
1Scientific Reports | 7:45738 | DOI: 10.1038/srep45738

www.nature.com/scientificreports

Prediction of oxygen uptake 
dynamics by machine learning 
analysis of wearable sensors during 
activities of daily living
T. Beltrame1,2,3, R. Amelard4,5, A. Wong4,5 & R. L. Hughson1,5

Currently, oxygen uptake ( VO2) is the most precise means of investigating aerobic fitness and level of 
physical activity; however, VO2 can only be directly measured in supervised conditions. With the 
advancement of new wearable sensor technologies and data processing approaches, it is possible to 
accurately infer work rate and predict VO2 during activities of daily living (ADL). The main objective of 
this study was to develop and verify the methods required to predict and investigate the VO2 dynamics 
during ADL. The variables derived from the wearable sensors were used to create a VO2 predictor based 
on a random forest method. The VO2 temporal dynamics were assessed by the mean normalized gain 
amplitude (MNG) obtained from frequency domain analysis. The MNG provides a means to assess 
aerobic fitness. The predicted VO2 during ADL was strongly correlated (r = 0.87, P < 0.001) with the 
measured VO2 and the prediction bias was 0.2 ml·min−1·kg−1. The MNG calculated based on predicted 
VO2 was strongly correlated (r = 0.71, P < 0.001) with MNG calculated based on measured VO2 data. 
This new technology provides an important advance in ambulatory and continuous assessment of 
aerobic fitness with potential for future applications such as the early detection of deterioration of 
physical health.

The measurement of oxygen uptake ( VO2) responses in steady-state condition is commonly used to precisely 
estimate the individual energy expenditure of a given physical activity1. Besides energy expenditure estimation, 
the evaluation of the temporal dynamics of the VO2 during physical activity transitions can provide valuable 
information about the aerobic system integrity2,3. From a practical perspective, abnormal aerobic responses to 
exercise may precede the clinical detection of non-communicable diseases4. Therefore, wearable technologies that 
continuously evaluate the aerobic response during non-supervised activities of daily living (ADL) have the poten-
tial to identify not only changes in physical fitness, but also disease states before the manifestation of clinical 
symptoms5,6.

In parallel with the advances in wearable devices, machine learning (ML) techniques are becoming popular to 
analyze the large quantities of longitudinal data streamed from these devices7. The ML algorithms may provide 
the technical basis to better identify non-trivial and complex patterns in long-term continuous biological signals8. 
The data mining process by ML is often based on the relationship between known inputs and outputs (super-
vised learning)9. The initial crude algorithms are feed with input and known output data (examples), and evolve 
according to the general structures that describe the input-output relationships. When the algorithm reaches a 
satisfactory generalization capacity, the output can be estimated by the inputs through a set of rules nested within 
the algorithm.

In this study ML will be used to build a VO2 predictor based on inputs provided by wearable sensors. The main 
objective of this study was to predict and evaluate the temporal dynamics of the aerobic response during realistic 
activities. Specifically, data acquired from wearable sensors fusion will be processed by ML algorithms to predict 
the VO2 data with subsequent aerobic system analysis. The hypothesis of this study is that the signals collected by 
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wearable sensors contain latent features that allow the characterization of the aerobic system response to 
exercise.

Methods
Study design.  Sixteen healthy, active male adults enrolled in this study (27 ±​ 7 years old, 174 ±​ 7 cm and 
78 ±​ 14 kg). A written, informed consent was obtained from all participants. The Office of Research Ethics at the 
University of Waterloo reviewed and approved the research procedures (ID: ORE20931) that were consistent with 
the Declaration of Helsinki.

As opposed to previous studies9–12 that used treadmill ergometers, participants performed two pseudorandom 
ternary sequence (PRTS) over-ground walking protocols13 separated by simulated ADL. Considering a step dura-
tion of 30 s, the PRTS was generated according to previous literature13–15. The PRTS was composed by a warm-up 
period of 300 s of extra sequence followed by 13 min of protocol. The walking cadences alternated between three 
levels (75, 105 or 135 steps·min−1). These levels corresponded to ≈​ ±​30% of the normal walking cadence16. The 
simulated ADL protocol (≈​20 min) was composed by sitting, organizing the shelf, carrying objects (≈​4.5 Kg), 
stairs (four up and four down flights of stairs), self-paced walking and sitting using the computer. Figure 1 exem-
plifies the behaviour of the hip acceleration (further explained) during these protocols.

Data acquisition.  Throughout the PRTS and simulated ADL, the VO2 data were measured breath-by-breath 
by a portable metabolic system (K4b2, COSMED, Italy). The gas concentrations and air volume/flow were cali-
brated following manufacturer’s specifications before each visit. The wearable sensors hip accelerometer, ECG and 
respiration band were integrated into a smart shirt (Hexoskin®). The raw sensor signals were used to obtain heart 
rate (HR), minute ventilation ( VE), breathing frequency (BF), total hip acceleration (Hacc), and walking cadence 
(CAD) through previously validated proprietary algorithms17. From the HR data, a new variable was derived. The 
Δ​HR was composed by the difference between the current HR value and the previous value by a 1 s lag operator, 
capturing dynamic changes in cardiac activity. The combination of the accelerometer sample rate (64 Hz), resolu-
tion (0.004 g) and range (16 g’s) was sufficient to capture all expected ADL movements18. The data from the wear-
able sensors and the VO2 signal were synchronized, linearly interpolated, and re-sampled at 1 Hz.

Machine learning.  As demonstrated in Fig. 2, the VO2 predictor was based on a random forest machine 
learning method19. The re-sampled 1 Hz data for HR, Δ​HR VE, BF, Hacc, CAD and VO2 were low-pass filtered at 
0.01 Hz. Because frequencies higher than 0.01 Hz can be affected by non-linearities introduced by circulatory 
distortions20, they were filtered out to diminish their potential impact on the machine learning algorithm. Data 
mining was performed in Matlab R2016a (MathWorks, Natick, MS, USA).

As described in Code I (Supplementary  material), the tested algorithms were validated by 
leave-one-participant-out cross-validation21. This validation was chosen to avoid data overlapping between train-
ing and testing datasets which might mislead the prediction accuracy evaluation8. The mined algorithm accuracy 
was evaluated by the average of the Pearson’s linear correlation coefficient (r) of all folds from the validation 
process. The time series data and the ability of the predictor to estimate the system temporal dynamics (further 
explained) were considered into this validation.

Ensemble models (i.e., “super” machine learning models that combine the output of individual models within) 
have gained popularity for outperforming singular models with large complex data22. The random forest model is 
a popular ensemble model that does not make any inherent assumptions about data distribution (e.g., normality). 
A random forest model comprises a set of individual binary decision trees (see Fig. 2), which are grown using 
some elements of randomization. To generate a VO2 prediction given a set of measurement features, each tree 
evaluates its hypothesis based on the input, and the random forest model conducts a “voting” scheme where all of 
the individual tree predictions are aggregated to generate a final estimate, effectively reducing potential incorrect 
outlier estimations. Of particular interest, random forests treat the feature space as clustered disjoint sets of target 
( VO2) values, which is helpful for aggregating many data points that may be similar but vary due to measurement 
noise. When building individual trees, the method actively seeks data that improve the fit. Finally, prediction is 
fast, only requiring fast tree traversals. These properties make it a good candidate for real-time VO2 prediction for 
future implementations in embedded systems.

Figure 1.  Representative hip acceleration response during pseudorandom ternary sequence (PRTS) 
walking protocol and simulated activities of daily living (ADL). The arrows point to each specific ADL 
(labels).



www.nature.com/scientificreports/

3Scientific Reports | 7:45738 | DOI: 10.1038/srep45738

For this study, the random forest model was implemented as an ensemble of bootstrap aggregate regression 
trees. Specifically, each tree is made up of nodes with up to two children nodes, starting with the root node and 
traversing down to the end. A node contains a splitting criterion (e.g., HR >​ 50 bpm). For each time point, the 
feature values were evaluated by traversing the nodes to the bottom of the tree based on their decision values. 
Each bottom node, the “leaf node”, contains the tree’s estimated output for the given feature values. Each regres-
sion tree was grown individually with a randomly sampled subset of the training data. The final estimated VO2 
value for a given time point was computed as the average prediction across all the tree’s leaves.

Mathematically, let X =​ [x1, …​ xn] be a set of n feature vectors, and Y =​ [y1, …​ yn] be the (known) VO2 value 
corresponding to each feature set. The goal was to develop a random forest of T individual regression trees. Each 
individual regression tree was trained on a random data sample (in-bag selection) for generalizability. Each tree 
was grown node-by-node as follows. For each node, a random 1/3 subset of the features was selected as candidate 
splitting features. An optimal node split (into left and right subtrees) was sought such that it minimized the sum 
of squared residuals in the two prospective subsets:
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where s is the splitting value, xi is the candidate splitting feature, yi, and c c,l r  are the mean responses from the 
prospective left and right subregion respectively. The feature that exhibited the smallest j  was chosen as this 
node’s splitting criterion:
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This process was repeated recursively for each node, until a full tree was grown. Thus, given a new feature 
vector x, each tree predicted the VO2 value ŷt by following the binary splits according to the given feature vector 
and outputting the leaf node’s prediction value where a leaf node (dark grey circles in Fig. 2) is a node in the tree 
that doesn’t have any split (light grey circles in Fig. 2). The final predicted VO2 value was computed by the bag’s 
weighted average of the individual tree predictions:
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Since each random forest, one per participant, was validated individually, a total of sixteen random forest were 
generated at the end of the leave-one-participant-out cross-validation (Supplementary Material, Code I). Each 
random forest contained a set of decision trees that predicted VO2 data based on an optimal split of the features. 

Figure 2.  Illustration of the transformation of wearable sensor signals into oxygen uptake (VO2) by a 
random forest regression model. This algorithm was created based on a machine learning approach (see text 
for details). The heart rate (HR) was estimated based on the ECG signal. The Δ​HR variable consisted of the 
difference between the current HR value with the previous value. The ventilation minute ( VE) and breathing 
frequency (BF) were estimated based on two respiratory bands (abdominal and thoracic). The hip acceleration 
(Hacc) and walking cadence (CAD) were estimated based on tri-axis (x, y and z axis) accelerometer located at the 
hip. These variables were considered as inputs to a random forest algorithm consisting of a ruleset (regression 
trees, TreeT) composed by thresholds that split the signal into two tree branches (light grey circles). The 
numerical output ( VO2) was the average across the individual trees’ leaf nodes (open circles).
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Beyond these sixteen random forests, the output from all forests were ensemble averaged to reduce system noise, 
resulting in a final VO2 predictor.

Oxygen uptake dynamics evaluation.  The data corresponding to the PRTS protocol, optimized for sys-
tem identification13,15, was used for the evaluation of the aerobic system dynamics. The Hacc data were considered 
as system inputs and the measured and predicted VO2 as outputs. To increase the signal-to-noise ratio, input and 
output responses during each of the two PRTS were time aligned and averaged to obtain a single PRTS response 
per participant. Fast Fourier Transformations were used to convert the data from time to frequency domain. The 
responses were analyzed between the fundamental frequency (0.0012 Hz) to 0.008 Hz to constrain the analysis of 
VO2 dynamics to a range where linear first-order behaviour has been documented20. Non-linearities might intro-
duce misinterpretation about the aerobic system temporal dynamics study where the VO2 dynamics at higher 
frequencies might be also a consequence of circulatory distortions20.

As a characteristic of the PRTS protocol15, the amplitudes for the even harmonics were excluded a priori due 
to the absence of system stimulus. As previously proposed13,20,23, the system gains at the different frequencies 
(output/input ratio) were normalized by the gain at the first harmonic. This procedure eliminates the influence 
of the system static gain over the temporal characteristics of the system which ultimately are related to aerobic 
power24–27. Finally, the mean of the normalized gains (MNG) was used as an index of the system temporal dynam-
ics. Higher MNG values mean faster aerobic responses. The algorithm for MNG calculation is described in the 
Supplementary Material (Code I).

Statistical analysis.  For each participant and considering the entire group response, the predicted VO2 data 
were validated during the PRTS and ADL using the raw measured VO2 data as reference (without 0.01 Hz high 
pass filtering). The MNG estimated from the predicted VO2 was also validated using the MNG estimated from the 
measured VO2 as reference. The r coefficient, Bland-Altman plot, confidence interval (CI95) and Student t-test 
were used for data validation. The prediction bias (measured minus predicted) was also compared with the equal-
ity line (bias =​ 0) by Student t-test. To further explore the predictions during ADL, the sample was also clustered 
into three groups according to the metabolic equivalent (METS) estimated from the measured VO2 
( = .METS VO /3 52 ). The first cluster was composed by the resting metabolic rate (RMR) estimated from the 60 s 
average of the VO2 response during resting. Since the exercise protocol designed for this study was focused on 
realistic ADL that is in majority composed by light and moderate intensity28, less than 2% of the experimental data 
were composed by METS higher than 6.0. Therefore, the average of the samples within the intervals 2–3.9 
(505 ±​ 137 samples per participant) and 4.0–5.9 (422 ±​ 67 samples per participant) were grouped as light and 
moderate activities, respectively29.

Results
Figure 3 displays the comparison of the measured and predicted VO2. The data obtained during ADL are dis-
played in Fig. 3A–C and the data obtained during the PRTS protocol are displayed in Fig. 3D–F. As demonstrated 
in Fig. 3A, the quality of the prediction was verified by a strong and significant positive correlation (r =​ 0.87, 
P <​ 0.001 and n =​ 20,868) with the measured data during ADL. By individually analyzing the correlation level, all 
participants presented a strong and significant positive correlation (r =​ 0.88 ±​ 0.05, P <​ 0.001 ±​ 0.00 and n =​ ≈​
1200 per participant) between predicted and measured data with a bias of 0.331 ±​ 1.187 ml·min−1·kg−1. The 
Bland-Altman plot for the measured and predicted VO2 during ADL is shown in Fig. 3B. Considering the entire 
sample for ADL, the bias (0.294 ml·min−1·kg−1, ≈​2.2% of the average response) was statistically (P <​ 0.05) higher 
than the equality line. The CI95 was 6.166 ml·min−1·kg−1 around the bias. The relative distribution of the error is 
plotted in Fig. 3C. The error distribution followed a Gaussian-like function with the majority of the error located 
close to the equality line (bias =​ 0).

Considering all data points from all participants during PRTS (Fig. 3D), the correlation coefficient was 
strongly positively correlated (r =​ 0.69, P <​ 0.001 and n =​ 12,480). By individually analyzing the correlation level, 
all participants presented a strong and significant positive correlation (r =​ 0.77 ±​ 0.09, P <​ 0.001 ±​ 0.00 and 
n =​ 780 per participant) between predicted and measured data. The Bland-Altman plot for the measured and 
predicted VO2 during PRTS is shown in Fig. 3E. The bias of the prediction, −​0.259 ml·min−1·Kg−1 was lower 
(P <​ 0.001) than the equality line representing only ≈​1.7% of the average response during the PRTS protocol. The 
CI95 was 4.250 ml·min−1·kg−1. The relative distribution of the error is plotted in Fig. 3F. This distribution also 
followed a Gaussian-like function with the majority of the error located close to the equality line (bias =​ 0).

Metabolic equivalent.  The ability of the random forest algorithm in estimate different levels of metabolic 
equivalent at rest (resting metabolic rate, RMR) and during light and moderate ADL is depicted in Fig. 4. These 
data were based on the same data displayed in Fig. 3A but clustered into groups according to the metabolic 
demand during ADL29. Less than 2% of the experimental data were composed by intense activities (>​6 METS), 
therefore these data were excluded a priori. The proximity of the estimated METS to the equality line demon-
strates that the random forest was able to dissociate between different metabolic demands. The proposed algo-
rithm can be used to classify activity levels between light and moderate ADL.

Aerobic system temporal dynamics.  The group mean response for the second-by-second average VO2 
during the PRTS protocol was computed and depicted in Fig. 5.

The comparison of the aerobic system temporal dynamics assessed by the MNG calculated from measured and 
predicted VO2 data during the PRTS protocol (Fig. 5) is displayed in Fig. 6. The MNG calculated from predicted 
VO2 data was statistically similar (P =​ 0.136) and strongly, positively correlated to the MNG calculated from 
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measured VO2 data. The MNG calculated from predicted VO2 data presented a bias of −​6.19% which corresponds 
to 10% of the average MNG response. The bias was statistically (P =​ 0.012) lower than the equality line (bias =​ 0). 
The CI95 was 17.63% around the bias (or 29% of the mean MNG response).

Discussion
In agreement to the initial hypothesis, the signals obtained from the wearable sensors allowed the prediction of 
oxygen uptake during activities of daily living and random paced walking. Aerobic system temporal dynamics 
assessed by the MNG from the predicted oxygen uptake were similar to those of oxygen uptake measured by a 
portable metabolic device. In addition, the random forest algorithm was able to identify physical activity levels 
and the resting metabolic demand.

Figure 3.  Data were down sampled to 0.1 Hz for a better data visualization. Graphs (A), (B) and (C) are 
related to data obtained during activities of daily living (~1200 samples per participant) and graphs (D), (E) and 
(F) are related to data obtained during pseudorandom walking protocol (1560 samples per participant). (A) and 
(D): linear correlation of the measured and predicted oxygen uptake (VO2) between all participants.  
(B) and (E): Bland-Altman plot of the predicted and measured VO2 data. (C) and (F): distribution of the  
prediction error.

Figure 4.  Relationship between the measured and predicted metabolic equivalent (METs) during resting 
(defined as the resting metabolic rate, RMR, <​2 METS) and during light (2.0–3.9 METS) and moderate 
(4.0–5.9 METS) activities of daily living (ADL).
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Estimating the correct measurement of physical activity level during realistic scenarios remains a challenge30 
and hence, new wearable technologies and data processing approaches are necessary. The quantification of the 
physical activity level usually involves the estimation of energy expenditure by indirect calorimetry. Indirect cal-
orimetry has also been is used to calibrate wearable sensors for a wide range of activities during steady-state, 
allowing the energy expenditure estimation (i.e., steady-state VO2) without the need for the original calorimetry 
measurement31. However, the complexity and diversity of ADL represent a challenge for the precise physical 
activity estimation in a realistic scenario9,32–35.

During randomly varying exercise intensities, assessment of the rate at which VO2 adapts to the metabolic 
demands is indicative of aerobic fitness24,25,36. Thus, the ability to predict VO2 with an adequate time resolution 
provides an opportunity to obtain valuable information about cardiovascular health in addition to standard esti-
mates of energy expenditure. Previous approaches to this problem have been restricted to studies conducted 
under controlled laboratory conditions10,12,37. In the present study, we investigated a simulated ADL protocol as 
well as an over-ground walking protocol (PRTS) that mimicked the dynamic changes in walking cadences 
expected during daily activities. The PRTS protocol offered an optimized stimulus for the aerobic system analysis 
through the study of the VO2 temporal dynamics and its prediction by a random forest machine learning regres-
sion model.

Recently, Altini et al.9 used a novel approach for estimating VO2 during nonsteady-state phases. Their algo-
rithm combined an activity classification method with a numerical prediction approach that predicted VO2 dur-
ing dynamic phases of moderate ADL. However, the ability of the algorithm to correctly identify the VO2 
dynamics was reported only as a lower error of the estimation during exercise transitions. No further validation 
of the modelling parameters was carried out to explore the characterization of the aerobic adjustment dynamics 
with eventual health-related outcome.

In addition to HR and accelerometer9,10, the acquisition of more biological data such as VE and BF improved 
the VO2 estimation during transitions and steady-state. When the MNG was calculated based on the predicted 
VO2 without considering VE and BF as inputs, the MNG accuracy decreased by 55% (based on r value). Therefore, 
the integration of respiratory measurements for VO2 prediction seems to be indicated, evidencing some advan-

Figure 5.  Second-by-second mean (lines, n =​ 16 per point) of the measured and predicted oxygen uptake 
( VO2) during pseudorandom ternary sequence over-ground walking protocol. The SD (upward vertical bars 
for measured values, downward for predicted) are plotted at 10 s intervals.

Figure 6.  (A) linear correlation between the mean normalized gain (MNG) calculated from predicted and 
measured oxygen uptake data. (B) Bland-Altman plot of the data displayed in (A).
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tages of the smart-shirts over simpler wearable devices. As with the majority of the biological processes, VE and 
BF signals are also delayed during transitions and despite not having exactly the same dynamics as the VO2, they 
have predictable relationships38 which would contribute to a better understanding of the biological variability 
during transitions.

Studies that optimize the VO2 prediction during exercise transition with the intention to better estimate 
energy expenditure might be controversial. The O2 deficit at the on-transition phase is counter-balanced by the 
excess of O2 consumption during recovery39 thus the calorie counts based on different predicted VO2 temporal 
dynamics should be almost similar. The energy expenditure estimation is independent on the VO2 temporal 
dynamics, being determined only by the correct system static gain estimation. Therefore, in terms of calories (i.e., 
energy expenditure) calculated after a period of time, algorithms that successfully predict steady-state VO2 might 
be enough to estimate energy expenditure and no further methods are necessary for the VO2 prediction during 
nonsteady-state phases. The justification for the correct VO2 estimation during exercise transition has to have a 
reason beyond a “better” physical activity level estimation as considered next.

The VO2 responses during transitions have been used to assess aerobic fitness in constrained settings25,40 and 
the expansion of these approaches outside of the laboratory environment represents the possibility to track 
changes in aerobic fitness and physical health on a daily basis. The assessment of aerobic fitness by wearable sen-
sors during unsupervised daily living routine seems very promising. As demonstrated in Fig. 6, our algorithm was 
able to characterize the temporal dynamics (MNG) of the aerobic system based on the predicted VO2 data. 
Therefore, the proposed algorithm can be used in the future for aerobic fitness assessment based on predicted VO2 
data obtained from wearable sensors during transitions encountered during ADL for ordinary people or patient 
populations, or during prescribed variations in work rate, such as athletic training.

Study limitations
The purpose of the current study was to predict VO2 during the most common ADL. Thus, the exercise protocols 
were limited to light and moderate activities with intensities lower than ~6 METs, and any attempt to extend this 
range should include extensive testing for reliability. Any studies that investigate the algorithm proposed in the 
current study for high intensity activities must recognize that VO2 dynamics become more complex under these 
conditions with the potential for nonlinear contributions. The VO2 predictor developed in this study can be 
applied to evaluate the aerobic system dynamics during ADL where intense activities are unlikely to occur28.

The population tested in the current study (healthy men) had narrow weight and age ranges which might also 
restrict the use of the proposed algorithm. Further studies are necessary to verify the reliability of the VO2 predic-
tions in different populations. It is recommended that any future study incorporate dynamic protocols (such as 
the PRTS) to evaluate the ability of the proposed algorithms to predict the VO2 dynamics during exercise 
transitions.

Conclusion
In conclusion, oxygen consumption dynamics can be predicted from the fusion of data from non-intrusive wear-
able sensors and machine learning prediction algorithms. Longitudinal predictions of oxygen uptake can be 
obtained from wearables based on the validation completed in the current study for activities of daily living and 
random over-ground walking. The proposed random forest ensemble predictor in conjunction with MNG can be 
used to investigate aerobic response during realistic activities with direct applicability for the general population. 
Developing the aforementioned predictive model will provide a unique opportunity for continued lifelong VO2 
collections in unsupervised environments. This new technology provides a significant advance in ambulatory and 
continuous assessment of energy expenditure and aerobic fitness with potential for future applications such as the 
early detection of deterioration of physical health.
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