1.7

Positive correlation between corneal
neuropathy and peripheral neuropathy

Zhivov et al.
(2013)64

Germany DM vs
controls

36/20 HRT II
GIMP
Non-invasive
esthesiometer

NFD (mm mm−2)
NFL (mm mm−2)
NBD (no. mm−2)

DM/C:
0.006/0.020
6.22/19.99
25.3/141.9

No difference in CCM parameters
between patients with or without
diabetic retinopathy, corneal sensation
was significantly lower in the diabetic
group than in controls

Wang et al.
(2014)19

China Type II DM
vs controls

45/50 — NFL (mm mm−2)
NBD (no. mm−2)
NT

DM2/C:
11/13
47/62 3.2/2.8

Pain severity of diabetic peripheral
neuropathy showed negative
correlation with NFL and NBD, positive
correlation with NT

Ziegler et al.
(2014)65

Germany Type II DM
vs controls

86/48 HRT II
—

Esthesiometer

NFL (mm mm−2)
NFD (no. mm−2)
NBD (no. mm−2)

DM2/C:
19.7/24.9
299.2/397.3
165.2/226.7

Abbreviations: aDM, diabetes mellitus; DR, diabetic retinopathy; NPDF, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy. bNBD, nerve
branch density; NFD, nerve fiber density; NFL, nerve fiber length; NT, nerve tortuosity. cC, control; DM1, type 1 diabetes mellitus; DM2, type 2 diabetes melliltus.
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Table 2. Studies comparing corneal nerve parameters in different stages of diabetic peripheral neuropathy

Source Country Groupsa Sample size Method Parameter
(mean)b

Outcomesc Associations

Edwards et al.
(2012)69

UK and
Australia

Type I DM
(without
PN/with
DPN) vs
controls

143/88/61 HRT III
CCMetrics

NFL (mm mm−2)
NBD (no. mm−2)
NT

DM1/C: 18.3/16/20
69/58/80
0.22/0.23/0.21

Baseline findings of longitudinal
study: NFL and NBD strongly
correlated with nerve
conduction study parameters,
NFL inversely correlated with
HbA1c and duration diabetes

Petropoulos
et al. (2013)48

UK DM (no
PN/mild
PN/mod
PN/sev PN)
vs controls

50/26/
17/18/47

HRT III
CCMetrics

NFD (no. mm−2)
NBD (no. mm−2)
NFL (mm mm−2)
NT

noPN/modPD/sev PN/C:
26.9/23.25/18.9/13.1/36.95
55.5/48.25/32.4/19.6/96.55
20.05/17.6/14.7/9.75/27.25
18.2/21.2/18.45/16.45/16.4

Symmetrical reduction in CCM
parameters for all groups except
those with severe neuropathy

Pritchard et al.
(2014)49

UK and
Australia

Type I DM
(without
PN/with
DPN) vs
controls

166/76/154 HRT III
CCMetrics
Esthesiometry

NFL (mm mm−2)
NBD (no. mm−2)

DM2/C: 19/13/23
60/40/80

Baseline of longitudinal study,
reduction in corneal nerve fiber
length already noted in DM
patients without peripheral
neuropathy, reduction in corneal
sensitivity only in type I DM
patients with peripheral
neuropathy

Stem et al.
(2014)70

USA DM (no
PN/mild
PN/severe
PN) vs
controls

25/10/8/9 HRT II
NeuronJ

NFL (mm mm−2) noPN/midPN/severe
PN/C: 15.1/18.5/12.5/20.7

DeMill et al.
(2015)43

USA DM (no or
mild PN/
severe PN)
vs controls

16/9/9 HRT II
NeuronJ
Esthesiometry

NFL (mm mm−2) noPN/severe PN/C: 18/12/
20.5

Tear osmolarity increases and
NFL decreases with increasing
severity of PN, DM patients had
lower Schirmer's test values than
controls, no differences in OSDI
or VFQ-25 scores, TBUT and
ocular surface staining between
groups

Tavakoli et al.
(2015)71

UK DM
(without
AN/with
AN) vs
controls

15/19/18 Confoscan P4 NFD (no. mm−2)
NBD (no. mm−2)
NFL (mm mm−2)

noAN/AN/C: 35.70/48.26
21.24/30.09 7.08/9.74

CCM findings correlated
significantly with autonomic
symptoms (COMPASS and CASS)

Misra et al.
(2015)46

New
Zealand

Type I DM
vs controls

53/40 HRT II
analySIS 3.1
Esthesiometry

Sub-basal nerve
density
(mm mm−2)

DM1/C: 11/21.17 Negative correlation between
corneal sensitivity and
autonomic nerve function, 50%
of patients with abnormal CCM
findings had otherwise no
evidence of peripheral or
autonomic neuropathy

Maddaloni
et al. (2015)72

Italy Type I DM
(without
AN/with
AN) vs
controls

36/20 Confoscan 4,
Image J

NFD (no. mm−2)
NFL (mm mm−2)
Beading (mm)

noAN/AN/C: 51.7/32.8/92
1.4/1.9/1.4
14.8/15.3/20.6

CCM findings lower in DM
patients with autonomic
neuropathy than those without

Dehghani
et al. (2014)66

Australia Type I DM
(without
PN/with
PN) vs
controls

147/60 HRT III,
ACCMetrics

NFD (no .mm−2)
NBD (no. mm−2)
NFL (mm mm−2)

noPN/withPN/C:
18.3/16.3/22.3
24.2/23.7/35.1
16/15/18.1

Baseline (left). Prospective:
significant annual reduction in
nerve fiber density in PN group
vs controls (−0.9 per mm2 per
year vs − 0.06 per mm2 per year)
CCM findings correlated with
peroneal nerve conduction
velocity (r= 0.38) and cold
sensation threshold (r= 0.40)

Chen et al.
(2015)73

UK Type I DM
(without
PN/with
PN) vs
controls

63/26 HRT III
CCMetrics
ACMetrics

NFD (no. mm−2)
NBD (no. mm−2)
NFL (mm mm−2)
NFD (no. mm−2)
NBD (no. mm−2)
NFL (mm mm−2)

noPN/withPN/C:
28.3/16.9/36.8
56.1/48.2/56.1
20.2/14.8/26.7
22.6/13.5/31.3
26.2/15.4/44.6
13.4/8.8/17.7

Comparable diagnostic efficacy
between confocal microscopy
measurements and
intraepidermal nerve fiber
density (via skin biopsy, gold
standard)

Abbreviations: aAN, diabetic autonomic neuropathy; DM, diabetes mellitus; PN, diabetic peripheral neuropathy. bNBD, nerve branch density; NFD, nerve fiber
density; NFL, nerve fiber length; NT, nerve tortuosity. cC, control; DM1, type 1 diabetes mellitus; DM2, type 2 diabetes melliltus.
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biomechanics involved the assessment of corneal hysteresis and
resistance force, due to the recent availability of the Ocular
Response Analyser,84,88,89 which can quantify these two para-
meters. Hysteresis refers to the amount of force required to indent
the cornea as well as the recovery from the indentation.
Resistance force is the hysteresis normalized to the cornea shape.
A higher hysteresis suggests a more rigid and less deformable
cornea. Seven cross-sectional clinic-based studies in Western
Europe,87,90–92 United States,93 Brazil,89 Israel88 and Iran94 have
found type 1 and type 2 DM participants to have higher hysteresis,
whereas only one study (Turkish study)95 found them to have a
lower hysteresis, compared with age-matched controls. In one
study, it was found that the fasting blood glucose level was
significantly but weakly correlated (r= 0.28) to the corneal
hysteresis.91

Two other studies published in this recent period on corneal
morphology found DM to be associated with a greater corneal
thickness,96–98 which was consistent with reports earlier than
2008. It is noteworthy that patients with proliferative, non-
proliferative retinopathies and those with no diabetic retinopa-
thies did not have significantly different corneal
thicknesses.90,97–100 In addition, a study in 100 children aged 6–
17 years with type 1 DM in Romania had an increase in corneal
thickness compared with an equivalent number of children of the
same age,101 and similar findings had been reported in Turkey.96

The reason why DM is associated with greater corneal hysteresis
or thicknesses is not completely known, apart from the relation-
ship between increased corneal thicknesses in cases of overt
corneal epitheliopathy. However, it has been speculated that the
accumulation of AGE in the cornea stroma of diabetics may occur
together with non-enzymatic crosslinking between collagen
molecules and proteoglycans. The crosslinking would theoretically
explain stiffening and thickening of the cornea. One study
compared eight monkeys with insulin-dependent diabetes
(streptozotocin injection) to four controls. In the diabetic eyes
crosslinking has manifested ultra-structurally as abnormal collagen
fibril aggregates in the stromal matrix on transmission electron
microscopy.102 This is consistent with published evidence
demonstrating AGE-induced crosslinking of extracellular matrix
in diabetics, resulting in increased arterial stiffness.103 The fact that
corneal thicknesses are elevated in children with DM who did not
have other DM complications suggest that the cornea may be
affected by AGE earlier than other organs.96,101 Nevertheless, it is
premature at present to speculate if corneal pachymetry,
commonly done in eye clinics, can be used to detect early DM
changes.
Given that AGE-related crosslinking of corneal proteins can

change the shape or morphology of the cornea in DM, is it
possible that DM may influence specific eye disorders that
manifests with corneal biomechanical changes? One such
example is keratoconus, a degeneration of the cornea character-
ized by progressive ectasia or thinning of the cornea, typically
presenting at teenage or early adult years.104 Unfortunately, the
published cross-sectional studies did not demonstrate a consistent
association between DM and such alteration of corneal
shapes.93,94

CORNEA ENDOTHELIAL DISEASE
Apart from the epithelium, the innermost layer of the cornea,
called the corneal endothelium, plays a vital role in keeping the
stroma dehydrated. This is because of the active pumping action
of fluid from the cornea to the anterior chamber by the corneal
endothelial cells. Similar types of regulated fluid transport are
extremely important in diabetes in other contexts, for example, in
the kidney.
Seven papers related to the corneal endothelium in DM have

been published in the review period and all were hospital-based

studies, except for one study comparing endothelial counts
between diabetic and non-diabetic cadaveric donors.105–112 The
biggest study of the 5, conducted in Vellor, India, involved 153
participants with DM and 163 age-matched controls, and was
performed on patients before and after cataract surgery up to
3 months postoperatively.112 Preoperative examinations showed
no statistically significant difference between the groups in any of
the corneal endothelial parameters. Both DM and controls had
decreases in endothelial counts and increase in morphological
abnormalities (increase in cell sizes or polymegathism and
increased variability of shape called pleomorphism) at 6 weeks
and 3 months post-operation. The authors reported that in the
control group the rate of loss of corneal endothelial cells between
6 weeks and 3 months was relatively milder compared with the
DM group (P= 0.023). However, the actual measurements were
not significantly different at any time points, suggesting that none
of the differences discovered were clinically relevant. It is worth
noting that this Indian study evaluated only small incision manual
cataract surgery but did not investigate phacoemulsification; the
latter is the more common form of surgery in the developed world
and potentially induces more corneal endothelial cell loss than
manual surgery.113

The other five papers were cross-sectional studies conducted in
Korea, Malaysia and Hungary, Poland and Denmark.105–109 These
studies excluded participants with prior cataract surgery or history
of ocular disease, and reported statistically significant association
of type 2 DM with increased clinical features of corneal endothelial
dysfunction (reduced endothelial count, and polymegathism and
pleomorphism). Nevertheless, the magnitude of the reported
differences between the DM and age-matched controls in these
studies was very small. For example, in the Malaysian study, the
mean corneal endothelial counts was 2541 cells per mm2 in DM
compared with 2660 cells per mm2 in controls, with a difference of
about 120 cells per mm2. By excluding participants with
ophthalmic problems, these studies would have included only
participants with shorter duration of DM. Had these studies
recruited DM participants with longer durations, it may be
possible to discover greater magnitudes of differences.

ADVANCES IN TREATMENT OF DIABETIC OCULAR SURFACE
Systemic treatment in DM is the cornerstone of treatment in any
diabetic complication. Tight blood glucose control, preferably in
collaboration with an endocrinologist, can prevent further
progression of corneal epitheliopathy and neuropathy.63,114

Insulin treatment in diabetic mice reduced the level of oxidative
stress in the lacrimal gland, assessed by total tissue peroxidase
and malonaldehyde levels.83 The newer therapeutics approaches
proposed in recent years and their limitations are summarized in
Box 1.
The aim of local treatment in diabetic keratopathy is to maintain

a smooth and lubricated ocular surface with an intact epithelium
and adequate blink response. This minimizes visual distortion and
maximizes comfort. The exact treatment prescribed is dependent
on the severity of the problem and the specific structures
involved. Early or mild disease will present as dry eye or recurrent
erosions, and more severe disease in the form of neurotrophic
ulcers and secondary infections. A step-wise approach towards
treatment, such as that mentioned in the Dry Eye Workshop
(DEWS), is helpful, aiming to halt further damage, encourage re-
epithelialization, prevent infection and maintain adequate lubrica-
tion of the ocular surface.2

A previous review has already described how therapies like
lubricants, antibiotics, autologous serum and anti-inflammatory
agents, as well as devices, such as bandage contact lenses in DM
patients.2 The benefit of autologous serum is that it contains
growth factors that may further enhance epithelial wound healing.
An irregular ocular surface may benefit from a bandage contact
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lens to reduce further trauma. For more severe conditions
including neurotrophic ulcers, surgical options to induce eyelid
closure, including botulinum toxin injection and tarsorrhaphy,
may be required.
Some of the newer treatment modalities directed to the ocular

surface have been recently reviewed are summarized in Box 2. The
challenge of maintaining therapeutic concentrations of any topical
drugs on the ocular surface is the rapid dilution by resident tears
and elimination through the nasolacrimal duct.

CONCLUSION AND FUTURE STUDIES
The assessment of the diabetic ocular surface has implications
beyond eye care. Challenges and future directions in this field are
described in the Boxes 1 and 2. The corneal nerve parameters are
all age related and, therefore, widespread use of these features for
screening patients will only be useful if age-stratified normative
values are available for the target population.17 Reading centers
for corneal imaging will play a major role in such initiatives. Use of
special imaging techniques such as 2-photon microscopy in
genetically modified mice with visible corneal nerves will be
immensely valuable to investigate changes in animals with
diabetic neuropathy, especially in the cornea.7

Apart from more conventional approaches, newer therapeutic
agents including targeted molecular therapy, gene and stem cell

therapies are promising but have not yet been translated to
routine care. The bulk of the published work in these areas
concerns evaluation in animal models and not clinical trials.
The future of diabetes management is dependent on increased

awareness of the importance of the ocular surface in diabetes. An
improved understanding of the ocular surface among the general
medical profession is essential for optimal management.
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Box 1 New systemic therapies

● Resolvin-D1, an anti-inflammatory eicosanoid, reduced cor-
neal and peripheral nerve degeneration in diabetic rats when
administered as an oral supplement together with menha-
den (fish) oil.115 The effect was independent of blood glucose
levels.

● Beta carotene, an antioxidant, was shown to ameliorate
diabetes-related ultrastructural changes to the cornea in a rat
model.116 The beneficial effects of beta carotene was
associated with a reduction in average blood glucose in
treated groups.

● Ilepatril, a vasopeptidase inhibitor and new hypertension
drug, can degrade vaso- and neuro-active petides as well as
angiotension converting enzyme (ACE). In rats with
streptozotocin-induced diabetes, oral administration of
ilepatril protects against degeneration of the corneal
nerves.117

● Enalapril, an ACE inhibitor, in combination with alpha lipoic
acid (antioxidant) and menhaden oil was shown to reverse
diabetic corneal and peripheral neuropathy in
streptozotocin-induced diabetic rats when administrated
per-orally.118

● KIOM-79 (a mixture of 80% ethanol extracts of parched
Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae
radix and Euphorbiae radix) can be used as an oral
therapeutic agent by reducing AGE in tissues like the cornea.
In a rat model of DM, it also reduced the downstream
oxidative damage, nuclear factor kappa-B activation and Bax
overexpression in the cornea.119

● Experimental stem cell therapy, in the form of human
hematopoietic stem cells transplanted into the peritoneum
of rats, reduced apoptosis in the corneal and conjunctival
epithelium.120 However, the corneal nerves were not
examined in those experiments. It is important to note that
such xenograft approaches also have to deal with the
expected immune response against transplanted cells.

Box 2 New topical therapies in diabetic ocular surface

● Carnosine, an antioxidant, may be used to counter the effects
of AGE in the ocular surface.115 Topical administration of the
substance has been shown to be effective in maintaining
thiol levels in the cornea of rats with induced diabetes. This
study unfortunately did not included assessment of the tear
function and health of the ocular surface by imaging.121

● Sericin and aloe vera are topical protective agents and
promote ocular surface wound healing.122,123

● Naltrexone, a long-acting opioid antagonist, administrated
topically or orally has been shown to accelerate corneal
wound healing and restitute corneal sensitivity. It has also
been shown to be safe and effective in more than one type
of animal model.12,85,86,124,125

● Topical application of growth factors in diabetic animal
models, in particular insulin and nerve growth factor (NGF),
have had promising results.81,124 Insulin is a much cheaper
drug to produce than NGF, and therefore more likely to
widely adopted, but it does not protect against the loss of
corneal sensitivity. Moreover NGF can be easily degraded by
alteration of temperature, pH and presence of tear
proteases.126

● Insulin-like growth factor 1 (IGF-1) promotes cell proliferation
and when administrated topically to type 2 diabetic mice.
Improved corneal sub-basal nerve density compared with
controls.127

● Targeting microRNA miR-146Aa may be used to treat delays
in wound healing in diabetic corneas, but this had been
reported in organ cultures only.128

● Experimental gene therapies may be a viable form of local
treatment for cornea disease in diabetics. Hepatic growth
factor (HGF)-driven epithelial migration and wound closure is
dependent on the function of the receptor tyrosine kinase
c-Met. In DM animal models, the HGF levels were increased in
the cornea epithelium, but the c-Met levels have decreased.
Since inadequate c-Met levels may impair wound healing,
adenoviral vector mediated overexpression of c-Met was
attempted to correct the molecular anomaly. In organ-
cultured human corneas from diabetic patients, the rate of
epithelial migration was restored to the levels in the non-
diabetic corneas. Though promising, such therapies have
numerous hurdles to overcome, including safety concerns
and issues related to the lack of specificity in delivery of
expression vectors.129–131
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