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Abstract

We describe two modifications that parallelize and reorganize caching in the well-known Greedy 

Equivalence Search (GES) algorithm for discovering directed acyclic graphs on random variables 

from sample values. We apply one of these modifications, the Fast Greedy Search (FGS) assuming 

faithfulness, to an i.i.d. sample of 1,000 units to recover with high precision and good recall an 

average degree 2 directed acyclic graph (DAG) with one million Gaussian variables. We describe a 

modification of the algorithm to rapidly find the Markov Blanket of any variable in a high 

dimensional system. Using 51,000 voxels that parcellate an entire human cortex, we apply the 

FGS algorithm to Blood Oxygenation Level Dependent (BOLD) time series obtained from resting 

state fMRI.

Introduction

High-dimensional data sets afford the possibility of extracting causal information about 

complex systems from samples. Causal information is now commonly represented by 

directed graphs associated with a family of probability distributions. Fast, accurate recovery 

is needed for such systems.

An acyclic directed graphical (DAG) model < G(V, E), P> consists of a directed acyclic 

graph, G, whose vertices v are random variables with directed edges, e, and a probability 

distribution, P, satisfying the Markov factorization for all assignments of values to variables 

in V having positive support:

(1)

where PA(a(v)) denotes a value assignment to each member of the set of variables with 

edges directed into v (the parents of v). The Markov Equivalence Class (MEC) of a DAG G 

is the set of all DAGs G having the same adjacencies as G and the same “v-structures”—

substructures x → y ← z, where x and y are not adjacent in G.

Such graphs can be used simply as devices for computing conditional probabilities. When, 

however, a causal interpretation is appropriate, search for DAG models offers insight into 
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mechanisms and the effects of potential interventions, finds alternatives to a priori 

hypotheses, and in appropriate domains suggests experiments. Under a causal interpretation 

of G, a directed edge x → y represents the proposition that there exist values of all variables 

in V\{x, y} such that if these variables were (hypothetically) fixed at those values (not: 
conditioned on those values), some exogenous variation of x would be associated with 

variation in y.

A causal interpretation is inappropriate for Pearson correlations of time series, because the 

correlations are symmetric and do not identify causal pathways leading from one variable to 

another; correlation searches will return not only an undirected edge (adjacency) between 

the intermediate variables in a causal chain, but also adjacencies for the transitive closure of 

a chain of causal connections. Causal interpretations are usually not correct for Markov 

Random Field (MRF) models, including those obtained for high dimensions by various 

penalized inverse covariance methods such as GLASSO and LASSO [1] [2], in part because 

like correlation graphs MRF graphs are undirected, and in the large sample limit specify an 

undirected edge between two variables that are conditionally independent but dependent 

when a third variable is conditioned on. This pattern of dependencies is characteristic of 

circumstances in which two conditionally independent variables are jointly causes of a third. 

It should be of interest therefore whether DAG search procedures can be speeded up to very 

high dimensions, with what accuracies. Ideally, one should be able to analyze tens of 

thousands of variables on a laptop in a work session, and be able to analyze problems with a 

million variables or more on a supercomputer overnight. Such a capability would be useful, 

for example, in cognitive neuroscience and in learning DAGs from high dimensional 

biomedical datasets.

Strategies

Various algorithmic strategies have been developed for searching data for DAG models. One 

strategy, incorporated in GES, iteratively adds edges starting with an empty graph according 

to maximal increases in a score, generally the BIC score [3] for Gaussian variables, and the 

BDeu score [4] for multinomial variables, although many other scores are possible, 

including modifications of the Fisher Z score [5] for conditional independence tests. The 

algorithms return a MEC of models, with the guarantee that if the distribution P is in the 

MEC for some DAG over the sample variables then asymptotically in probability the models 

returned have the highest posterior probability. There is no guarantee that on finite samples 

the model or models returned are those with the highest posterior probability, which is 

known to be an NP-hard problem [6].

The GES algorithm, as previously implemented, has trouble with large variable sets. Smith 

et al. gave up running GES on low dimensional problems (e.g., 50 variables and 200 

datapoints) on the grounds that too much time was required for the multiple runs their 

simulations required [7].

Another area of interest for scaling up MEC search has been the search for Markov Blankets 

of variables, the minimal set of variables, not including a target variable t, conditional on 

which all other recorded variables are independent of t [9] [10] [11]. This has an obvious 
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advantage for scalability; if the nodes surrounding a target variable in a large data set can be 

identified, the number of relations among nodes that need to be assessed is reduced. Since 

the literature has not suggested a way to estimate Markov Blankets using a GES-style 

algorithm, we provide one here. It is scalable for sparse graphs, and yields estimates of 

graphical structure about the target that are simple restrictions of the MEC of the graphical 

causal structure generating the data.

Fast Greedy Search

The elements of a GES search and relevant proofs, but no precise algorithm, were given by 

Chickering [12]; the basic idea is given by Meek [13]. Free public implementations of GES 

are available in the pcalg package in R and the Tetrad software suite. GES searches 

iteratively through the MECs of one edge additions to the current MEC, beginning with the 

totally disconnected graph on the recorded variables. At each stage of the forward phase all 

alternative one-edge additions are scored; the edge with the best score is added and the 

resulting MEC formed, until no more improvements in the score can be made by a single 

edge addition; in the backward stage, the procedure is repeated but this time removing 

edges, starting with the MEC of the forward stage, until no more improvements in the score 

can be made by single edge deletions. For multinomial distributions, the algorithm has two 

intrinsic tuning parameters: a “structure prior” that penalizes for the number of parents of a 

variable in a graph, and a “sample prior” required for the Dirichlet prior distribution. For 

Gaussian distributions, the algorithm has one tuning parameter, the complexity penalty in the 

BIC score. The original BIC score has a penalty proportional to the number of variables, but 

without changing asymptotic convergence to the MEC of DAGs with the maximum posterior 

probability, this penalty can be increased or decreased (to a positive fraction) to control false 

positive or false negative adjacencies. Increasing the penalty forces sparser graphs on finite 

samples.

It is important to note that the proof of correctness of GES assumes causal sufficiency—that 

is, it assumes that a common cause of any pair of variables in the set of variables over which 

the algorithm reasons is in the set of variables. That is, if the algorithm is run over a set of 

variables X, and x and y are in X, and x ← L → y for some variable L, then L is in X as 

well. Thus, GES assumes that there are no unmeasured common causes. If there are 

unmeasured common causes, then GES will systematically introduce extra edges. GES also 

assumes that there are no feedback loops that would have to be represented by a finite cyclic 

graph.

The FGS procedure uses a similar strategy with some important differences. First, in accord 

with (1), the scores are decomposable by graphical structure, so that the score for an entire 

graph may be the sum of scores for fragments of it. The updating of the score for a potential 

edge addition is done by caching scores of potential edge additions from previous steps, and 

where a new edge addition will not (for graphical reasons) alter the score of a fragment of 

the graph, uses the cached score, saving time in graph scoring. This requires an increase in 

memory, since the local scores for the relevant fragments must be stored.
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Second, each step of the FGS procedure may be parallelized. For most of the running time 

of the algorithm, a parallelization can be given for which all processors are used, even on a 

large machine, radically improving the running time of the algorithm.

Third, if the BIC score is used, the penalty for this score can be increased, forcing estimation 

of a sparser graph. The sparser the graph, the faster the search returns but at the risk of false 

negative adjacencies.

Fourth, one can make the assumption that an edge x → y, where x and y are uncorrelated, is 

not added to the graph at any step in the forward search. This is a limited version of the so-

called “faithfulness” assumption [5] and allows a search procedure to be speeded up 

considerably at the expense of allowing graphs to violate the Markov factorization, (1), for 

the conditional dependence and independence relations estimated from the sample. This 

weak faithfulness assumption can be included in FGS, or not. For low dimensional problems 

where speed is not an issue, there is no compelling reason to assume this kind of one-edge 

faithfulness, but in high dimensions the search can be much faster if the assumption is made. 

There are two situations in which assuming one-edge faithfulness leads to incorrect graphs. 

The first is perfectly canceling paths. Consider a model A → B → C → D, with A → D, 

where the two paths exactly cancel. FGS without the weak faithfulness assumption will 

(asymptotically) identify the correct model; with that assumption the A → D edge will go 

missing. In this regard, FGS with the assumption behaves like any algorithm whose 

convergence proof assumes faithfulness, such as the PC algorithm [5], although only with 

regard to single-edge violations of faithfulness. Faithfulness conditions for perfectly 

canceling paths have been shown to hold measure 1 for continuous measures over the 

parameter spaces of either discrete or continuous joint probability distributions on variable 

values, but in estimates of joint distributions from finite samples faithfulness can be violated 

for much larger sets of parameter values [5]. We will use this one-edge faithfulness 

assumption in what follows.

FGS is implemented, with publicly accessible code, in the development branch of https://

github.com/cmu-phil/tetrad. Pseudo-code is given in the supplement to this paper.

The continuous BIC score for the difference between a graph with a set of parents Z of y, Z 
→ y, and a graph with an additional parent x of Y, Z U {x} → y, is BIC(Z ∪ {x}, y) –BIC 

(Z, y), where for an arbitrary set X of variables, BIC(X, y) = 2 L − c k ln n, with L the log 

likelihood of the linear model X → y with Gaussian residual (equal to −n/2 ln s2 + C), k = |

X| + 1, n is the sample size, s2 is the variance of the residual of y regressed on X, and c is a 

constant (“penalty discount”) used to increase or decrease the penalty of the score. 

Chickering [12] shows this score is positive if it is not the case that (x_||_y | Z) and negative 

if x _||_ y | Z.

The discrete BDeu score is as given by Chickering [12]. We use differences of these scores 

as for the continuous case above. We use a modified structure prior, as described in Section 

4.

The correctness of the implementation from d-separation [14] can be tested using 

Chickering’s “locally consistent scoring criterion” theorem. Using d-separation, any DAG 
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can be consistently scored by +1 if it is not the case that dsep(x, y | Z) and −1 if dsep(x, y | 

Z). This score may be used to run FGS directly from a DAG using d-separation facts alone 

and can be used to check the correctness of the implementation of the algorithm without 

using data and the difference scores. Running FGS using the graph score should recover the 

MEC of G. We have tested the implementation in this way on more than 100,000 random 

DAGs with 10 nodes and 10 or 20 edges without an error.

Multiple Samples with FGS

Appending data sets can lead to associations among variables that are independent in each 

data set. For that reason, the IMaGES algorithm [15] runs each step of GES separately on 

each data set, and updates the inferred MEC by adding (or in the backwards phase, deleting) 

the edge whose total score summed over the scores from the several data sets is best. The 

same strategy can be used with FGS. The scoring over the separate data sets can of course be 

parallelized to reduce runtime almost in proportion to the number of data sets, but we have 

not yet done so in our published software.

Simulations with BIC and BDeu

Our simulations generated data from directed acyclic graphs parameterized with linear 

relations and independent, identically distributed Gaussian noise, or with categorical, three 

valued variables, parameterized as multinomial. For continuous distributions, all coefficients 

were sampled uniformly from (−1.5, −.5) ∪ (.5, 1.5). For categorical variables, for each cell 

of the conditional probability table, random values were drawn uniformly from (0, 1) and 

rows were normalized. All simulations were conducted using Pittsburgh Supercomputing 

Center (PSC) Blacklight computer. The number of processors (hardware threads) used 

varied from 2 (for 1000 variables) to 120 (for one million variables). All simulations used 

samples of size 1000. Where repeated simulations were done for the same dimension, a new 

graph, parameterization, and sample were used for each trial. The BIC penalty was 

multiplied by 4 in all searches with continuous data. The BDeu score used is as by 

Chickering [12], except that we used the following structure prior (for each vertex in a 

possible DAG):

(2)

where v is the number of variables in a DAG, p is the number of parents of that vertex and e 

is a prior weight, by default equal to 1. In (2), whether a node Xi has a node Xj as a parent is 

modeled as a Bernoulli trial with probability pj of Xj being a parent of Xi and (1 – pj) of Xj 

not being a parent of Xi. In simulations we have found this structure prior yields more 

accurate estimates of the DAG than the structure prior suggested by Chickering (2002). We 

used a sample prior of 1.

For continuous data, we have run FGS with the penalized BIC score defined above for (1) 

DAGs with 1000 nodes and 1000 or 2000 edges, for 100 repetitions, (2) DAGs with 30,000 

nodes and 30,000 or 60,000 edges, for 10 repetitions, and (3) a DAG with 1,000,000 nodes 
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and 1,000,000 edges, in all cases assuming the weak faithfulness condition noted above. For 

discrete data, we have run FGS with the BDeu only for circumstances (1) and (2) above. 

Random graphs were generated by constructing a list of variables and then adding forward 

edges by random iteration, avoiding cycles. The node degree distribution returned by the 

search from samples from random graphs with 30,000 nodes and 30,000 or 60,000 edges 

generated by our method is shown in Figure 1. Continuous results are tabulated in Table 1; 

discrete results are tabulated in Table 2. Where M1 is the true MEC of the DAG and M2 is 

the estimated MEC returned by FGS, precision for adjacencies was calculate as TP/(TP + 

FP); recall as TP/(TP + FN), where TP is the number of adjacencies shared by the true (M1) 

and estimated (M2) MECs of the DAG„ FP is the number of adjacencies in M2 but not in 

M1, and FN is the number of adjacencies in M1 but not in M2.

Arrowhead precision and recall were calculated in a similar way. An arrowhead was taken to 

be in M1 and M2 for each variable A and B such that A → B in both M1 and M2, and an 

arrowhead was taken to be in one MEC but not the other for each variable A and B such that 

A → B in one but A ← B in the other, or A—B in the other, or A and B are not adjacent in 

the other.

In all cases, we generate a DAG G randomly with the given number of nodes and edges, 

parameterize it as a linear, Gaussian structural equation model, run FGS as described using 

the penalized BIC score with BIC penalty multiplied by 4, and calculate average precision 

and recall for adjacencies and arrowheads with respect to the MEC of G. We record average 

running time. Times are shown in hours (h), minutes (m), or seconds (s).

In all cases, we generated a DAG G randomly with the given number of nodes and edges, 

parameterize it as a multinomial model with 3 categories for each variable, ran FGS as 

described using the penalized BDeu score with sample prior 1 and structure prior 1, and 

calculated average precision and recall for adjacencies and arrowheads with respect to the 

MEC of G. We record average running time.

For time comparisons (accuracies were the same), searches were also run on a 3.1 GHz 

MacBook Pro laptop computer with 2 cores and 4 hardware threads, for 1000 and 30,000 

variable continuous problems. Runtime for 1000 nodes with 1000 edges was 3.6 s. 30,000 

variable problems with 30,000 edges required 5.6 minutes. On the same machine, 1000 

variable categorical search with 2000 edges required 3.9 seconds, and 30,000 variables with 

60,000 edges required (because of a 16 GB memory constraint) 40.3 minutes.

The results in Tables 1 and 2 use the one-edge faithfulness assumption, above. Using the 

implementation described in the appendix, this assumption does not need to be made if time 

is not of the essence,. The running time is, however, considerably longer, as shown in Table 

3 for the case of 30,000 node graphs. Accuracy is not appreciably better.

Markov Blanket search

A number of algorithms have been proposed to calculate the Markov Blanket of an arbitrary 

target variable t without calculating the graphical structure over the nodes. Other algorithms 

attempt to identify the graphical structure over these nodes (that is, the parents of t, the 
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children of t, and the parents of children of t). (An excellent overview of the field as of 2010 

is given by Aliferis et. al [10].) A simple restriction of FGS, FGS-MB, finds the Markov 

Blanket of any specified variable and estimates the graph over those variables including all 

orientations that FGS would estimate for edges in that graph.

For the Markov blanket search, one calculates a set A of adjacencies x–y about t as follows. 

First, given a score I(a, b, C), one finds the set of variables x such that I(x, t, ∅) > 0 and adds 

x–t to A for each x found. Then for each such variable x found, one finds the set of variables 

y such that I(y, x, ∅) > 0 and adds y–x to A for each such y found. The general form of this 

calculation is familiar for Markov blanket searches, though in this case it is carried out using 

a score difference function. One then simply runs the rest of FGS, restricting adjacencies 

used in the search to the adjacencies in A in the first pass and then marrying parents as 

necessary and re-running the backward search to get the remaining unshielded colliders, 

inferring additional orientations as necessary. The resulting graph may then simply be 

trimmed to the variables in A and returned.

That this procedure returns the same result as running FGS over the entire set of variables 

and then trimming it to the variables in A is implied by the role of common causes in the 

search, assuming one-edge faithfulness. A consists of all variables d-connected to the target 

or d-connected to a variable d-connected to the target. But any common cause of any two 

variables in this the Markov blanket of t is immediately in this set and so will be taken 

account of by FGS-MB. Trimming the search over A to the nodes that are adjacents of t or 

spouses of t will then produce the same result (and the correct Markov blanket) as running 

FGS over all of the (causally sufficient) variables and then trimming that graph in the same 

way to the Markov blanket of t.

For example, consider how FGS-MB is able to orient a single parent of t. Let {x, y}->w->r-

>t be the generating DAG. The step above will form a clique over x, y, w, r, and t (except for 

the edge x—y). It will then orient x->w<-y, either directly or by shielding in the forward 

step and then removing the shield and orienting the collider in the backward step. This 

collider orientation will then be propagated to t by the Meek rules, yielding graph {x, y}-

>w->r->t. This graph will then be trimmed to r->t, the correct restriction of the FGS output 

to the Markov blanket of t as judged by FGS.

As with constraint-based Markov blanket procedures, FGS-MB can be modified to search 

arbitrarily far from the target and can trim the graph in different ways, either to the Markov 

blanket, or the adjacents and adjacents of adjacents, or more simply, just to the parents and 

children of the target. One only needs to construct an appropriate set of adjacencies over 

which FGS should search and then run the rest of the steps of the FGS algorithm restricted 

to those adjacencies. Even for several targets taken together, the running time of FGS-MB 

over the appropriate adjacency set will generally be much less than the running time of the 

full FGS procedure over all variables and can usually be carried out on a laptop even for 

very large datasets.

To illustrate that FGS-MB can run on large data sets on a laptop, Tables 4 and 5 show 

running times and average counts for FGS-MB for random targets selected from random 
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models with 1000 nodes and 1000 or 2000 edges, 30,000 nodes with 30,000 or 60,000 

edges, for continuous and discrete simulations, in the same style as for Tables 1 and 2. For 

the continuous case, a simulation with 1,000,000 nodes and 1,000,000 edges is included as 

well. Because the number of variables in the Markov Blanket varies considerably, accuracies 

are given in average absolute numbers of edges rather than in percentages.

For each row of the table, a single DAG was randomly generated and parameterized as a 

linear, Gaussian structural equation model as described in the text. Then random nodes in 

the model were selected and their Markov blanket MECs assessed using the FGS-MB 

algorithm, using the penalized BIC score with BIC penalty multiplied by 4; these were then 

compared to the restriction of the true MEC of the generating DAG, restricted to the Markov 

blanket variables. Average number of correct adjacencies (# Correct Adj), correctly oriented 

edges (# Correct Arr), number of false positive adjacencies (# FP Adj) and number of false 

negative adjacencies (# FN Adj) are reported. Times are shown in milliseconds (ms) and 

seconds (s). The average number of mis-directed edges for each row of Table 4 is given by 

the difference of the Correct Adjacency value and the Correct Arrowhead values.

For each row of the table, a single DAG was generated and parameterized as a Bayes Net 

with multinomial distributed categorical variables each taking 3 possible values. Conditional 

probabilities were randomly selected from a uniform [0, 1] distribution for each cell and the 

rows in the data table normalized. Then random nodes in the model were selected and their 

Markov blanket MECs assessed using the FGS-MB algorithm, using the penalized BIC 

score with BIC penalty multiplied by 4; these were then compared to the restriction of the 

true MEC of the generating DAG, restricted to the Markov blanket variables. Average 

number of correct adjacencies (# Correct Adj), correctly oriented edges (# Correct Arr), 

number of false positive adjacencies (# FP Adj) and number of false negative adjacencies (# 

FN Adj) are reported. Altogether for each row in Table 5, 100 nodes were used to calculate 

the averages shown. Times are shown in milliseconds (ms) and seconds (s).

A Voxel Level Causal Model of the Resting State Human Cortex

To provide an empirical illustration of the algorithm, we applied FGS to all of the cortical 

voxels in a resting state fMRI scan (approximately 51,000 voxels). Details of measurements 

and data preparation are given in the supplement. Because of the density of cortical 

connections, we applied the algorithm at penalties 40, 20, 10, and 4. Lower penalty analyses 

were not computationally feasible. All runs were done on the Pittsburgh Supercomputing 

Center (PSC) Bridges computer, using 24 nodes. Runtime for the penalty 4 FGS search was 

14 hours.

Tables 6 and 7 show the percentage of adjacencies and directed edges retained between each 

penalty run and the absolute numbers of adjacencies and directed edges returned at each 

penalty. Note that the great majority of adjacencies are directed.

For the penalty 4 run, the distribution of path lengths (in voxel units) between voxels (not 

counting zero lengths) is almost Gaussian (Fig 2). The distribution of total degrees is inverse 

exponential as expected (Fig 3). Fig 4 illustrates the parents and children of a single voxel.
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Discussion

For the sparse models depicted in Tables 1 and 2, for FGS, we see high precisions 

throughout for both adjacencies and arrowheads, although for the million node case with 

continuous models precision suffers, and for the discrete models direction of edge precision 

suffers for the denser models. For discrete models, sample sizes are on the low side for the 

conditional probability tables we have estimated, and it is not surprising that recall is 

comparably low. If we had not assumed the weak faithfulness condition, run times would 

have been considerably longer; for small models, recall would have been higher, though for 

large models our experience suggests they would have been approximately the same.

Tables 3 and 4, for FGS-MB, show excellent and fast recovery of Markov blankets for the 

sparse continuous case, less recall for the denser continuous case, and less recall than that 

for the discrete cases. The runtime for FGS-MB, for single targets, is a fraction of the 

runtime for FGS for all variables on a large data set—for the continuous, sparse, million 

node case, it is reduced from 11 hours to 42.9 seconds for single runs of those algorithms. If 

only the structure around a target node is needed, or structure along a path, it makes more 

sense to use FGS-MB or some simple variant of it than to estimate the entire graph and 

extract the portion of it that is needed. If a great deal of the structure is needed, it may make 

sense to estimate the entire graph.

Biological systems tend to be scale-free, implying that there are nodes of very high degree. 

The complexity of the search increases with the number of parents, and recall accuracy 

decreases. FGS deals better with systems, as in scale-free structures, in which high-degree 

nodes are parents (or “hubs”) rather than children of their adjacent nodes. If prior knowledge 

limits the number of parents of a variable, FGS can deal with high-degree nodes by limiting 

the number of edges oriented as causes of a given node.

These simulations do not address cases in which both categorical and continuous variables 

occur in datasets. Sedgewick et al. have proposed in such cases to first estimate an 

undirected graph using a pseudo-likelihood and then pruning and directing edges [16]. It 

seems worth investigating whether such a mixed strategy proves more accurate than 

discretizing all variables and using FGS; it would be better still to have a suitable likelihood 

function for DAG models with mixed variable types.

The fMRI application only illustrates possibilities. In practice, fMRI measurements, even in 

the same subject, may shift voxel locations by millimeters. Voxel identification across scans 

is therefore unreliable, which at the voxel level of resolution means that quite different 

DAGs will be recovered from different scans. Usually in fMRI analyses, clusters of several 

hundred voxels (regions of interest) are formed based on anatomy or correlations using any 

one of a great many clustering algorithms, and connections are estimated from correlations 

of the average BOLD signals from each cluster. FGS at the voxel level offers the prospect of 

using causal connections among voxels to build supervoxel regions whose estimated 

effective connections are stable across scans, a strategy we are currently investigating.

Neural signaling connections in the brain have both feedback and unrecorded common 

causes that are not captured by any present methods at high dimensions, although low 
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dimensional algorithms have been developed for these problems [5]. It seems important to 

investigate the possibility of scaling up and/or modifying these algorithms for high 

dimensional problems, in part through parallelization, and investigating their accuracies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Node degree distribution for simulated graphs with 30,000 nodes and 30,000 or 60,000 

edges
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Fig 2. 
Distribution of path distances (in voxel units) in penalty 4 run

Ramsey et al. Page 12

Int J Data Sci Anal. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. 
Histogram of total degrees in penalty 4 run
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Fig 4. 
Parents and children of a voxel
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