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Abstract

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene

expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes.

Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression. We compared genome-

wide levels of transcription between males and females, and between the X chromosome and the autosomes in the green anole,

Anolis carolinensis. We present evidence for dosage compensation between the sexes, and between the sex chromosomes and the

autosomes. When dividing the X chromosome into regions based on linkage groups, we discovered that genes in the first reported

X-linked region, anole linkage group b (LGb), exhibit complete dosage compensation, although the rest of the X-linked genes exhibit

incompletedosagecompensation.Ourdata further suggest that themechanismof thisdosagecompensation isupregulationof theX

chromosome in males. We report that approximately 10% of coding genes, most of which are on the autosomes, are differentially

expressed between males and females. In addition, genes on the X chromosome exhibited higher ratios of nonsynonymous to

synonymous substitution than autosomal genes, consistent with the fast-X effect. Our results from the green anole add an additional

observation of dosage compensation in a species with XX/XY sex determination.
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Introduction

The green anole, Anolis carolinensis, is a squamate model

used to investigate reproductive physiology and behavior

(Lovern et al. 2004; Wade 2012), evolutionary developmen-

tal biology (Koshiba-Takeuchi et al. 2009; Eckalbar et al.

2013), and tissue regeneration (Hutchins et al. 2014). In

the presence of dosage compensation, genes on the sex

chromosomes in males and females will be expressed at ap-

proximately similar levels, nearing a sex ratio of 1. In the

absence of dosage compensation, however, the expression

of sex-linked genes is expected to reflect their overall copy

number in each sex (i.e. half as much in the hemizygous sex),

with an expected sex ratio of 0.5. Studies across species

suggest that male-heterogametic sex determination systems

(XX/XY) typically undergo chromosome-wide dosage com-

pensation, albeit with unique mechanisms in each conver-

gent system (Wilson and Makova 2009; Graves 2016). In

therian mammals, gene dosage is upregulated on the

X chromosome in both males and females, and females ex-

perience silencing of one X chromosome (Payer and Lee

2008) (although gene-by-gene escape from inactivation

can occur, Carrel and Willard 2005); in the platypus, a mono-

treme mammal with a chromosomal sex determination

system that is derived independently of therian mammals,

the X chromosome exhibits partial inactivation (Deakin et al.

2008); in Caenorhabditis elegans, the single X chromosome

in males is upregulated and the two X chromosomes in

hermaphrodites are both partially down-regulated (Kramer

et al. 2015; Lau and Csankovszki 2015); and in Drosophila

melanogaster gene dosage on the X is upregulated only in

males (Conrad and Akhtar 2012). In contrast, ZZ/ZW female-

heterogametic systems typically do not exhibit chromosome-

wide dosage compensation (Mank 2013), although dosage

compensation can occur on a gene-by-gene basis (Dean

et al. 2015). This gene-by-gene pattern has been observed

in birds (Dean et al. 2015; Itoh and Arnold 2015), snakes
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(Vicoso et al. 2013), silkworms (Xingfu 2009), and the flat-

worm Schistosoma mansoni (Vicoso and Bachtrog 2011).

However, it is unknown whether the limited number of

taxa that have been studied to date biases perceived trends

about dosage compensation. For example, the ZZ/ZW moth

Manduca sexta has been found to exhibit complete dosage

compensation (Smith et al. 2014), and near-global patterns of

dosage compensation have been observed in ZZ/ZW

Heliconius butterflies (Walters et al. 2015), suggesting that

patterns in dosage compensation may not be linked to

male- or female-heterogametic sex determination. In addition,

dosage compensation in XX/XY systems may not be as com-

plete as previously thought. About 15–25% of X-linked genes

escape inactivation in humans, with the proportion differing

greatly among regions of the X chromosome (Carrel and

Willard 2005). This pattern is explained in part by the time

since gametologous Y-linked alleles were pseudogenized or

lost (Wilson Sayres and Makova 2013). Given the variation

among the few systems that have been studied, it is necessary

to examine dosage compensation in evolutionarily indepen-

dent chromosomal sex determination systems.

In addition to dosage compensation, natural selection is

expected to behave differently on the sex chromosomes vs.

the autosomes because of their unique inheritance patterns

(Meisel and Connallon 2013). In species with XX/XY sex de-

termination, females have two copies of the X chromosome,

which means that, similar to the autosomes, deleterious re-

cessive genes can be shielded from selection by dominant

alleles in heterozygous individuals. In contrast, XY males

only possess one copy of the X chromosome, so recessive X-

linked alleles are directly exposed to natural selection. If most

new mutations are recessive, then natural selection will be

more efficient on the X chromosome, both removing harmful

variants and also increasing the frequency of beneficial X-

linked variants. The latter process is expected to generate a

higher ratio of non-synonymous to synonymous substitutions

on the X chromosome than the autosomes—a phenomenon

called the fast-X effect (Vicoso and Charlesworth 2006; Meisel

and Connallon 2013). Fast-X (which is equivalently called fast-

Z in species with ZZ/ZW sex determination) has been reported

across species with male- and female-heterogametic chromo-

somal sex determination, including fruit flies (Thornton and

Long 2002), birds (Mank et al. 2007; Meisel and Connallon

2013), snakes (Vicoso et al. 2013), and mice (Kousathanas

et al. 2014). Other factors may result in a similar signature:

genetic drift on the Z chromosome relative to the autosomes

has also been shown to result in a "fast-X" effect (Mank et al.

2009).

Genomic analyses are crucial for a comprehensive picture

of anole sex chromosome differentiation, dosage compensa-

tion, and signatures of natural selection. No pseudoautosomal

genes have yet been described and pseudoautosomal regions

in A. carolinensis are hypothesized to either be very small or

completely absent (Rovatsos et al. 2014a), similar to

marsupials (Murtagh et al. 2012). The identification of many

genomic regions that are haploid in males but diploid in fe-

males suggest that the A. carolinensis Y chromosome may be

highly degenerated and, if it exists at all, has lost much of the

ancestral sex chromosome content during the course of evo-

lution (Rovatsos et al. 2014a). Y-linked degeneration is ex-

pected to result in changes in X-linked transcript levels, a

form of dosage compensation to achieve similar X-linked ex-

pression in males and females (Wilson Sayres and Makova

2013). X chromosome expression, however, has not yet

been comprehensively characterized in the green anole. If

the anole X and Y chromosomes are as differentiated as pre-

liminary data suggests, and if it follows the trend of other

male-heterogaemtic systems, then we expect to observe

dosage compensation on the anole X chromosome.

In this study, we conducted analyses to infer additional X-

linked loci in the green anole, quantify patterns of sex-biased

gene expression across the genome, and characterize the

extent of dosage compensation on the anole X chromosome.

Based on these analyses, we propose that the green anole X

chromosome contains at least 374 genes. In addition, we pre-

sent evidence for dosage compensation on the anole X chro-

mosome. Finally, we show that X-linked genes have a higher

ratio of non-synonymous to synonymous substitution rates

than autosomal genes, a pattern consistent with fast-X.

Materials and Methods

Comparative analysis: To identify putative X-linked genes, we

conducted bidirectional best hit alignment between the

chicken and anole genomes. We acquired a list of all genes

from the green anole microchromosome LGb (Alföldi et al.

2011) from Ensembl BioMart (Ensembl v79) (Kinsella et al.

2011) and aligned them to the chicken genome (galGal4,

Ensembl v79) (Hillier et al. 2004) using BLAT (Cunningham

et al. 2015). Next, we obtained a list of transcript IDs of

genes located on the chicken chromosome 15 from

Ensembl BioMart (Ensembl v79) (Kinsella et al. 2011) and

mapped these transcripts to the anole genome (AnoCar2.0,

Ensembl v79). We then aligned genes from each anole scaf-

fold back to the galGal4 genome. For each alignment step, we

used a cutoff score of 100 to include genes for further anal-

ysis. We included genes in the set of proposed X-linked genes

if they were either previously identified (Alföldi et al. 2011), or

were located on a scaffold in which at least 60% of the gene

content of the scaffold mapped one-to-one between this scaf-

fold and chicken chromosome 15, and contained at least one

gene that had been previously identified as X-linked by Q-PCR

(Rovatsos et al. 2014a) (supplementary fig. S1, Supplementary

Material online). We included genes annotated from both the

Ensembl v79 and a previously published annotation using

transcriptomes (Eckalbar et al. 2013).

Transcriptome analysis: We analyzed whole transcriptome

RNA-seq data from A. carolinensis tail samples for two males
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(D015 and D026) and two females (D047 and D061), data

from which are accessible via BioProject PRJNA253971

(Hutchins et al. 2014). Briefly, regenerating tail samples

were collected 25 days post autotomy and sliced into five

sections along the proximal–distal axis. This resulted in five

biological replicates from each of the four individuals for a

total of twenty samples. Total RNA was isolated from each

sample separately, all samples were barcoded and multiplexed

with paired-end sequencing libraries generated using manu-

facturer protocols and sequenced on an Illumina HiSeq 2000

(Hutchins et al. 2014). After sequencing the samples were de-

multiplexed and analyzed separately. We assessed the quality

of the reads with FastQC (Andrews 2010) and further

trimmed using Trimmomatic (Bolger et al. 2014) to eliminate

a nucleotide bias from the flow cell. We mapped trimmed

reads to the A. carolinensis genome using Bowtie2.2.4

(Langmead and Salzberg 2012) and TopHat2.0.14 (Trapnell

et al. 2009) with the ASU_Acar_v2.2.1 annotation and the

following options: segment-length = 19 – no-coverage-

search. We measured RNA-seq statistics using the stats func-

tion of bamtools2.4.0 (Trapnell et al. 2012) (supplementary

table S1, Supplementary Material online).

Differential expression: We conducted the differential ex-

pression analysis using Cuffdiff in Cufflinks2.2.1 (Trapnell

et al. 2012) and analyzed the output using R3.2.2 (R Core

Team 2014) (readme files, associated scripts, and transcrip-

tome assemblies are available on GitHub: https://github.com/

WilsonSayresLab/Anole_expression). By default, Cuffdiff nor-

malizes read count estimates between samples, so models for

inter-sample normalization of raw read counts were not ap-

plied to read estimates returned by Cuffdiff (Dillies et al.

2013). We called genes as differentially expressed if the q-

value—a P value with a Benjamini–Hochberg correction for

multiple testing (Trapnell et al. 2012)—is less than 0.05.

Given that the minimum expression threshold can skew

results when examining patterns of dosage compensation,

we examined the relative expression results with five different

FPKM thresholds (0, 1, 2, 3, and 4), similar to Smith et al.

(2014) (supplementary table S2, Supplementary Material

online). We found that the same trends for autosomal vs.

X-linked genes were present at each threshold and here pre-

sent data using an FPKM threshold of 2 (supplementary fig.

S2, Supplementary Material online). We also found that our

results were robust when we analyzed expression after ac-

counting to where reads mapped in the chicken genome

(galGal4; supplementary table S3, Supplementary Material

online).

Diversity analyses: For independent verification of the pu-

tative X-linked transcripts, we analyzed patterns of genetic

diversity across the genome. To call variants, we first aligned

reads from all 20 samples—five replicates each of the four

individuals (see Transcriptome Analysis above)—to the

AnoCar2 reference genome (Alföldi et al. 2011) using multi-

sample 2-pass mapping in STAR (Dobin et al. 2013).

Specifically, we first mapped samples individually using default

parameters and then did a second pass of mapping with de-

fault parameters except for including information about iden-

tified splice junctions for all samples using the

"–sjdbFileChrStartEnd" command (Li 2011; Li, 1000

Genome Project Data Processing Subgroup et al. 2009). We

then sorted bam files using Samtools before adding read

group information and removing duplicates with Picard

(http://broadinstitute.github.io/picard/; last accessed

September 1, 2016). We trimmed intronic tails with the

SplitNCigarReads tool in the Genome Analysis Toolkit (GATK)

using the parameters "-rf ReassignOneMappingQuality -RMQF

255 -RMQT 60 -U ALLOW_N_CIGAR_READS" (McKenna

et al. 2010; DePristo et al. 2011; Van der Auwera et al.

2013). We then called variants individually for each sample

with the GATK HaplotypeCaller using the parameters

"-dontUseSoftClippedBases -stand_call_conf 20.0 -stan-

d_emit_conf 20.0 –emitRefConfidence GVCF –variant_

index_type LINEAR –variant_index_parameter 128000" to

output a GVCF file. Lastly, we performed a round of joint

genotyping of all 20 samples using GATK’s

GenotypeGVCFs with default parameters.

We calculated genetic diversity within each set of biological

replicates. For example, population 1 consisted of biological

replicate 1 for each of the four individuals, population 2 con-

sisted of biological replicate 2 for each for the four individuals,

and so on. This primarily allowed us to control for differences

in sequencing coverage and quality among replicates, but also

provided five biologically and technically independent esti-

mates of diversity among these individuals. For these analyses,

we focused exclusively on biallelic SNPs, to which we applied a

series of filters, removing sites at which the sequencing depth

was less than 2, Fisher strand bias was greater than 30, the

mean mapping quality was less than 30, or the site quality was

less than 30. Additionally, we only considered a sample’s ge-

notype call if the sample read depth at that site was greater

than or equal to 10. We then only examined sites that were

callable in all samples within a given population on scaffolds

containing at least 250 callable sites per population.

At each site, we calculated nucleotide diversity, p, as the

number of pairwise differences among chromosomes sam-

pled divided by the number of comparisons (kðk�1Þ
2 , where

k is the number of chromosomes sampled) (Tajima 1989;

Charlesworth and Charlesworth 2010). To identify all callable

sites in the genome for each sample, including invariant sites,

we used GATK’s CallableLoci tool with the parameters

"–minMappingQuality 30 –minDepth 10" (McKenna et al.

2010). We then used BEDTools intersect iteratively to identify

sites callable in all samples in a given population (Quinlan and

Hall 2010). Given this information, we calculated average nu-

cleotide diversity separately for the autosomes and putatively

X-linked scaffolds as the arithmetic mean of per site diversity

across all callable sites. We estimated confidence intervals for

autosomal diversity, X-linked diversity, and the ratio of X to
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autosomal diversity by sampling 1000 bootstrap replicates

with replacement.

Gene ontology: We submitted lists of gene IDs for differ-

entially expressed genes identified by Cuffdiff (q<0.05)

(Trapnell et al. 2012), as well as male-biased and female-

biased differentially expressed genes, to g:profiler for enrich-

ment analysis (Reimand et al. 2011). Additionally, we also

conducted an analysis of genes with 50 or more reads in

males and genes with 50 or more reads in females. Each list

was run as a target set with a list of gene IDs for the whole

genome as the background set, and we specified that only

significant results with a multiple testing corrected P value of

0.05 be returned.

Substitution rate analysis: We downloaded pairwise align-

mentsbetweentheAnoCar2.0genomeandthegalGal3chicken

genome from the UCSC genome browser (Meyer et al. 2013).

We filtered these alignments using scripts developed in our lab

(https://github.com/WilsonSayresLab/AlignmentProcessor; last

accessed September 1, 2016). These scripts ensured that

the open reading frame was conserved in each species and

required alignments to have 50% coverage of nucleotide se-

quences relative to the anole genome. Gene sequences that

did not meet these requirements were discarded from the

analysis. Lastly, one script replaced internal and terminal

stopcodonswithgaps.Weconductedanalysisboth including

and excluding alignments with internal stop codons to avoid

inflating ratios of non-synonymous to synonymous substitu-

tion ratesby includingpseudogenes,andherewepresent the

analysis with genes with internal stop codons excluded. The

substitution rates for the filtered alignments were then cal-

culated using KaKs_Calculator2.0 using the default settings

(Zhang et al. 2006). We calculated means, medians, and cor-

responding95% confidence intervals inR3.2.2 (R Core Team

2014) with the "boot" package (Canty and Brian 2016). We

conducted a permutation analysis to calculate P values using

10,000 replicates with a Python script developed in lab

(https://github.com/WilsonSayresLab/Anole_expression).

Results and Discussion

Identification of X-Linked Sequences in A. carolinensis

If genes on the green anole X chromosome have evolved

dosage compensation between males and females, relative

expression values between the sexes will not be sufficient to

identify X-linked transcripts. Therefore, to identify putative X-

linked genes in the green anole, we used a comparative ge-

nomics approach. Chicken (Gallus gallus) and anole genomes

share many large syntenic blocks (Alföldi et al. 2011), making

the chicken genome an informative point of comparison.

Linkage group b (LGb) was previously identified as X-linked

in the anole because it is present in two copies in females and

only one in males (Alföldi et al. 2011), suggesting that all, or

nearly all Y-linked genes from this region are highly

differentiated or absent. Twenty-three additional genes

were later identified on LGb, bringing the total of known X-

linked genes to 87. In a subsequent analysis, quantitative PCR

in male and female samples identified an additional 38 genes

that are consistent with male-heterogamety (Rovatsos et al.

2014a).

We first investigated the genomic location of previously

annotated anole X-linked genes in the chicken genome and

found that all mapped to either chicken chromosome 15 or

nowhere in the chicken genome (fig. S1; supplementary fig. 1,

Supplementary Material online). Given the conservation of

gene order between chicken and anole (Alföldi et al. 2011),

this suggests that additional undiscovered X-linked genes may

also have homologs on chicken (G. gallus) chromosome 15

(GG15). To find additional candidate X-linked genes, we com-

pared GG15 with the anole genome to identify one-to-one

orthologs (supplementary fig. S1, Supplementary Material on-

line). We began by using BLAT (Cunningham et al. 2015) to

map 399 transcripts on GG15 to assembled chromosomes

and unassembled scaffolds from the anole genome, then con-

ducted reciprocal best-mapping from anole to the chicken

genome. To retain proposed X-linked scaffolds, we required

a minimum of 60% of the genes on the anole scaffold to

either map to GG15 or not map anywhere in the chicken

genome. Through this reciprocal analysis we determined

that 118 genes (corresponding to 127 transcripts) mapped

to chicken chromosome 15, and another 165 genes from

the unmapped scaffolds in the green anole genome did not

have a homolog in the chicken genome (supplementary fig.

S1, Supplementary Material online). From these scaffolds, two

genes mapped to chicken chromosome 1, one gene mapped

to chromosome 2, and one mapped to chromosome 19, for a

total of four genes which mapped to other chicken

chromosomes.

In total, these 287 genes spanned eight scaffolds (fig. 1).

Among these scaffolds, each contains at least one gene pre-

viously reported to be X-linked (Rovatsos et al. 2014a), further

corroborating that these scaffolds likely belong to the anole X

chromosome. Taken together with the 87 genes on LGb,

which was previously identified as the X chromosome

(Alföldi et al. 2011), and the remaining genes on these scaf-

folds (some of which were previously described as sex-linked,

Rovatsos et al. 2014a), these results suggest there are 374

genes on the anole X chromosome (fig. 1, supplementary

table S1, Supplementary Material online).

As an additional line of evidence to verify these X-linked

scaffolds, we conducted an analysis of genetic diversity on the

autosomes and the putative X-linked scaffolds. Diversity is ex-

pected to be reduced on X chromosomes relative to auto-

somes due to a smaller effective population size and more

efficient natural selection (Ellegren 2009). We found that

the mean diversity (p) for the autosomal macro-chromosomes

1–6 ranged from 0.000605 to 0.000637 among biological

replicates, although the mean diversity for the putative X

Rupp et al. GBE
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chromosome ranged from 0.000320 to 0.000397 (supple-

mentary table S4, Supplementary Material online). This corre-

sponds to very low X/A diversity ratios (supplementary table

S2, Supplementary Material online) and is consistent with re-

sults from other species in which the X chromosome exhibits

lower diversity than autosomes, particularly in coding regions,

due to a lower effective population size, greater exposure to

selection in males, and male-mutation bias (Ellegren 2009;

Gottipati et al. 2011; Hvilsom et al. 2012).

Dosage Compensation on the Anole X Chromosome

To assess anole sex chromosome dosage compensation, we

investigated transcript abundance from the X and autosomes

in samples from males and females. In the absence of dosage

compensation, the ratio of expression in males vs. females on

the X chromosome is expected to be around 0.5. In contrast, if

there is dosage compensation, then genes on the X chromo-

some should exhibit a male:female expression ratio similar to

that of the autosomes (median: 1.009; 95% CI: 0.9713–

1.022, 1000 bootstrap replicates; table 1). We analyzed

anole X-linked genes in two groups: the previously identified

LGb, because its clear sex-biased presence suggests that it

may be part of an older, more differentiated part of the

anole X chromosome, and our newly proposed X-linked

genes that may be part of a less-differentiated portion of

the anole sex chromosomes (fig. 2).

Consistent with dosage compensation, the 87 genes pre-

viously annotated on LGb as X-linked genes have a median

male:female relative expression of 0.9746 (95% CI: 0.9718–

1.058, 1000 bootstrap replicates; table 1), which is statistically

indistinguishable from the autosomes. Curiously, compared

with both the autosomes and the older X-linked LGb, the

newly identified X-linked genes have a lower, but still

significantly greater than 0.5, median relative expression of

0.8226 (95% CI: 0.7772–0.8296,1000 bootstrap replicates;

table 1), consistent with fewer dosage compensated genes,

incomplete compensation, or buffering effects. For the entire

set of 374 genes we propose for the anole X chromosome,

the median ratio of male:female expression is significantly

lower than the autosomes: 0.8688 (95% CI: 0.8558–

0.8958, 1000 bootstrap replicates; table 1), suggesting

dosage compensation across all genes on the X chromosome

is not complete, but that many genes are dosage compen-

sated. In cases of single-gene deletions on the autosomes,

buffering has been observed (Malone et al. 2012) that results

in expression not exactly proportional to gene copy number.

However, the ratio of male:female expression on the anole X

chromosome is significantly greater than 0.5 and much closer

to one than expected if due solely to buffering in one sex (0.7

(Itoh et al 2007; Wright and Mank 2012)). These results indi-

cate that many genes on the anole X chromosome are dosage

compensated, but some regions of the anole X chromosome

FIG. 1.—Location of proposed X-linked sequences in the chicken genome. Chicken genomic regions are shown on the top chromosome, while anole

scaffolds that may be X-linked and the previously described X-linked LGb are shown on the bottom. Lines connect orthologous genes between the two

genomes. Genes are color-coded by scaffold.

Table 1

Male vs. Female Median Gene Expression

Chromosome Median Male:Female

Expression (95% CI)

Expressed

Genes

Autosomes 1–6 1.009 (0.9713, 1.022) 6595

LGb (X-linked) 0.9746 (0.9718, 1.058) 59

X-Linked scaffolds 0.8226 (0.7772, 0.8296) 143

Proposed X 0.8688 (0.8558, 0.8958) 202

NOTE.—Median male:female expression values for the autosomal macrochro-
mosomes, X-linked linkage group b (LGb), the newly proposed X-linked scaffolds,
and the combined X chromosome sequences (LGb and all other proposed X-linked
sequences) using a minimum threshold of 2 FPKM (expressed genes). Relative
expression could only be computed for genes with detectable expression values
for both males and females. 95% confidence intervals were computed with 1000
bootstrap replicates.
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have not yet evolved complete dosage compensation be-

tween the sexes and that the process may be still ongoing.

Without a fully assembled X chromosome, it is difficult to

confidently discern whether there are physical clusters of com-

plete and incomplete dosage compensation.

Gene Expression Suggests Upregulation of the X
Chromosome in Males

To infer the mechanism of dosage compensation, we com-

pared absolute expression of X-linked genes with autosomal

genes in males and females, allowing us to evaluate two pos-

sible alternatives. The first possibility is that expression on one

or both of the X chromosomes in females is downregulated to

the, presumably, lower level in males. If this is the case, we

expect to observe that although the male:female ratio of ex-

pression for the X and autosomes is near one, the

X:autosomal expression ratio will be significantly lower for

both males and females. Alternatively, if the X chromosome

is upregulated in males only, then we expect that the average

expression for X-linked genes would be similar to the autoso-

mal expression for both males and females. In the absence of

dosage compensation, we expect only the male X-linked ex-

pression values to be lower than the autosomal values. But, as

we have shown, we do observe dosage compensation in the

green anole and so expect both male and female expression

to exhibit the same pattern.

The median expression values for X-linked genes (8.60

FPKM and 9.88 FPKM for males and females, respectively;

supplementary table S5, Supplementary Material online) are

lower than the median expression on the autosomes (11.8

and 12.0, respectively; supplementary table S5,

Supplementary Material online), but are still greater than

50% of the autosomal expression. Mean expression, how-

ever, is significantly higher on the X chromosome in males

(27.24 FPKM, P = 0.0011; two-sided Wilcoxon Rank Sum

test; fig. 3, supplementary table S3, Supplementary Material

online), but not females (32.68 FPKM, P = 0.2001; two-sided

Wilcoxon Rank Sum test; fig. 3, supplementary table S5,

Supplementary Material online), than mean expression on

the autosomes (24.12 FPKM in males and 25.36 FPKM in fe-

males; supplementary table S5, Supplementary Material on-

line). This is not unexpected as we required a minimum

expression of 2 FPKM but had no maximum restriction,

which should result in higher means than medians.

Upon further investigation, the two females exhibited dif-

ferent patterns of expression: mean expression was greater on

the X chromosome than the autosomes in D61, although ex-

pression did not differ in D47 (supplementary table S5,

Supplementary Material online). Because D47 exhibited

much greater variation in mean expression on the X chromo-

some than any other sample, we reran analyses excluding the

most highly expressed X-linked genes (FPKM> 400 in at least

one individual). Here, we found that the overall pattern was

reversed, with significantly lower mean and median expres-

sion on the X chromosome than autosomes in the two males

and D61 (supplementary table S5, Supplementary Material

online). However, expression levels remained indistinguishable

in D47. Future examination of a larger sample will be required

to understand which female exhibited a pattern more typical

of female anoles in general.

Taken together, these results are consistent with male

upregulation on the X chromosome: both mean and

median expression of X-linked genes, with and without the

FIG. 2.—Ratio of male:female anole gene expression across proposed X-linked loci. Each box plot represents a different scaffold. Expression levels of

genes on the previously determined X-linked linkage group b (LGb) are blue and proposed X-linked genes are plotted in green. The autosomal median

expression is shown in a dotted red line. The expected male:female expression ratio in the absence of buffering and dosage compensation (0.5) is plotted in a

dotted black line.
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most highly expressed genes, is greater than half that of the

autosomes. Further, because many X chromosome transcripts

are expressed at levels well below those of autosomal tran-

scripts, it is likely that only a subset of genes are dosage-

sensitive. However, our small sample size prevents us from

inferring whether compensation is exclusively male based, or

if compensatory downregulation occurs in females.

Sex-Biased Gene Expression

In our analysis of expression differences between the sexes,

we identified 24 female-biased X-linked genes and four male-

biased X-linked genes on the anole X chromosome (supple-

mentary table S4, Supplementary Material online). However,

these were only a small fraction of the 1384 genes across the

genome that exhibited significant differential expression be-

tween males and females (table 2). These differentially ex-

pressed genes comprise approximately 10% of all expressed

genes and are dispersed throughout the entire genome (table

2). Due to the unique properties of microchromosomes in

chicken (Hillier et al. 2004), we further examined the anole

micro-chromosomes LGa-LGd and LGf-LGh (there is no LGe).

All the microchromosomes exhibited somewhat female-

biased expression with the exception of LGd, which showed

no observable expression (supplementary table S5,

Supplementary Material online).

According to gene ontology analyses, genes with male-

biased expression are involved in immune and defense

response (supplementary table S6, Supplementary Material

online), consistent with previous analyses of these samples

that found differential expression of immune response tran-

scripts along the proximal–distal axis of regenerating tail tissue

(Hutchins et al. 2014). Genes with female-biased expression

are enriched for those with functions in tissue development

and cell proliferation (supplementary table S6, Supplementary

Material online).

The Fast-X Effect

According to the fast-X hypothesis, if most new mutations are

recessive, alleles on the X chromosome will experience more

efficient positive selection (observable in a higher ratio of non-

FIG. 3.—Regression plot for male vs. female gene expression. Genes are plotted by FPKM values in male samples and female samples. Genes from LGb

are plotted in blue, although all other X-linked genes are shown in green. The regression line calculated between male and female FPKM by gene

is shown in red.
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synonymous to synonymous substitutions) than the auto-

somes because the X chromosome is hemizygous in males,

directly exposing alleles to selection. Alternatively, genetic drift

can also result in a signature of fast-X. To test between these

hypotheses in the green anole, we conducted substitution rate

analysis of the genes on anole chromosomes 1–6, vs. genes on

the proposed X chromosome.

We found a significantly higher mean (0.1029 for auto-

somes, 0.1263 for X-linked genes, P = 0.0002; permutation

tests with 10,000 replicates; table 3), but not median

(0.0830 for autosomes, 0.0803 for X-linked genes,

P =0.8406; permutation tests with 10,000 replicates; table

3), Ka/Ks ratio on the putative X chromosome than the auto-

somes. When we compared the X-linked genes with the

anole’s microchromosomes, we found the same pattern of

a significantly higher mean for X-linked genes (0.1263) than

the microchromosomes (0.0987, P = 0.0014 permutation

tests with 10,000 replicates; supplementary table S7,

Supplementary Material online), but not median (X-

linked = 0.0803; michrochromosomes = 0.0775; P = 0.1098

permutation tests with 10,000 replicates; supplementary

table S7, Supplementary Material online). We did not observe

a significant difference in Ka/Ks between female-biased

genes, male-biased genes, or unbiased genes on the anole

X chromosome (supplementary table S4, Supplementary

Material online).

One interpretation of these results, particularly our obser-

vation of a significantly higher mean, but not median, Ka/Ks

on the X vs. autosomes, is that relatively few genes have ex-

perienced strong positive selection on the X and that purifying

selection, which is also expected to be more efficient at re-

moving deleterious alleles on the X chromosome, is acting on

the majority of X-linked genes. Another possibility is that pu-

rifying selection has been relaxed in certain genes, allowing

non-synonymous mutations to accumulate at a faster rate. A

third possibility is that there is more genetic drift on the X

chromosome relative to the autosomes, resulting in the fixa-

tion of more nonsynonymous mutations on the X vs. auto-

somes. Additional factors can affect the presence of, and our

ability to detect, fast-X evolution including an effective popu-

lation size of X that deviates from equilibrium expectations,

male mutation bias, and sexually antagonistic genes (Thornton

and Long 2002).

Conclusions

We propose that there are 374 genes on the anole X chro-

mosome and provide evidence of dosage compensation in the

green anole. Previously identified X-linked LGb sequences ex-

hibited similar expression values in both sexes, consistent with

complete dosage compensation for these genes. This is not

the case for all genes on the X chromosome; however, as

many newly identified X-linked genes do not show evidence

of dosage compensation. We further found that genes with

sex-biased transcription in the green anole are not clustered

on the X chromosome, but are scattered throughout the

entire genome, similar to mammals (Lowe et al. 2015).

However, despite many genes with sex-biased expression,

gene expression is, as expected, broadly similar between the

sexes.

We also observed that both previously identified and pro-

posed X-linked genes exhibit higher mean ratios of non-syn-

onymous to synonymous substitution rates than autosomal

genes. This pattern is consistent with the fast-X hypothesis,

although the Ka/Ks analysis also suggests that purifying selec-

tion is strong across both autosomal and X-linked genes.

Further characterization of the green anole’s sex chromo-

somes could be of great importance in understanding the

formation of sex chromosomes in general. According to the

classic model of sex chromosome evolution, highly diverged sex

chromosomes should be heteromorphic; however, most

Table 2

Location of Genes with Sex-Biased Expression

General Loci Specific

Locus

Number

DE

Percentage

DE

Expressed

Genes

Genome 1384 10.3 13,414

Macrochromosomes 588 8.9 6595

1 124 8.3 1492

2 148 9.8 1515

3 65 6.4 1009

4 99 9.8 1008

5 91 9.9 916

6 61 9.3 655

Microchromosomes 27 13.6 198

LGa 4 26.7 15

LGb 6 10.4 59

LGc 5 10.4 48

LGd 0 N/A 0

LGf 12 17.4 69

LGg 0 0 2

LGh 0 0 5

Contigs 69 11.1 622

All scaffolds 700 11.7 5999

X-linked scaffolds 17 12.5 136

GL343282.1 2 2.4 84

GL343338.1 7 10.9 64

GL343417.1 4 7.3 55

GL343423.1 2 8.3 24

GL343550.1 0 0 12

GL343947.1 1 9.1 11

GL343913.1 1 12.5 8

GL343364.1 0 0% 26

NOTE.—The number and percentage of genes with differential expression (DE)
between male and female anoles are shown across the entire genome and for
different subsets of the Assembled and unassembled anole genome. Significance
was determined for expressed genes with FPKM values of at least 2. Genes were
identified as significant by cuffdiff (Trapnell et al. 2012) if they exhibited a multi-
ple testing corrected q-Value less than or equal to 0.05 (cuffdiff output available
at https://github.com/WilsonSayresLab/Anole_expression)
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vertebrate species, including many fish and lizards, have homo-

morphic sex chromosomes (Gamble et al. 2014). Although the

green anole has heteromorphic sex chromosomes, many other

members of the Anolis genus are homomorphic, and analyzing

the green anole’s sex chromosomes could provide insights into

the formation of sex chromosomes across the genus. Given

that previously identified X-linked genes appear to be con-

served among anoles (Rovatsos et al. 2014b), it is likely that

the newly identified X-linked genes we report here will also be

X-linked in other anole species, are conserved as well. If so, the

entire proposed X chromosome provides a reference that can

be used in comparative studies of X-linked genes in other Anolis

species. Additionally, X-linked regions appear to be conserved

across Iguania (Rovatsos et al. 2014c), so we would expect to

find many of the same X-linked genes on homologous sex

chromosomes in various iguanian species. Because sex chromo-

somes appear to be highly conserved in this group, if other

iguanids have highly heteromorphic sex chromosomes, our re-

sults predict that they may have also evolved dosage compen-

sation. These results will provide a useful comparison for future

studies of sex determination.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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