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Abstract

Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is 

not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a 

range of neuropeptides, classical neurotransmitters and signaling molecules such as nitric oxide, 

carbon monoxide, ATP and arachidonic acid. This review is focused on hypothalamic 

neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release 

dopamine. For these two model systems, the stimuli, mechanisms and physiological functions of 

dendritic release have been explored in greater detail than is yet available for other neurons and 

neuroactive substances.

Introduction

The dendrites of many neural populations transmit information back to their synaptic inputs 

by releasing neuroactive substances (89, 99, 128). Indeed, modulation of neuronal function 

by dendritic transmitter release is a widespread phenomenon and is specific neither to a 

localized part of the brain nor to a particular subtype of signalling molecule. In addition to 

membrane-permeant substances such as carbon monoxide, arachidonic acid and nitric oxide, 

classical transmitters can be released from dendrites to signal in a retrograde fashion. For 

example, somatodendritic release of dopamine, which is the exemplar small molecule 

transmitter emphasized in this review, modulates the firing rate and excitability of midbrain 

dopamine neurons. In addition, the amino acids GABA and glutamate act as retrograde 

transmitters in the olfactory bulb, hippocampus, cortex and cerebellum (90, 119, 226, 266). 

However, the most numerous class of signalling molecules in the brain is the neuropeptides 

and there is ample evidence for their dendritic release. There is convincing evidence for 

somatodendritic release of the neurohypophysial peptides oxytocin and vasopressin in the 

hypothalamus (111, 116, 120, 127), which are the exemplar peptides covered in this this 

review. Notably, there are also reports for this mode of release for other peptides, including 

dynorphin, encephalin, and cholecystokinin (19, 46, 216).
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The hypothalamo-neurohypophysial peptide system

Oxytocin and vasopressin (antidiuretic hormone) enter the circulation following exocytotic 

release from magnocellular neurosecretory cells (MCNs), components of hypothalamic 

supraoptic (SON) and paraventricular nuclei (PVN) that project into the posterior pituitary 

gland. Oxytocin is required for milk ejection, and produces uterine contractions, and so has a 

role in parturition and lactation (4, 19, 81, 114, 202), whereas vasopressin is involved in the 

regulation of water excretion and blood pressure. In addition, both peptides have effects on 

behavior (see later). Both are released at axonal synapses, but also from the somata and 

dendrites of MCNs (99, 111, 116, 120, 127, 128, 155, 168). The cell bodies and dendrites of 

MCNs form densely packed and homogeneous nuclei, whereas their axons project into the 

posterior pituitary gland. As there is no blood-brain barrier in the posterior pituitary, peptide 

secretion from axons swiftly enters the bloodstream. The dendrites of adult rat MCNs are 

characteristically smooth (aspiny), thick and varicose, with little branching, and are often 

associated in bundles (147, 221). Most of the neuropeptides expressed in the SON and PVN 

are stored within MCN dendrites. Dendritic release can be studied in these regions by push-

pull perfusion or microdialysis (150, 256). Importantly, these methods can be used to study 

dendritic release independently of axonal release, because re-entry of peripherally released 

peptide into the brain is prevented by the blood-brain barrier.

Although the SON contains only MCNs, the PVN contains MCNs as well as many other 

morphologically and functionally distinct cell types. Parvocellular neurosecretory neurons 

make axonal contact with the median eminence and release hypophysiotropic hormones that 

regulate functions of the anterior pituitary and the major hypothalamo-pituitary axes. 

Parvocellular preautonomic neurons modulate sympathetic and parasympathetic outflow to 

several organs, including the heart, the peripheral vasculature and the kidneys (31, 223, 262), 

through long descending projections into sympathetic and parasympathetic centers in the 

brainstem and spinal cord. Some neurons within the PVN also project into other limbic 

areas, including the central amygdala, and have recently been shown to modulate fear 

conditioning (103).

Because of these features, the PVN is a useful system for studying communication within 

and between different neuronal populations in the brain (218, 220), and particularly the role 

of neuropeptides in this process.

The nigrostriatal and mesolimbic dopamine systems

Another transmitter system that relies on somatodendritic release is dopamine, which is 

released from midbrain dopamine neurons. Dopamine neurons of the substantia nigra pars 

compacta (SNc) give rise to the nigrostriatal dopamine pathway, which is essential for motor 

learning and motor control. Indeed, loss of dopamine in this system impairs neuronal output 

from the basal ganglia (76), leading to the motor impairments that characterize Parkinson’s 

disease (1, 24, 134, 251). In addition, dopamine from this pathway, and from the ventral 

tegmental area (VTA), also in midbrain, influences a number of other brain functions 

including reward, emotion, cognition and memory (25, 181, 193).
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Dopamine neurons of the SNc and VTA send axon projections that densely innervate the 

striatal complex in the forebrain (139); the nigrostriatal dopamine pathway projects from the 

SNc preferentially to the dorsal striatum (caudate-putamen, CPu), whereas the mesolimbic 

dopamine pathway projects from the VTA preferentially to the ventral striatum (nucleus 

accumbens, NAc). In addition, VTA dopamine neurons project via the mesocortical pathway 

to the prefrontal cortex, hippocampus, and amygdala (80, 246).

Like that of all catecholamines, the synthesis of dopamine originates from the amino acid 

precursor L-tyrosine, which is transported across the blood brain barrier into dopamine 

neurons. Tyrosine is converted to L-dihydroxyphenylalanine (L-DOPA) by the rate-limiting 

enzyme tyrosine hydroxylase (TH) and then to dopamine by L-aromatic amino acid 

decarboxylase (Fig. 1B). Notably, unlike many transmitters/neuromodulators that are 

synthesized in the cell body and transported to distant release sites in axons, TH protein 

expression in dopamine neurons can be seen throughout the soma, dendrites, and axons 

(254). Moreover, regulation of TH activity by phosphorylation occurs in both 

somatodendritic compartments and terminal fields, indicating that dopamine is synthesized 

locally for either somatodendritic or axonal release (209).

The release of dopamine from axonal sites is fairly well characterized. However, dopamine 

release from the somata and dendrites of midbrain dopamine neurons in the SNc and VTA 

remains incompletely understood, despite extensive research over decades (9, 10, 17, 26, 29, 

32, 40, 69, 74, 169, 184, 196, 198). Because the somata and dendrites are intermingled in 

these regions, their individual contributions to dopamine release cannot be distinguished 

easily, so the term “somatodendritic” is used to describe non-axonal evoked dopamine 

release in SNc and VTA. Mechanistic studies of somatodendritic dopamine release have 

been conducted primarily in the SNc, in which dopamine release is exclusively 

somatodendritic (95, 249). In contrast, the VTA has collaterals from its own axons, as well 

as from those that arise in the SNc (7, 56).

Experimental methods used to study somatodendritic release

Oxytocin and vasopressin

Ideally, experimental methods to study somatodendritic release of oxytocin and vasopressin 

should have sufficient resolution to define the location and time course of release. Although 

the number of techniques that meet these criteria is limited, the use of hypothalamic explants 

containing the SON, sometimes with the pituitary gland attached (217), has provided 

insights into the regulation of somatodendritic release by steroids, changes in intracellular 

Ca2+ concentrations, the activation of autoreceptors, and second messenger pathways (33, 

105, 121, 129, 204, 206, 252).

The most widely used approach is to monitor changes in neuropeptide concentrations in the 

plasma, through the use of sensitive chemical assay techniques such as radioimmunoassay 

(RIA) and enzyme-linked immunosorbent assay. RIA, in particular, offers the high 

sensitivity required for the quantification of neuropeptides collected in vivo using push-pull 

perfusion (110, 150, 160) and microdialysis (98, 256). With these methods, samples can be 

collected from the extracellular space of defined brain structures in unrestrained animals, 
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with timescales of minutes to days (62, 110, 255). Other in vivo sampling techniques have 

also been employed, including the simultaneous detection of hormones secreted into the 

blood, using specialized microdialysis probes (166) or chronically implanted jugular venous 

catheters (257). In anesthetized animals, simultaneous electrophysiological recording has 

been combined with microdialysis (126).

Other approaches for measuring neuropeptides in microdialysates include immunosensing 

with microdialysis probes containing antibody-based electrodes and capillary liquid 

chromatography combined with electrospray ionization-mass spectrometry (37, 131). 

Although these techniques have comparable sensitivity to that of RIA they have not yet been 

widely applied.

Dopamine

The first studies of somatodendritic dopamine release involved either the measurement 

of 3H-dopamine overflow from in vitro midbrain slices (74) or in vivo measurements in 

midbrain using push-pull perfusion (32, 169). Subsequently, microdialysis coupled with 

electrochemical detection was used for in vivo studies of dopamine release (11, 13, 61, 83, 

97, 199, 211). The use of microdialysis offered the advantage of a separation step, enabling 

dopamine, its metabolites, and in some cases other neurotransmitters to be assayed 

simultaneously. A problem with this or any in vivo method, however, is that systemically or 

locally applied drugs may affect regulatory processes, which could be mediated by extended 

pathways; because of this, in vitro cell culture preparations and midbrain slices have been 

used in most recent mechanistic studies of somatodendritic dopamine release, with 

dopamine overflow in culture typically measured by high-performance liquid 

chromatography (HLPC) or RIA (70, 143).

In slices, the approaches primarily used to detect somatodendritic dopamine release are fast-

scan cyclic voltammetry (FCV) and amperometry with carbon-fiber microelectrodes. These 

methods permit the quantification of changes in extracellular dopamine concentration 

([DA]o) with high temporal and spatial resolution, on scales of milliseconds and 

micrometers, respectively (146, 183). This is crucial for the rapid detection of release evoked 

in small discrete regions of the brain, including the SNc and VTA ((29, 40, 69, 184, 196, 

198). In these methods, the target molecule (dopamine) is oxidized at the surface of the 

carbon-fiber microelectrode with a suitable applied potential, and the resulting current, 

which is proportional to the concentration of oxidized molecules, is recorded. With FCV, the 

applied potential is ramped up and down, enabling identification of released dopamine from 

its characteristic voltammogram (26, 196). The release of dopamine can also be verified by 

the effects of pharmacological agents; for example the response is increased by inhibitors of 

the plasma membrane dopamine transporter (DAT) (29, 42) and decreased by inhibitors of 

the vesicular monoamine transporter (VMAT2) (198).

In amperometry, a potential is applied at a constant value that is sufficient to oxidize 

dopamine. This method has been used to examine quantal release of dopamine from 

neuronal somata (91, 101). One drawback of voltammetric and amperometric methods is the 

possibility of signal contamination by contributions from other endogenous electroactive 

substances. For example, in FCV studies of somatodendritic dopamine release in the 
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substantia nigra of some rodent species, including rats and mice, the voltammetric signal is 

heavily contaminated by locally released serotonin (5-hydroxytryptamine, 5-HT). Given that 

microdialysis studies include a chemical separation step, that technique avoids this lack of 

specificity. Interestingly, this is not a concern when detecting dopamine release in the VTA 

because the VTA of mice, rats, and guinea pigs lack significant 5-HT innervation and thus 

the voltammetric signal arises exclusively from dopamine (26, 38, 42, 93).

Most recently, Williams and colleagues applied electrophysiological techniques to detect 

somatodendritic dopamine release. By using whole-cell voltage-clamp recording from 

midbrain dopamine neurons, it is possible to record D2 dopamine autoreceptor-dependent 

inhibitory currents (D2ICs) to monitor evoked dopamine release in the SNc and VTA (9, 10, 

38, 68, 69).

Vasopressin and oxytocin are released by exocytosis

Vasopressin and oxytocin are stored in and released from large dense-core vesicles 

(LDCVs). Classical morphological evidence for somatodendritic release was provided by 

electron-microscopic studies on hypothalamic neurons, which showed LDCVs within the 

dendrites and somata of MCNs, together with omega-shaped fusion profiles at the plasma 

membrane (189). Exocytosis from the dendrites of oxytocin and vasopressin neurons was 

also demonstrated by treatment of hypothalamic tissue with tannic acid to fix exocytosed 

peptide granules (155, 157, 189). Since peptide release from MCNs is not restricted to any 

particular region of the plasma membrane (157, 189), regulation of exocytosis may occur 

simply by controlling the access of vesicles to the sites of fusion (151). In classical 

neuroendocrine cells, control of this type is exerted by cytoskeletal elements, and such 

control may also occur in MCNs, as their cell bodies contain an actin network proximal to 

the plasma membrane, usually referred to as cortical F-actin. In neuroendocrine cells, this 

network surrounds the secretory vesicles.

The actin network undergoes rapid, transient and reversible depolymerization during 

exocytosis, and F-actin is depleted close to fusion zones. The cortical F-actin network has 

long been proposed to restrict the movement of secretory vesicles to fusion zones on the 

plasma membrane (57, 245). The subcortical regions of somata and dendrites in MCNs 

contain polymerized F-actin (238, 248), which is rapidly and reversibly depolymerized to G-

actin when secretion is stimulated, and drugs that depolymerize F-actin stimulate dendritic 

peptide release. Thus, evoked release of peptides from the dendrites requires the 

depolymerization of F-actin (Fig. 1A) (238).

However, although cortical F-actin has historically been viewed as a barrier that restricts the 

movement of LDCVs to the plasma membrane, it might also have an enabling role in 

exocytosis, either by providing “tracks” for LDCV movement to fusion zones, or by 

constraining some components of the fusion machinery. This would suggest that during 

secretion the F-actin network is not simply disassembled, but reorganized to allow the access 

of LDCVs to fusion sites and to provide or assemble the molecular machinery necessary for 

membrane fusion and exocytosis (57). In MCNs, F-actin remodeling appears to be involved 

in the trafficking of functionally mature, release-competent vesicles to fusion sites, and it 

may therefore be critical in the differential control of release from different parts of the cell. 
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However, in contrast to release from neuronal synapses, vesicle fusion in both the somata/

dendrites and axon terminals in MCNs does not appear to occur at morphologically distinct 

fusion zones (157). In summary, actin filaments may have several roles in exocytosis, 

including functions in LDCV trafficking and tethering, acting as a barrier to fusion, and 

transporting membrane fusion machinery (238).

Exocytosis of vesicles is a multi-step process, involving a network of interacting proteins at 

various locations (Fig. 1A), including on the LDCVs themselves and at the active zones of 

the plasma membrane, where membrane fusion occurs (229). Exocytosis of both LDCVs 

and synaptic vesicles involves the soluble N-ethylmaleimide-sensitive factor attachment 

receptor (SNARE) complex, which opens the fusion pore and catalyzes the fusion of the 

vesicle membrane with the plasma membrane, resulting in the release of its cargo into the 

extracellular space. There is also evidence for the involvement of SNARE proteins in 

dendritic release, much of the data coming from work on dopamine cells in the substantia 

nigra (12, 180, 254) (see later). Studies of other brain regions, including the hippocampus 

(132, 133), olfactory bulb (140), cerebellum (59) and neocortex (266) also indicate the 

requirement for SNARE variants in dendritic transmitter release.

Clostridial neurotoxins, after binding to peripheral neurons and undergoing reverse axonal 

transport, are the precursors of zinc proteinases that specifically cleave components of the 

SNARE complex. Tetanus toxin (TeTX) cleaves VAMP-2 (synaptobrevin 2, an intrinsic 

protein component of LDCV membranes and part of the SNARE complex). Sensitivity of 

somatodendritic release to TeTX has been described in isolated MCNs (53), implying 

involvement of VAMP-2 in dendritic release of oxytocin and vasopressin, as well as in 

transmitter release at synapses. Although many SNARE proteins have already been 

identified in the terminals of the posterior pituitary (96, 263), immunofluorescence studies 

have failed to detect core proteins, including VAMP-2 and SNAP-25, in the somata and 

dendrites of the SON. Somatodendritic peptide release from MCNs thus appears to occur 

without all of the machinery that is needed for regulated exocytosis in other cell types (235), 

but it is probable that the functions of the missing protein components are fulfilled by other 

variants.

Does somatodendritic dopamine release occur by exocytosis?

Studies of the subcellular anatomical characteristics of dopamine neurons have raised 

questions about the mechanism and regulation of somatodendritic dopamine release.

First, dopamine axons in the striatum contain abundant clusters of vesicles near the plasma 

membrane at presumed release sites (171, 185). Although early anatomical studies also 

observed vesicle clusters in dopamine somata and dendrites within the SNc (253), 

subsequent studies, including those using immunogold labeling of VMAT2 profiles, 

concluded that SNc dopamine somata generally lack such clusters (170), as do dopamine 

dendrites that extend into the substantia nigra pars reticulata (SNr) (79, 249, 253). 

Nonetheless, evidence for exocytosis is provided by reports of quantal dopamine release 

from somata in the SNc, the estimated quantal size being 14,000 molecules per vesicle (91), 

which is of similar magnitude to that seen in adrenal chromaffin granules (117) and axonal 

varicosities of dopamine neurons in culture (188, 219).
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Second, although some dopamine is stored in small electron-lucent vesicles (ELVs) and in 

LDCVs (170), somatic dopamine in both SNc and VTA appears to be mainly stored in 

“tubulovesicles,” saccules of smooth endoplasmic reticulum (SER) that express VMAT2 

(Fig. 1B) (170, 253). In addition, VMAT2 can be visualized on the outer membranes of 

organelles that may be involved in recycling vesicular membrane proteins (170). Whether 

dopamine is released directly from tubulovesicles or whether they can provide a rapid on-

demand source of vesicles for release is not currently known. Inhibitors of VMAT2 prevent 

dopamine release, confirming the importance of dopamine uptake and storage, but not 

necessarily the involvement of exocytosis per se. Third, although dendro-dendritic dopamine 

synapses are present in both SNc and VTA, they are also rare (79, 170, 249, 253), and are 

virtually absent from the dopamine-dendrite rich SNr (79).

Studies using botulinum toxins to target specific SNARE proteins suggest that 

somatodendritic dopamine release occurs primarily by exocytosis (13, 70, 180). However, 

immunohistochemical studies indicate that TH-positive somata and dendrites in the 

substantia nigra lack some typical intrinsic vesicle membrane proteins, including 

synaptophysin, the sv2a and sv2b isoforms of synaptic vesicle protein 2, and the Ca2+-

sensors synaptotagmin 1 and 2 (254). These findings are consistent with the relative absence 

of conventional synaptic vesicles in dopamine neurons. Moreover, several of the 

conventional SNARE proteins involved in vesicle docking, including the vesicle membrane 

protein VAMP-1 (synaptobrevin 1) and the plasma membrane protein syntaxin 1a, are also 

absent. On the other hand, SNAP-25 and some non-conventional SNARE protein isoforms, 

including VAMP-2 and the plasma membrane protein syntaxin 3b, are expressed throughout 

dopamine somata (143, 254).

Overall, the molecular organization involved in dopamine release in the SNc appears to 

differ markedly from that of conventional synaptic vesicular release, with the SNARE triad 

having the unusual composition of VAMP-2, SNAP25 and syntaxin 3b (Fig. 1B). 

Importantly, although dopamine somata and dendrites in the SNc lack synaptotagmin 1 and 

2 (143, 254), which are low-affinity isoforms of the vesicular Ca2+-sensors found at fast 

synapses (259), they do possess two isoforms with higher Ca2+-affinity, namely 

synaptotagmin 4 and 7 (143), which may play a role in the high Ca2+ sensitivity of 

somatodendritic release (28). It should be noted, however, that the dopamine neurons 

express mRNA for synaptotagmin 1, presumably because synaptotagmin 1 is involved in 

axonal dopamine release in the striatum. Indeed, consistent with the notion that 

synaptotagmin 4 and 7, but not synaptotagmin 1, are involved in somatodendritic dopamine 

release, down-regulation with siRNA of synaptotagmin 4 and 7, but not of synaptotagmin 1, 

decreases dopamine release from cultured midbrain neurons (143).

Despite the presence of SNARE complex components (syntaxin 3b, SNAP-25 and VAMP2) 

throughout dopamine somata and dendrites, levels of VMAT2 and V-ATPase, the vacuolar-

type H+-translocating ATPase that generates the transmembrane electrochemical proton 

potential gradient required for active amine uptake through VMAT2, decrease from somata 

to distal dendrites of dopamine neurons (254). This suggests that release and storage 

mechanisms for dopamine may differ between cell bodies and proximal dendrites in the SNc 

and those in distal dendrites in the SNr. As discussed further later, the regulation of 
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dopamine release by intracellular Ca2+ stores may also differ between these locations: 

dopamine dendrites in the SNr have lower levels of the sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA), which translocates cytosolic Ca2+ into the ER, and also lower levels of 

regulatory inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) in 

the ER (184).

These data, together with the limited number of dendro-dendritic synapses and the small 

population of “classical” LDCVs (79, 145, 170, 249, 253), suggest that some 

somatodendritic dopamine release might occur by mechanisms other than exocytosis, 

including release from the cytoplasmic pool by reverse transport through the plasma 

membrane DAT (60, 63, 79, 170, 177). Cytoplasmic dopamine concentrations are normally 

too low for DAT reversal, unless enhanced by displacement of dopamine from vesicles by 

pharmacological agents such as amphetamine (118, 230). However, dopamine storage in 

tubulovesicles introduces the possibility that dopamine leakage from these organelles might 

raise the cytoplasmic dopamine concentration sufficiently for DAT reversal and release into 

the extracellular space (Fig. 1B). Importantly, given that evoked increases in [DA]o are 

usually enhanced, rather than abolished, by DAT inhibitors (10, 29, 40), this cannot be the 

primary release mechanism in the SNc. Furthermore, release by direct transport through the 

plasma membrane cannot account for the observed quantal transmitter release in the SNc 

recorded by amperometry (91). In contrast, release from distal dendrites in the SNr is 

abolished by inhibition of DAT when stimulated by glutamate released from subthalamic 

nucleus afferents (63), and has been proposed to occur by activation of metabotropic 

glutamate receptors (mGluR1), with subsequent PKC-induced reversal of the DAT (63, 177).

Ca2+ dependence of somatodendritic release

Somatodendritic oxytocin and vasopressin release

As described above, release of neurotransmitters from presynaptic terminals and of 

neuropeptides from neuroendocrine cells occurs by the ubiquitous process of Ca2+-

dependent exocytosis. Like the release of oxytocin and vasopressin from axonal terminals in 

the neurohypophysis (65), dendritic release of these neuropeptides depends on a local 

increase in intracellular free Ca2+ concentration ([Ca2+]i) (53, 167, 215).

In classical synapses the patterns of neurotransmitter release depend critically on the spatio-

dynamics of the [Ca2+]i transients (142), which are themselves determined by the origin of 

Ca2+ and its proximity to the release machinery, as well as by the various intracellular Ca2+ 

buffering mechanisms that control the amplitude and duration of [Ca2+]i transients. The 

Ca2+ that triggers the dendritic release of oxytocin and vasopressin from MCNs can 

originate from a number of extracellular and intracellular sources (Fig. 1A).

Ca2+ channels—Voltage-gated Ca2+ channels (VGCCs) (65, 247) are responsible for the 

entry of much of the extracellular Ca2+ that triggers dendritic neuropeptide release. MCNs 

express several types of VGCCs (67). Despite the fact that the Ca2+ current carried by N-

type channels is small compared to those of the other types of VGCCs or to the whole-cell 

Ca2+ current in the somata of MCNs (94, 236), N-type channels appear to be particularly 

important for dendritic release, as release of oxytocin from SONs is most sensitive to 
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blockade of N-type channels. Additionally, N-type channels in both somatodendritic and 

axonal compartments can be opened in response to the depolarization evoked by action 

potentials (65). However, some signaling molecules, including oxytocin and vasopressin, can 

trigger dendritic peptide release without increasing the electrical activity of the neurons, via 

their receptors on oxytocin and vasopressin neurons (71). These peptides act at their 

respective receptors to produce a cell-type specific rise in [Ca2+]i that can promote 

transmitter release. Vasopressin-dependent vasopressin secretion depends on Ca2+ influx 

through VGCCs, particularly of the L-, N- and T-types (205). Similarly, Ca2+ entry, mainly 

through L- and N-type channels, is also the trigger for somatodendritic release of other 

transmitters, including dynorphin (216), dopamine (101, 143), serotonin (241) and pituitary 

adenylate cyclase activating polypeptide (PACAP) (215).

NMDA receptors—Extracellular Ca2+ can also enter neurons through Ca2+-permeable 

ionotropic glutamate receptors, including N-methyl-D-aspartate receptors (NMDARs). In 

MCNs NMDARs influence overall MCN excitability and are also involved in the control of 

burst-firing of these cells, which optimizes hormonal release from neurohypophysial 

terminals (66, 86, 162, 173). Opening of NMDARs results in Ca2+ entry and in large 

increases in dendritic [Ca2+]i in MCNs (218, 222), with consequent dendritic release of both 

oxytocin (51) and vasopressin (218). Consistent with this, functional NMDARs with unique 

molecular and functional properties have been found at extrasynaptic, as well postsynaptic 

sites (113, 207) in MCNs. Extrasynaptic NMDARs are also coupled to other Ca2+-dependent 

signaling mechanisms, including voltage-gated K+ channels and ionotropic gamma-

aminobutyric acid (GABAA) receptors (162, 186, 187), unlike synaptic NMDARs. However 

it is not yet known whether dendritic release of neuropeptides is differentially regulated by 

synaptic versus extrasynaptic NMDARs.

Intracellular Ca2+ stores—As well as being triggered by the entry of extracellular Ca2+, 

dendritic neuropeptide release can be evoked by Ca2+ release from intracellular stores (Fig. 

1A). An example of this is the autocrine release of oxytocin, in which binding of oxytocin to 

its receptors on oxytocin neurons causes Ca2+ to be released from its major intracellular 

store in the endoplasmic reticulum (ER) (107). The increase in [Ca2+]i triggers the release of 

oxytocin from dendrites, without inducing release from nerve terminals or affecting the 

firing of neurons (129). Through this autocrine mechanism, dendritic peptide release, once 

triggered, can become self-sustaining and thus long-lasting (129). Other agents that mobilize 

intracellular Ca2+ can also evoke dendritic release of neuropeptides. One example is 

thapsigargin, an inhibitor of SERCA, which can inhibit uptake of Ca2+ into the ER, raising 

cytoplasmic [Ca2+] and thereby triggering Ca2+-induced Ca2+ release from the ER, through 

(RyRs) (121, 129, 237).

Ca2+ buffering mechanisms—Intracellular Ca2+-buffering mechanisms influence the 

amplitude and duration of cytoplasmic Ca2+ transients. Various mechanisms of Ca2+ 

buffering and clearance mechanisms operate in MCNs, including Ca2+-translocating 

ATPases both in the ER and in plasma membranes, the mitochondrial Ca2+-uniporter (221) 

and Ca2+-binding proteins such as calbindin and calretinin (50, 148). The operation of these 

buffering and transport systems dampens [Ca2+]i transients in MCNs (50, 105, 214, 222), 
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whereas their blockade prolongs the transient rise in [Ca2+]i that accompanies depolarization 

by K+, and thereby enhances somatodendritic vasopressin release (105). Interestingly, the 

repertoire of Ca2+-homeostatic systems differs between the somatodendritic and axonal 

compartments of MCNs (50, 105), providing further evidence to support independent 

regulation of neuropeptide release by these two compartments.

Ca2+-dependent priming of dendritic release—As well as triggering the final 

membrane-fusion step in exocytosis, elevation of intracellular free [Ca2+] also primes 
vesicular stores of peptides within the dendrites, rendering them “release-ready” and 

available for subsequent Ca2+-dependent fusion (Fig. 1A) (129). Spike activity in oxytocin 

or vasopressin neurons in vivo is not itself sufficient to trigger dendritic peptide release 

unless the stores have been primed, but agents that deplete intracellular Ca2+-stores, such as 

thapsigargin or cyclopiazonic acid (SERCA inhibitors), or some peptides, including 

oxytocin itself and alpha melanocyte-stimulating hormone (α-MSH), consistently induce 

dendritic release directly (129, 204). It is possible that any signal that mobilizes Ca2+ from 

intracellular stores might prime dendritic secretion. Moreover, exposure to agents that 

mobilize Ca2+ from intracellular stores greatly stimulates the peptide release evoked by 

many stimuli such as electrical or osmotic stimulation and K+-induced depolarization. In 
vitro, such priming persists for at least 90 min. During priming, neuropeptide-storing 

vesicles become competent to respond to the fusion trigger that will arrive at some point in 

the future, in other words, priming increases the size of the secretory pool available for rapid 

release in response to a future trigger of the target cell. One mechanism by which vesicles in 

MCNs leave the reserve pool and enter the release-ready pool (237) may be the remodeling 

of actin. Priming also involves the recruitment of VGCCs to the plasma membrane, 

suggesting that stimuli that increase secretory responsiveness on a relatively slow time scale 

(30–90 min) may act by stimulating the recruitment of N-type Ca2+ channels to release sites, 

where they potentiate the secretory response subsequent depolarizations (236). This priming 

of exocytosis appears not to require either gene transcription or de novo protein synthesis 

(234).

Somatodendritic dopamine release

In the very first report of somatodendritic dopamine release, Geffen and colleagues proposed 

that, in a manner similar to axonal dopamine release, dopamine release in the SNc occurs by 

exocytosis of storage vesicles (74). However, details of the precise release mechanism 

remain incomplete. Although the somata and dendrites of SNc dopamine neurons lack 

conventional synaptic structures, dopamine release from the somatodendritic compartment 

occurs by Ca2+-dependent exocytosis. Moreover, somatodendritic dopamine release requires 

Na+-dependent action potentials (29, 210), and is prevented by inhibitors of VMAT2 (10, 83, 

198). However as mentioned above, the effect of VMAT2 inhibitors alone does not confirm 

that dopamine release occurs from conventional storage vesicles, as VMAT2 is also 

expressed by other subcellular organelles in dopamine neurons (170).

Ca2+ entry—The requirement for extracellular Ca2+ in somatodendritic dopamine release 

has become a matter of debate. Although somatodendritic release is prevented by the 

removal of extracellular Ca2+ (in Ca2+-free media containing the Ca2+-chelator EGTA) or by 
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blocking Ca2+-channels in the plasma membrane with Cd2+ (28, 184, 196, 198), release can 

still occur at low (submillimolar) extracellular Ca2+ concentrations ([Ca2+]o) that do not 

trigger detectable axonal dopamine release, at least in guinea-pig SNc. Indeed, in studies 

using FCV to detect single-pulse evoked increases in [DA]o in guinea pig midbrain and 

striatal slices (28), the [Ca2+]o required for half-maximal release (EC50) is markedly lower 

in the SNc (0.3 mM) than in the CPu (2.3 mM); similar differences were observed in the 

VTA versus NAc shell. It should be noted that although these studies were done in the 

presence of glutamate and GABA receptor antagonists, it is possible that EC50 values for the 

Ca2+ dependence for striatal dopamine release could be influenced by powerful regulation 

through ACh acting at nAChRs. However, when nAChRs are blocked the EC50 for calcium 

dependence in the CPu is remarkably similar (1.9 mM) (18). Furthermore, unlike in the 

striatum where axonal dopamine release is abolished by a cocktail of VGCC blockers, 

somatodendritic dopamine release in the SNc persists in the presence of these blockers (11, 

14, 27, 29, 60, 70, 85). The resistance of release to VGCC blockers presumably reflects the 

incomplete blockade of these channels, along with the minimal cytoplasmic Ca2+ 

concentration required to trigger exocytosis via the high Ca2+-sensitivity synaptotagmin 

isoforms involved in fusion. Somatodendritic dopamine release is therefore only weakly 

dependent on [Ca2+]o and Ca2+ entry. Interestingly, the dependence on [Ca2+]o for 

somatodendritic dopamine release has been reported to be stronger in rat and mouse than in 

guinea pig (38, 69).

Which VGCCs are required for Ca2+ entry in somatodendritic dopamine release? N- and 

P/Q-type, but not L-type, channels appear to be involved in basal somatodendritic dopamine 

release measured by RIA in mesencephalic cultures (143). L- and T-type channels, but not 

N- or P/Q-type channels, are involved in K+-evoked dopamine release in the same 

preparation (60), as well as in K+-induced dopamine release detected by amperometry in 

dissociated dopamine cells (101). Therefore, the VGCC types involved in providing Ca2+ 

entry to trigger somatodendritic dopamine release appear to depend on the experimental 

conditions, including the species studied, the type of preparation and the stimulation 

procedure employed. These factors all contribute to the complexity of elucidating the precise 

mechanisms involved in somatodendritic dopamine release and its regulation.

Intracellular Ca2+ stores—The ability to detect evoked somatodendritic dopamine 

release with nominally zero [Ca2+]o raises the possibility that there may be mechanisms by 

which small increases in [Ca2+]i are amplified. An obvious mechanism is Ca2+-induced 

Ca2+ release from intracellular ER stores (129, 184, 242), as discussed earlier for oxytocin 

and vasopressin. Within neurons, the ER forms a large network extending from the soma to 

dendrites and dendritic spines, and to axons and presynaptic release sites (244). In SNc 

dopamine neurons, this system propagates Ca2+ release from somatic ER stores to dendrites 

(34).

Immunohistochemical studies have identified ER membrane proteins associated with Ca2+ 

mobilization from ER stores in SNc somata and proximal dendrites, including SERCA-2 and 

inositol tris-phosphate receptors (IP3R) and RyRs (184), which are ligand-gated Ca2+-

channels. Each of these facilitate somatodendritic dopamine release evoked in the SNc by 

local pulse-train stimulation and detected by FCV (184). In dopamine neurons, RyRs 
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assemble in clusters that are closely apposed to the plasma membrane, a location that 

maximizes their activation with the entry of extracellular Ca2+ through VGCCs (Fig. 1B). 

This enables somatodendritic dopamine release to be amplified at physiological [Ca2+]o. 

This amplification, however, is not necessary when Ca2+ entry is sufficiently large, as occurs 

with higher [Ca2+]o. In contrast, facilitation of SNc dopamine release by IP3Rs does not 

necessarily require Ca2+ entry through VGCCs but can occur downstream from 

metabotropic receptors, including mGluR1 (Fig. 1B) (184).

The role of intracellular Ca2+ stores in amplifying somatodendritic dopamine release is 

complex, and also can vary with the experimental conditions and rodent species used (38, 

69, 143). Moreover, whether intracellular Ca2+ stores contribute to release in the VTA is not 

yet known. Exocytosis involves several Ca2+-dependent steps with proteins that exhibit 

different Ca2+ sensitivities. The final fusion event may require a very rapid elevation in 

[Ca2+]i close to the secretory vesicle to trigger release, whereas a slower, less localized 

increase in [Ca2+]i could enhance priming of secretory vesicles, as seen in the release of 

oxytocin from the dendrites of hypothalamic neurons (129), discussed earlier. Although 

most evidence suggests that dopamine release in the SN or the VTA is not primed by the 

SERCA inhibitor thapsigargin, the possible involvement of other intracellular Ca2+ stores 

remains unknown (12). Whether the differential expression of RyR at sites close to the 

plasma membrane and the cytoplasmic location of IP3R reflect these different functions also 

remains unresolved.

Is somatodendritic release triggered by action potentials?

Action potentials are usually initiated at the initial segment, just beyond the junction 

between cell body and axon (axon hillock). In the classical model of synaptic 

neurotransmitter release, the action potential is propagated down the axon to its terminal 

where it opens VGCCs, resulting in the fusion of synaptic vesicles with the pre-synaptic 

plasma membrane. However, an action potential can travel in any direction from its point of 

initiation, and into dendrites if the electrical properties of the dendrite support this, as is the 

case in many neurons (39, 227).

Exocytotic release of vasopressin and oxytocin from axonal terminals in the posterior 

pituitary gland is linked to electrical activity in the somata and is produced by the opening of 

VGCCs following depolarization of the terminals by invading action potentials (65). At 

classical fast, glutamatergic synapses, the available stores of small ELVs are maintained by 

endocytotic membrane recycling and are quickly reacidified by the V-type H+-ATPase and 

refilled with neurotransmitter by secondary active transport mediated by H+-linked 

antiporters (190). However, unlike small neurotransmitters, neuropeptides are not taken up 

and repackaged after release – they must be synthesized in the rough ER and concentrated in 

LDCVs in the soma. Compared to ELVs, LDCVs require a more sustained increase in 

[Ca2+]i to trigger exocytosis. Consequently, LDCVs have longer latencies to release and 

require stronger stimulation for exocytosis, for example bursts of electrical activity. LDCVs 

also differ from ELVs in that the associated variants of synaptotagmin, the Ca2+-sensor that 

triggers release, have a higher affinity for Ca2+, as discussed above for dopamine. 

Consequently it is not necessary for LDCVs to be located close to membrane Ca2+ channels 
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to receive a Ca2+ pulse sufficient to produce exocytosis, and synaptic specializations are not 

necessary (2, 6, 135, 136, 208).

In many neurons, the properties of the dendritic membranes support the propagation of 

action potentials (227). However, dendritic release of vasopressin and oxytocin in MCNs can 

occur independently of action potentials (121, 129), even though action potentials can 

propagate into the dendrites (5). Accordingly, neuropeptide release from dendrites is not 

linked to release from terminals within the same neurons, and this uncoupling seems to be 

both stimulus-dependent and peptide-specific (127). An example of this is provided by the 

effects of alpha melanocyte-stimulating hormone (α-MSH): binding of α-MSH to 

melanocortin 4 receptors on oxytocin cells releases Ca2+ from intracellular stores, 

stimulating dendritic oxytocin release, but inhibits the electrical activity of the cell and so 

inhibits oxytocin release into the periphery (204). Dissociation of dendritic and axonal 

release patterns is also seen in the effects of increased plasma osmolality. Systemic 

hypertonic saline injection immediately increases vasopressin release from axon terminals, 

but dendritic release of vasopressin in the SON starts an hour later, when peripheral release 

is subsiding. In this case there is a separation in time between transmitter release from 

dendrites and terminals within the same neurons (124).

In SNc dopamine neurons, the axon initial segment arises from a proximal dendrite rather 

than from the cell body; action potentials originate in the dendritic tree and single action 

potentials back-propagate into dendrites (82). However, during burst-firing of these neurons, 

and particularly if dopamine D2 receptors are activated, back-propagation of action 

potentials may not occur (75), suggesting that dopamine can influence the spread of action 

potentials, thereby down-regulating its own release from dendrites. Thus, burst-patterned 

firing, which promotes dopamine release from axon terminals, does not necessarily promote 

dendritic release (78). Consequently, dopamine release from distal dendrites is likely to be 

semi-independent of the electrical activity of the neuron. As mentioned above, dopamine 

release from distal dendrites has been proposed to be triggered through local glutamatergic 

activation of mGluRs (177). Interestingly, serotonin neurons in the dorsal raphe nucleus also 

exhibit somatodendritic release. Action potentials in these neurons also do not back-

propagate very far; however, local activation of NMDARs can lead to dendritic release in the 

absence of action potentials (52). This is yet another example of the dissociation of dendritic 

release of monoamines from action-potential-dependent axonal release.

Modulation of somatodendritic release by synaptic inputs

Vasopressin and oxytocin

Vasopressin (and in the rat, oxytocin) is involved in the control of plasma electrolyte 

balance. Systemic injection of hypertonic saline stimulates vasopressin and oxytocin release 

from axon terminals in the neural lobe and from dendrites within the SON. Vasopressin 

neurons respond directly to the osmotic pressure of their environment (137, 176), but 

systemic osmotic stimuli also activate central receptors on cells that project, directly or 

indirectly, to the SON and PVN, including afferent neural pathways from the rostral 

forebrain anterior third ventricle region (AV3V). The response to systemic osmotic 

stimulation is blocked by tetrodotoxin, which blocks voltage-gated Na+-channels, and by 
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lesions of the AV3V, suggesting that somatodendritic release is part of a cascade of events 

initiated by osmotic activation of synaptic pathways, rather than by the direct effect of 

hyperosmolarity on the MCNs (122, 123).

The afferent pathways from the AV3V include an inhibitory GABA component (174) and 

excitatory components mediated by amino acids and several peptides, including angiotensin 

II (92). Intracerebroventricular (icv) administration of angiotensin increases both systemic 

and somatodendritic vasopressin release within the SON and PVN (152). While 

somatodendritic release is unaffected by retrodialysis of the GABA agonist muscimol into 

the SON, the GABAAR antagonist bicuculline increases somatodendritic release (109), 

suggesting tonic inhibition by endogenous GABA. Furthermore glutamate stimulates dose-

dependent release of angiotensin II from isolated fragments of magnocellular dendrites (158) 

and also increases somatodendritic release when retrodialysed into the SON, whereas 

kynurenic acid, a glutamate antagonist, is inhibitory (109).

Somatodendritic release of vasopressin following acute osmotic stimulation is inhibited by 

salt loading but not by water deprivation, while the systemic response is unaffected (130), 

suggesting that somatodendritic release is regulated by afferent inputs from both osmo- and 

baro-receptors. The control of central peptide release by volume and pressor stimuli is also 

revealed by studies of hemorrhage and baroreceptor denervation; concentrations of 

vasopressin both in the plasma and in the PVN increase markedly in response to hemorrhage 

(179). Hemorrhage-induced decrease of arterial blood pressure stimulates vasopressin 

secretion through inhibition of baroreceptors and activation of chemoreceptors in the aortic 

arch and carotid body, while sinoaortic baroreceptor denervation increases the osmotically 

induced release of vasopressin and oxytocin from the posterior pituitary (159) and also 

increases somatodendritic vasopressin release stimulated by direct or peripheral hypertonic 

saline stimulation (22).

Systemic oxytocin release increases during parturition and lactation, in parallel with 

increased electrical activity involving the synchronous burst firing of oxytocin neurons. That 

oxytocin, but not vasopressin, is released within the SON and PVN in response to suckling 

has been demonstrated in push-pull perfusion studies in anaesthetized lactating rats (19) and 

microdialysis studies in conscious parturient and lactating animals (22). Somatodendritic 

suckling- or parturition-induced oxytocin release is inhibited by oxytocin antagonists 

infused into the SON, suggesting the receptor-mediated autoregulation of oxytocin release 

(163, 164).

The systemic secretion of oxytocin during suckling is also subject to noradrenergic 

regulation, arising mainly from the brainstem. Suckling increases both noradrenaline 

turnover and local oxytocin levels within the SON (47), and phentolamine, an α-adrenergic 

antagonist, blocks oxytocin release into the SON and PVN during suckling, indicating that 

suckling stimulates noradrenaline release, with subsequent stimulation of somatodendritic 

oxytocin release through the action of α-adrenergic receptors (8).

Systemic and somatodendritic peptide release are also controlled by other neurotransmitters 

released by nerve fibers terminating in the hypothalamic nuclei. GABA and glutamate have 
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already been discussed. Acetylcholine is also involved in regulating systemic vasopressin 

release (217), and also stimulates somatodendritic vasopressin release in hypothalamic 

explants (excluding axon terminals) (138, 178). Both somatodendritic and systemic release 

of oxytocin appear to be regulated by noradrenaline (165), since systemic administration of 

cholecystokinin (CCK), which acts via the vagus nerve to excite the A2 noradrenergic 

brainstem projection to magnocellular oxytocin neurons (243), stimulates release. CCK may 

also directly regulate somatodendritic peptide release; intra-SON administration of CCK 

increases somatodendritic oxytocin and vasopressin levels (165), and also the expression of 

Fos in SON neurons (125).

PACAP receptor mRNA and PACAP-like immunoreactivity are present within the SON and 

PVN (161) and PACAP appears to participate in the regulation of the MCNs by opening 

VGCCs and increasing [Ca2+]i thereby stimulating the somatodendritic release of 

vasopressin in vitro (215).

Dendritic oxytocin release from MCNs is inhibited by endogenous opioids in 

ovariectomized (87) and late-pregnant rats, although this inhibition does not occur during 

parturition (58, 163). In addition, in morphine-dependent rats, the opioid antagonist 

naloxone, introduced into the SON either by systemic injection or by retrodialysis, increases 

somatodendritic oxytocin release (20, 203). This “morphine withdrawal excitation” also 

involves somatodendritic oxytocin, the release of which is increased under these conditions, 

while icv administration of an oxytocin antagonist reduces this increase (20).

During late pregnancy, sex steroids promote oxytocin synthesis and storage within the 

dendrites of the MCNs (156), and steroids have also been proposed to exert direct, rapid, 

non-genomic effects on neurons (232).

Dopamine

Synaptic input to midbrain dopamine neurons comes predominantly from glutamate and 

GABA, with GABAergic input dominating in the SNc and glutamatergic input dominating 

in the VTA (154, 197). Consequently, the net influence of excitatory versus inhibitory 

regulation of dopamine neurons differs between the SNc and VTA. In ex vivo midbrain 

slices, somatodendritic dopamine release evoked by a single stimulus pulse is unaltered by 

ionotropic glutamate or GABA receptor antagonists (27), suggesting the absence of tonic 

regulation by these transmitters in slices. However, during stimulation by multiple pulses, 

regulation by concurrently released glutamate and GABA is seen in both the SNc and VTA 

(30). In the SNc, dopamine release evoked by local pulse-train stimulation is inhibited by 

concurrently released glutamate acting on AMPA- and NMDA-receptors. This inhibition is 

prevented by GABA receptor antagonists (30), which is consistent with anatomical data 

showing AMPARs on inhibitory input to the SNc (182, 260). In contrast, the increase in 

dopamine release produced by NMDA-receptor antagonists during pulse-train stimulation is 

unaffected by a cocktail of GABA receptor antagonists, suggesting the involvement of 

another inhibitory mediator. One possible candidate is endogenously generated H2O2, which 

has been shown to inhibit dopamine release in the SNc (26) and may be generated 

downstream from NMDAR activation.
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In the VTA, pulse-train evoked dopamine release is unaffected by blocking GABAA-, 

GABAB- or AMPA-receptors. By contrast, NMDA-receptor blockade suppresses evoked 

[DA]o, consistent with a glutamate-dependent facilitation of dopamine release (30). 

Importantly, however, blockers of either AMPA- or NMDA-receptors decrease evoked 

dopamine release when applied in the presence of GABA-receptor antagonists, thereby 

unmasking the conventional direct excitatory effect of glutamate input to VTA dopamine 

neurons.

Regulation by glutamate of somatodendritic dopamine release in the SNc also occurs 

through the metabotropic, G-protein coupled receptor mGluR1 (184). mGluR1α is highly 

expressed in dopamine neurons and, as described above, mGluR1 activation produces IP3R-

mediated Ca2+ release from ER stores, which facilitates evoked dopamine release. However, 

with large increases in intracellular Ca2+, inhibition of dopamine neuron excitability and 

consequently dopamine release may occur from activation of Ca2+-activated K+ channels 

(64, 153). Therefore, the net effect of dopamine release regulation by mGluR1s will depend 

on exogenous mGluR1 agonist concentration or on stimulus intensity for endogenous 

glutamate release (48, 184). As already noted, activation of mGluR1s can also facilitate 

dendritic dopamine release in the SNr, possibly from elevated dopamine levels in the 

cytoplasm and subsequent DAT reversal (177).

Possible role of co-released glutamate and GABA

The increasing recognition that dopamine neurons co-release multiple transmitters including 

glutamate and GABA provides a novel concept in the idea of “autoreceptor” regulation. 

Initial studies using cultured dopamine neurons established that they can both synthesize and 

release glutamate (36, 55). In support of this, subsequent optogenetic methods using 

selective expression of channelrhodopsin (ChR2) in dopamine neurons have demonstrated 

that glutamate released from dopamine axons produces glutamate receptor-dependent 

excitatory post-synaptic currents in striatal neurons in slices (35, 106, 225, 228, 231, 240) 

and mediates behavioral effects in vivo (16). Similar approaches have been used to show co-

release of GABA from dopamine axons; although these neurons synthesize GABA using a 

non-conventional enzyme, aldehyde dehydrogenase 1a1 (100), and they can also obtain 

GABA by uptake from the extracellular space (225, 240). Thus, if also co-released with 

dopamine from somata or dendrites, glutamate and/or GABA could autoregulate 

somatodendritic dopamine release. This possibility is supported by the presence of vesicular 

glutamate transporters (vGluT2) in VTA dopamine neurons (55, 84), and co-released GABA 

appears to be accumulated in secretory vesicles through VMAT2 (240), which is present in 

all midbrain dopamine cell bodies and proximal dendrites (170).

Actions of dendritically released oxytocin, vasopressin, and dopamine

Autocrine effects

Dendritically released neurotransmitters exhibit autocrine effects on the neurons from which 

they are released, and also affect surrounding neurons and glia. These effects can change 

both the inputs to cells and the cellular response to these inputs. A good example of this 
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occurs in oxytocin cells, in which dendritically released oxytocin enhances the milk ejection 

reflex, as described later.

More commonly, somatodendritic release is auto-inhibitory and thus self-limiting. 

Vasopressin neurons discharge in a characteristic phasic pattern that maximizes stimulus-

secretion coupling at the nerve terminals, but this activity is modified by the inhibitory 

autocrine effects of vasopressin released from dendrites. Like oxytocin, vasopressin can also 

facilitate its own dendritic release (258), which may explain the temporal separation of 

peripheral and central release of vasopressin following a hyperosmotic stimulus. Osmotic 

stimulation is followed immediately by systemic secretion of vasopressin, whereas dendritic 

release is delayed and the response prolonged (124). Increase of extraneuronal vasopressin 

concentrations by retrodialysis inhibits vasopressin neurons, reducing their firing rate (126). 

Thus, dendritic vasopressin release may stimulate vasopressin release from adjacent 

dendrites until the local external concentration reaches a threshold sufficient to 

hyperpolarize the neuron or else to modulate inhibitory inputs, thereby limiting the extent of 

systemic vasopressin secretion following osmotic stimuli or volume depletion.

Understanding of these autocrine effects is further complicated by the fact that within a 

single LDCV, several other peptides can be co-localized with either vasopressin or oxytocin. 

For example, the endogenous opioid dynorphin is co-localized with vasopressin in the same 

vesicles (250) and dendritic vasopressin release will therefore be accompanied by the release 

of dynorphin to provide feedback inhibition of vasopressin cell activity (21). In addition 

many other neuropeptides, such as galanin, apelin, PACAP and secretin, are synthesized in 

MCNs (54, 72, 77, 112). Accompanying receptor expression for these peptides on MCNs 

provides mechanisms for autocrine feedback regulation by these co-released neuropeptides 

(19).

Autocrine effects of somatodendritic dopamine release are central to the consequences of 

this process. Locally released dopamine binds to inhibitory D2 autoreceptors on dopamine 

neurons in the SNc and VTA, and thereby regulates the rate and pattern of firing of 

dopamine neurons (10, 73, 75, 191, 265), which ultimately influences the level and pattern 

of axonal dopamine release in CPu and NAc (211). Somatodendritic dopamine release in 

SNc and VTA is also controlled by local feedback via D2 autoreceptors (41).

Paracrine effects

Exogenously applied or endogenously released oxytocin also acts on afferent nerve endings. 

The SON does not contain presynaptic oxytocin receptors, suggesting that this paracrine 

action is indirect. One indirect mechanism involves oxytocin-dependent endocannabinoid 

release from oxytocin neurons (104, 175), mediated by the action of dendritically released 

oxytocin on oxytocin receptors, release of Ca2+ from intracellular stores and consequent 

“on-demand” synthesis of endocannabinoids. Endocannabinoids are arachidonate-based 

lipids that are hydrophobic enough to diffuse passively through plasma membranes; their 

binding to presynaptic cannabinoid receptors (CB1) inhibits both GABAergic and 

glutamatergic afferents onto MCNs. Indeed, CB1 receptors have been found using 

immunohistochemistry on both excitatory and inhibitory axon terminals that innervate 
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dendrites in the SON. In SON slices, cannabinoid agonists presynaptically inhibit 

spontaneous excitatory and inhibitory postsynaptic currents.

The milk-ejection reflex during suckling provides an interesting example of local paracrine 

control by oxytocin. Oxytocin neurons are continuously active under basal conditions, but 

during parturition and in response to suckling in lactating animals, discharge brief, intense 

bursts of action potentials. These bursts release large boluses of oxytocin into the circulation, 

producing intense contractions of the pregnant uterus or milk ejection from the mammary 

glands. The bursts are blocked by administration of oxytocin antagonists into the SON, and 

facilitated by oxytocin agonists (108). Dendritic release of oxytocin is up-regulated during 

parturition and in lactation, and has an essential role in the generation of these intermittent 

synchronized bursts (201). Its effects are not restricted to the cell of origin, but are also 

exerted on the dendrites of other oxytocin cells, possibly to facilitate homotypic interactions

Dendritically-released vasopressin modulates the activity of neighboring presympathetic 

neurons within the PVN (218), providing another example of a long-distance, paracrine 

action of dendritically-released neuropeptides. Activity-dependent dendritic release of 

vasopressin from MCNs concomitantly increases the firing activity of neurons projecting 

from the PVN to the rostroventrolateral medulla. This interpopulation crosstalk involves 

extracellular diffusion of released vasopressin to V1a receptors in presympathetic neurons. 

Consequently, unlike conventional synaptic transmission, the efficiency and strength of this 

diffuse paracrine action of vasopressin depends on the extracellular vasopressin 

concentration, which in turn depends on the average activity of the entire vasopressin neuron 

population. It also depends on the half-life of vasopressin in the extracellular space, as well 

as on the ability of vasopressin to reach relatively distant targets by diffusion (e.g., the 

tortuosity of the extracellular space). These examples illustrate the importance of dendritic 

release of vasopressin in the ability of the PVN to control the activity of distinct populations 

of neurons, and thus, to produce a multimodal homeostatic response (218, 220).

Given the structural characteristics of midbrain SNc and VTA dopamine neurons, 

somatodendritic dopamine release is likely to be at least partly non-synaptic. Moreover, 

dopamine receptors and reuptake transporters on dopamine cell bodies and dendrites are 

largely extrasynaptic (171, 172, 213, 261), as are D1 receptors on non-dopaminergic 

terminals in these regions (23, 261). Thus, somatodendritically released dopamine must act 

through volume transmission via the extracellular fluid (194, 195). Extracellular dopamine 

concentrations are in turn regulated by diffusion, by uptake through the DAT and by the 

(probably negligible) effects of enzyme-catalyzed degradation (43, 195). Diffusion 

measurements in ex vivo guinea pig midbrain slices reveal that the extracellular volume 

fraction in the SNc, SNr, and VTA is ~50% larger than that in forebrain structures, including 

the striatum (43), which would lead to lower extracellular concentrations in midbrain than 

forebrain for a given number of molecules released. Of course, net [DA]o is also influenced 

by other regulators, especially uptake, which is greater in the striatum than in the midbrain, 

so that absolute concentrations in these regions do not differ as much as predicted by 

diffusion characteristics alone (195). Interestingly, DAT activity is greater in SNc than VTA, 

as well, leading to greater effects of DAT inhibitors on evoked increases in [DA]o in SNc 

than in VTA (40, 43).
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In contrast to evidence for diffusion-based volume transmission of dopamine in the SNc and 

VTA from anatomical and voltammetric studies, evaluation of evoked D2ICs in dopamine 

neurons suggests that the actions of dopamine are not only largely diffusion-independent, 

but also synaptic (9, 10, 38). These conclusions are based on several observations. First, the 

concentration of exogenous dopamine required to induce D2ICs of similar magnitude to 

those produced by endogenously released dopamine is in the micromolar range. This is in 

contrast to the nanomolar concentrations expected for D2 autoreceptors in the high-affinity 

state. Given that the external dopamine concentration declines sharply with distance from a 

site of release (38, 44, 195), an interpretation of this result is that the dopamine detected by 

D2 receptors is immediately post-synaptic, or at least peri-synaptic. Synaptic dopamine 

release does occur in the VTA, given the presence of axon collaterals (7, 28). Second, the 

time-course of evoked D2ICs is relatively constant across stimulations, as might be expected 

for a postsynaptic response. However, the kinetics of the G-protein coupled, inwardly-

rectifying K+ (GIRK) channel activated by dopamine are likely to be the rate-limiting factor 

in this autoreceptor-mediated process. Indeed, modeling studies of quantal dopamine release 

indicate that the peak concentration is reached ~10 ms after a release event, even at a 

distance of 5 μm from the release site (43, 44, 195), whereas the D2 IPSC peak occurs 

several hundred ms after stimulation (38, 68). Thus, the debate about synaptic transmission 

vs. volume transmission for somatodendritic release of dopamine remains open (68, 195).

Functional roles for somatodendritic oxytocin, vasopressin, and dopamine, 

and other diffusible messengers in the brain

Oxytocin and vasopressin exert specific behavioral effects: oxytocin is involved in maternal 

behavior and social bonding, while vasopressin has actions in the brain that affect social 

recognition and aggression (88, 168, 224). The sites at which these behavioral effects are 

exerted show, in some cases, high levels of receptor expression but little innervation by 

peptide-containing projections. Could dendritically released peptides exert long-lasting 

behavioral effects by acting on distant targets within the brain? Similar changes in 

neuropeptide concentrations often occur at widely separated sites, even though the absolute 

values vary between sites (127). Dendritic peptide release is not targeted specifically to 

synapses, but peptides may travel to their targets by bulk flow through the extracellular fluid 

and cerebrospinal fluid. The half-life of oxytocin in the CSF is about 20 min (144), in 

contrast with the typically subsecond lifetime of dopamine, which limits the range of its 

action after both axonal and somatodendritic release (38, 44, 195).

Somatodendritic dopamine release also plays a role in animal behavior, including motor 

activity. The action of dendritically released dopamine on D1 dopamine receptors in the 

terminals of the striatonigral direct pathway enhances GABA release from axons in the SNr, 

thereby amplifying inhibition of the principal cells of the SNr (149, 192, 239). Through 

these pathways, somatodendritic, as well as axonal dopamine release regulates motor 

behavior (3, 15, 45, 56, 141, 200, 212, 233).

The paracrine or hormone-like actions of neuropeptides and dopamine can enable signaling 

between entire populations of neurons, some of which may be relatively distant from each 

Ludwig et al. Page 19

Compr Physiol. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other. Thus these transmitters act in a more diffuse, less spatially constrained manner – and 

on a longer time scale – than those involved in classical fast synaptic transmission. At 

chemical synapses, the “secrecy” of signal transmission is maintained by the structure of the 

synapse and by the surrounding network of reuptake transporters. In contrast paracrine 

transmission has evolved so as to maximize spillover, and its specificity depends only on 

that of the signal/receptor interactions. In addition to the transmitters that are the focus of 

this review, other biogenic amines and acetylcholine are released from en passant boutons on 

axonal segments (264). Extending this concept further are gaseous neurotransmitters such as 

nitric oxide and carbon monoxide (49). It is likely that all of these molecules transmit 

chemical signals not simply from one cell to another, but from one population of neurons to 

another (115, 116, 127), while maintaining signal specificity by actions at transmitter-

specific receptors.

Conclusions

Somatodendritic oxytocin and vasopressin release from hypothalamic neurons provides 

paracrine signals that are critical in several key physiological events, including birth, milk 

let-down, and social bonding. Somatodendritic release and volume transmission of 

neuropeptides represents a form of hormonal action. These neurohormones can act in a 

temporally coherent way at discrete brain sites to establish and co-ordinate complex 

behaviors.

Somatodendritic dopamine release from midbrain dopamine neurons provides an autocrine 

signal that regulates dopamine neuron activity, and thus contributes to axonal release 

regulation in target regions. Equally importantly, dopamine released within these cell body 

regions also helps regulate the release of other transmitters, including GABA and glutamate. 

Through these actions, somatodendritic dopamine release contributes to motor regulation, as 

well as to plasticity in rewards circuits, including aberrant plasticity in response to drugs of 

abuse.

Recent studies provide evidence about the mechanism and regulation of somatodendritic 

release of oxytocin, vasopressin, and dopamine, including underlying commonalities and 

differences. There is no reason to believe that somatodendritic release is restricted to these 

systems, and study of this process in other neuronal types is likely to be fruitful. How well 

we can understand somatodendritic release in the healthy brain necessarily influences how 

well we can harness these processes to treat disorders involving these pathways. The goal of 

future work into the somatodendritic release of peptides, dopamine and related molecules 

will be to provide this understanding.
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Figure 1. Comparison of the mechanisms of somatodendritic release of oxytocin and vasopressin 
in the hypothalamus (A) and dopamine in the substantia nigra (B)
A) Neuropeptides are synthesized and packaged in the soma and stored in dendrites in a 

reserve pool (RP) containing large numbers of LDCVs in dendrites. Depolarization-induced 

Ca2+ entry through voltage-gated calcium channels (VGCCs) stimulates peptide release by 

exocytosis of LDCVs. This requires the depolymerization of F-actin to G-actin. 

Furthermore, the stimulation of G-protein coupled receptors, such as the oxytocin receptor, 

stimulates the mobilization of Ca2+ from IP3-dependent intracellular stores and an increase 

in both the number of LDCVs and N-type VGCCs at the plasma membrane, thus priming 

the exocytosis machinery for subsequent activity-dependent release. Although some 

members of the SNARE family are detectable by immunocytochemistry, there appears to be 

a lack of VAMP, SNAP-25 and synaptotagmin-1 in the somata-dendrites, with their function 

presumably being replaced by other SNARE proteins. TG, thapsigargin; CPA, cyclopiazonic 
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acid. (B). Features of somatodendritic dopamine release. Dopamine is synthesized in the 

intracellular compartment from tyrosine via TH. This process generates L-DOPA which is 

converted to dopamine by aromatic amino acid decarboxylase (AADC). Synthesized 

dopamine is stored in tubulovesicular structures that are part of the ER; these structures are 

the primary site of VMAT2, the vesicular monoamine transporter expressed in dopamine 

soma and proximal dendrites. Dopamine dendrites contain few vesicles, but those present 

appear to bud from tubulovesicles. Somatodendritic dopamine release is action potential 

dependent. Release also requires Ca2+ entry via VGCCs, but is amplified by both ryanodine 

receptors RyRs and metabotropic glutamate receptor (mGluR)-dependent activation of 

IP3Rs that release Ca2+ from intracellular ER stores. Immunohistochemical evidence 

suggests that a novel constellation of SNARE proteins may be involved in the release, 

including SNAP-25, VAMP2, and syntaxin3b. Release from dendrites has also been 

suggested to involve reversal of the dopamine transporter (DAT). Released dopamine is 

taken up and recycled via the DAT.
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