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Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic
because of growing concerns over excessive radiation exposure. However, the CT images recon-
structed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may
be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with
view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM)
algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images cor-
rupted by additive Gaussian noise, and showed superior performance. It has since been adapted and
applied to many other image types and various inverse problems. This paper specifically reviews the
applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly
demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions.
The effectiveness of these applications on LDCT and their relative performance are described in
detail. © 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12097]
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1. INTRODUCTION

X-ray computed tomography (CT) is widely used in the clinic
for diagnosis, screening, image-guided radiotherapy, and
image-guided surgeries. CT scan is a radiation-intensive pro-
cedure,1 and its potential harmful effects including genetic
and cancerous diseases have raised growing concerns in the
medical physics community.2 Hence, many strategies have
been proposed for dose reduction in CT scan to decrease radi-
ation-associated risks.3–5 In addition to hardware improve-
ments in CT systems, two additional cost-effective strategies
have also been widely explored: (a) lowering the X-ray tube
current and exposure time [milliampere-second (mAs)] or the
X-ray tube voltage [kilovoltage peak (kVp)] settings to reduce
the X-ray flux toward the patient (i.e., low-flux acquisition);
(b) reducing the number of projection views per rotation (i.e.,
sparse-view acquisition). The first strategy would inevitably
increase the projection data noise, and the resulting image by
the conventional filtered back-projection (FBP) method
(equipped on most of commercial CT systems) may be

degraded with excessive noise and streak artifacts due to
quantum noise and/or electronic noise. The second strategy
would produce undersampled projection data and the image
reconstructed by the FBP method usually suffers from view-
aliasing artifacts due to insufficient angular sampling. The
two strategies may be combined, leading to both noisy and
undersampled projection data and further degrading the cor-
responding CT image reconstructed by the FBP method.

Numerous methods have been proposed to improve CT
image quality from low-dose acquisitions, as illustrated in
Fig. 1. For low-flux scanned data, the methods can work in
either the image domain or the projection domain. One cate-
gory of the image-domain methods is the application of edge-
preserving filter directly to the FBP reconstructed image.6–11

However, because noise and streak artifacts in the CT image
are typically non-stationary and unable to be modeled with a
general distribution, it is difficult to effectively suppress them
while fruitfully preserving fine structures and details.
Another category includes regularized image restoration
methods, which restore the FBP reconstructed image by
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optimizing an objective function consisting of a quadratic
data-fidelity term and a regularization term.12,13 The third cat-
egory includes statistical image reconstruction (SIR) meth-
ods, which reconstruct the CT image by optimizing a
penalized maximum likelihood (pML) criterion or penalized
weighted least-squares (PWLS) criterion in the image
domain.14,15 The projection-domain methods can either
denoise the projection data with edge-preserving filter16–21 or
estimate the ideal noiseless projection data by optimizing a
pML/PWLS criterion in the projection domain.22–25 The
denoised/restored projection data can then be reconstructed
with the analytical FBP method. For sparse-view scanned
data, the methods generally work in the image domain. The
first method category attempts to suppress view-aliasing arti-
facts in the FBP reconstructed image with an edge-preserving
filter, but is relatively ineffective when the view-aliasing arti-
facts are severe.26,27 The second category includes regular-
ized image restoration methods that are exactly the same as
those of low-flux scanned data. The third category includes
iterative reconstruction methods that typically exploit the
compressed sensing or other sparse representations as prior
knowledge to reconstruct CT image.28–30

The nonlocal means (NLM) algorithm was originally pro-
posed as a non-iterative edge-preserving filter to denoise nat-
ural images corrupted by additive white Gaussian noise.31,32

Essentially, it is one of the neighborhood filters which
denoise each pixel with a weighted average of its neighboring
pixels according to similarity. However, differently from pre-
vious neighborhood filters, the NLM filter calculates the sim-
ilarity based on patches instead of pixels. The patch of a pixel
can be defined as a squared region centered at that pixel.
Using patch strengthens, the NLM filter because the intensity
of a single pixel can be very noisy. The authors compared the
performance of the NLM filter with an array of denoising
algorithms including the Gaussian filter, anisotropic filter,
total variation (TV), Yaroslavsky neighborhood filter, and
observed noticeable improvements over them. Motivated by
this success, NLM-based regularization models33–35 were
also proposed and applied to various inverse problems includ-
ing image denoising, image deblurring, image inpainting,

image reconstruction, and image super-resolution reconstruc-
tion. Inspired by its success in natural image scenarios,
researchers also extended its use to medical images including
MRI,36–40 ultrasound,41,42 PET,43–46 SPECT,47 and X-ray CT.
As noise distribution and other degradations may vary for dif-
ferent image types, special adaptation may be needed for each
one of them. We specifically review the applications and
adaptations of the NLM algorithm in low-dose X-ray CT
(LDCT), and demonstrate how it improves the reconstructed
CT image quality from low-dose acquisitions.

The remainder of this paper is presented as follows. In
Section 2, we provide an overview of the NLM algorithm
as a filter or regularization model. In Section 3, we explic-
itly illustrate different applications of the NLM algorithm
in LDCT from low-flux or sparse-view acquisitions, for
both three-dimensional and four-dimensional scans. After
discussing several issues, we provide conclusions in
Section 4.

2. OVERVIEW OF THE NLM ALGORITHM

2.A. NLM filter

The NLM filter was originally proposed to denoise the
natural images corrupted by additive white Gaussian
noise.31,32 The filter exploits the high degree of redundancy
that typically exists in an image, and reduces image noise by
replacing the intensity of each pixel with a weighted average
of its neighbors according to similarity. Although the similar-
ity comparison can be performed between any two pixels
within the entire image, in practice, this is typically limited to
a fixed neighboring window area [called search-window
(SW), e.g., 17 9 17 in two-dimensional (2D) case] of a target
pixel for computational efficiency. Mathematically, the NLM
filter can be described as:

NLMðûjÞ ¼
X
k2SWj

wjk ð̂uÞ � ûk (1)

where the vector û represents the noisy image to be
smoothed, k denotes the pixel index within the SW of
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FIG. 1. Overview of the methods proposed to improve CT image quality from low-dose acquisitions. It is noted that statistical image reconstruction for low-flux
CT and iterative reconstruction for sparse-view CT are grouped into image-domain methods herein, because their objective function is typically a function of the
reconstructed image. But strictly speaking, they should be considered as combined image-domain and projection-domain methods.
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pixel j,wjk ð̂uÞ is the weighting coefficient and satisfies the
conditions 0�wjk ð̂uÞ� 1 and

P
k2SWj

wjk ð̂uÞ ¼ 1, and

NLMðûjÞ denotes the intensity of pixel j after the NLM
filtering.

However, differently from previous neighborhood fil-
ters, the NLM filter calculates similarity based on patches
instead of pixels. The patch of a pixel can be defined as
a squared region centered at that pixel (called patch-win-
dow (PW), e.g., 5 9 5 in 2D case). Let PðûjÞ denote the
patch centered at pixel j and PðûkÞdenote the patch cen-
tered at pixel k. The similarity between pixels j and k
depends on the weighted Euclidean distance of their

patches, jjPðûjÞ � PðûkÞjj22;a, computed as the distance
between two intensity vectors in high dimensional space
with a Gaussian kernel (a > 0 is the standard deviation of
the Gaussian kernel) to weight the contribution to each
dimension. The exponential function converts the distance
to the weighting coefficient that indicates the interaction
degree between two pixels. The normalized weighting
coefficient is given as:

wjk ð̂uÞ ¼
exp �

����
����PðûjÞ � PðûkÞ

����
����
2

2;a

=h2
 !

P
k2SWj

exp �
����
����PðûjÞ � PðûkÞ

����
����
2

2;a

=h2

 ! (2)

where h is the filtering parameter that controls the expo-
nential function decay and the weighting coefficient.
When h is small, the image tends to be weakly
smoothed; when h is large, the image tends to be strongly
smoothed. As previously reported,31,32 the filtering param-
eter h is a function of the standard deviation of Gaussian
noise in the image. And if we further consider the size of
the patch-window, the filtering parameter h can be
given as:40

h2 ¼ sr2 ¼ 2gr2jPW j (3)

where s and g are free scalar parameters, r is the standard
deviation of Gaussian noise, and jPW j denotes the size of the
patch-window.

2.B. NLM-based regularization models

Motivated by the success of the NLM filter, several NLM-
based regularization models were also proposed for various
inverse problems including image denoising, deblurring, and
reconstruction. The first regularization model takes a general
form as:33

UðuÞ ¼
X
j

X
k2SWj

wjkð~uÞ � /ðuj � ukÞ (4)

where φ denotes a positive potential function and one
common choice is ɸ(D) = D2/2, and ~u 2 RJ�1 represents a
reference image. The weighting coefficient wjkð~uÞ is com-
puted on the reference image and given as:

wjkð~uÞ ¼
exp �

����
����Pð~ujÞ � Pð~ukÞ

����
����
2

2;a

=h2
 !

P
k2SWj

exp �
����
����Pð~ujÞ � Pð~ukÞ

����
����
2

2;a

=h2

 ! (5)

The regularization in Eq. (4) is similar to the Markov ran-
dom field (MRF) model-based regularization,48 but a differ-
ent method is used to calculate the weighting coefficient. In
this regularization, the weighting coefficient is smaller when
the patch distance of pixel j and pixel k is larger, and vice
versa. By this way, the sharp edges in the image can be better
preserved.

Another general form of the NLM-based regularization is
given as:34

UðuÞ ¼
X
j

/ uj �
X
k2SWj

wjkð~uÞ � uk
0
@

1
A (6)

This regularization model is similar to that in Eq. (4), but
the idea varies slightly. This model assumes that the intensity
of each pixel can be approximated by a weighted average of
its neighbors according to similarity, which is also the origi-
nal thought of the NLM filter.

The third general form for the NLM-based regularization
is described as:35

UðuÞ ¼ 1
p

X
j

X
k2SWj

wjkð~uÞ � ðuj � ukÞ2
0
@

1
A

p=2

; 0\p\2

(7)

This regularization model is inspired by both the NLM fil-
ter and the compressed sensing theory. With p = 1, the regu-
larization in Eq. (7) becomes the nonlocal TV
regularization.49

The weighting coefficients wjkð~uÞ in Eqs. (4), (6), and (7)
are calculated from reference image ~u. For the image denois-
ing or deblurring problem, the current noisy or blurred image
could be used as the reference image, and for tomographic
image reconstruction, the FBP reconstructed image was
explored to serve as the reference image.49 However, because
the quality of the reference image is generally low, the result-
ing regularization may lead to a suboptimal solution.

Alternatively, investigators modified the above regulariza-
tion models by replacing wjkð~uÞ with wjk(u), described
as:43,50

wjkðuÞ ¼
exp �

����
����PðujÞ � PðukÞ

����
����
2

2;a

=h2
 !

P
k2SWj

exp �
����
����PðujÞ � PðukÞ

����
����
2

2;a

=h2

 ! (8)

This way, the regularization models eliminate the need for
a specific reference image, and the weighting coefficients are
computed on the unknown image u. However, direct opti-
mization of the resulting objective function can be
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complicated. In practice, an empirical one-step-late imple-
mentation is usually employed in an iterative approach to
obtain the solution. In this implementation, the weighting
coefficients are computed on current image estimate, and are
considered constants when the image is updated.43,50

Although this strategy would inevitably increase the compu-
tational load, it may produce a more accurate solution as
compared with the use of a low quality reference image.

3. APPLICATIONS OF THE NLM ALGORITHM IN
LDCT

The pixel intensity of a CT image reflects the X-ray attenua-
tion coefficient for the scanned object or patient. Therefore, the
conventional notation l will be used instead of u which repre-
senting a general image. In this section, we explicitly review

the various applications of the NLM algorithm in LDCT, for
both three-dimensional and four-dimensional CT scanning.

3.A. Three-dimensional CT scanning

Three-dimensional CT scanning refers to both fan-beam
CT and cone-beam CT scanning (either in axial or helical
acquisition mode) commonly used in the clinic to produce
tomographic images of specific patient volumes.

3.A.1. NLM-based image filtering

Simple image filtering: The NLM filter can be directly
applied to the FBP reconstructed low-flux CT images,6–11

which are typically degraded with noise and streak artifacts,
as shown in Fig. 2(b). However, because noise and streak
artifacts are non-stationary and cannot be modeled with a
general distribution, it is difficult to determine the standard
deviation r in Eq. (3). The filtering parameter h is usually set
as a global constant for the entire image, although this setting
may lead to a suboptimal filtering result, because a spatially
invariant filtering may be too strong for some regions (blur-
ring much) but too weak for others (filtering little) across the
image.10 Recently, Li et al. analytically derived a local noise
level estimation method for low-flux CT images by consider-
ing noise propagation from the projection data to the FBP
reconstructed images.10 Based on the estimated noise map,
the filtering parameter h employed for each pixel can be
adjusted proportionally to the local noise level:

h2j ¼ sr2j ¼ 2gr2j jPWjj (9)

where rj denotes the estimated noise level of pixel j. This is
one way to introduce spatial adaptivity into traditional NLM
filtering, and this spatially variant NLM filtering has demon-
strated improved performance for low-contrast objects.10

Thaipanich and Kuo suggested to adaptively adjust the SW
according to the local structure information as follows: a large
SW in the smooth regions, a small SW in strong edge/texture
regions, and a medium window for the other regions.51 This
may be another way to introduce spatial adaptivity into NLM
filtering, but the discrimination of the three different regions
may be time-consuming and technically challenging, espe-
cially when the CT images are severely degraded. The third
way to incorporate spatial adaptivity is to employ a fixed SW
but exclude some patches that are very different from the
patch of the central pixel. The selection process can be
expressed as:40,52

where lLD 2 RJ�1 represents the FBP reconstructed LDCT
image, and J is the number of pixels in the image; EðPðlLDj ÞÞ
and varðPðlLDj ÞÞ represent the mean and the variance, respec-
tively, for the patch of pixel lLDj ; the parameters 0 < k < 1
and 0 < m < 1 can be chosen as, for example, k = 0.95 and
m = 0.5. The rationale behind the adaptive SW and patch
selection strategies is that increasing the number of patches
tends to improve filtering in the smooth regions because they
contain many similar patches; meanwhile, it tends to either
blur or remove details in the edge/texture regions that contain
fewer similar patches. Therefore, both ways can make the
NLM filtering be adaptive and improve the overall perfor-
mance. Besides, Zheng et al. explored the point-wise fractal
dimension (PWFD) to achieve spatial adaptivity for NLM fil-
tering of low-flux CT images.11 The PWFD can provide local
structure information, that is, the pixels in the smooth regions
exhibit PWFDs close to zero and pixels near the edge regions
have relatively large PWFDs. They designed a new weighting
coefficient for NLM filtering by considering both the tradi-
tional patch distance and the new PWFD difference.

While NLM filtering may suppress noise to a large extent,
it is not as effective in removing the streak artifacts in low-
flux CT images resulting from photon starvation, as demon-
strated in Fig. 2(c). The streak artifacts are typically along the
high-attenuation paths and appear as directional patterns. To
solve this issue, Chen et al. applied a directional one-dimen-
sional nonlinear diffusion in the stationary wavelet domain to
suppress the streak artifacts first, followed by a NLM filtering
step to reduce the noise.9 This approach showed advantages
in streak artifacts suppression over simple NLM filtering.

The CT images reconstructed by the FBP method from
sparse-view acquisition typically suffer from view-aliasing

wjkðlLDÞ ¼
exp �

����
����PðlLDj Þ � PðlLDk Þ

����
����
2

2;a

=h2

 !

P
k2SWj

exp �
����
����PðlLDj Þ � PðlLDk Þ

����
����
2

2;a

=h2

 ! ; if k\
EðPðlLDj ÞÞ
EðPðlLDk ÞÞ\

1
k and m2\

varðPðlLDj ÞÞ
varðPðlLDk ÞÞ\

1
m2

0 , otherwise

8>>>>>><
>>>>>>:

(10)
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artifacts, as shown in Fig. 3(b). The view-aliasing artifacts in
the images are also non-stationary, and the conventional
NLM filtering generally cannot remove them without sacri-
fice of image details.26,27

Previous high quality scan (preHQ)-guided image
filtering: Repeated CT scans are required in clinical applica-
tions such as disease monitoring, longitudinal studies, and
image-guided radiotherapy. To optimize radiation dose utility,
high quality scanning can be first performed to set up the ref-
erence, followed by a series of low-dose scans (e.g., low-flux
or sparse-view acquisitions). In these applications, the previ-
ous high quality scan can be exploited as prior information
because of the anatomical similarity between the recon-
structed image series of the scans. Using previous high qual-
ity image to improve low-dose scan reconstruction has
recently drawn great interest,26,53–60 some of which are based
on the NLM algorithm. Because scans are acquired sequen-
tially rather than simultaneously, misalignment or

deformation may occur among the image series, so registra-
tion is usually needed to align the different scans. Fortu-
nately, the NLM-based methods do not heavily depend on
registration accuracy because of the patch-based search
mechanism. A rough registration might be adequate in prac-
tice, although a more accurate one can reduce the computa-
tional load by allowing the use of a smaller SW.

Ma et al. proposed a preHQ-guided NLM filtering method
for CT image from low-flux acquisition, described as:61

guidedNLMðlLDj Þ
¼
X
k2SWj

wjkðlLD;lpreHQ registeredÞ� lpreHQ registered
k

(11)

where lLD 2 RJ�1 represents the FBP reconstructed low-dose
image, lpreHQ registered 2 RJ�1 represents the previous
high quality image registered to current low-dose image,
wjk(l

LD, lpreHQ registered) denotes the weighting coefficient, and
guidedNLMðlLDj Þ denotes the intensity of pixel j after filtering.
Specifically, the weighting coefficient was given as:61
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FIG. 2. Illustration of the preHQ-guided NLM image filtering for low-flux CT: (a) one transverse slice of the NCAT phantom; (b) FBP reconstruction from simu-
lated noisy projection data; (c) traditional NLM filtering of low-dose image in Fig. 2(b), SW=332, PW = 52, h = 0.015; (d) another transverse slice of the NCAT
phantom serving as the prior image for preHQ-guided NLM filtering of low-dose image in Fig. 2(b); (e) corresponding preHQ-guided NLM filtering result,
SW = 332, PW = 52, h = 0.007; (f) profile comparison between the ground truth Fig. 2(a) and the filtering result Fig. 2(e). [Colour figure can be viewed at
wileyonlinelibrary.com]

wjkðlLD; lpreHQ registeredÞ ¼
exp �

����
����PðlLDj Þ � PðlpreHQ registered

k Þ
����
����
2

2;a

=h2
 !

P
k2SWj

exp �
����
����PðlLDj Þ � PðlpreHQ registered

k Þ
����
����
2

2;a

=h2

 ! (12)
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One concern with this method is whether the registration
accuracy may affect the filtering result. The red arrows in
Fig. 2(d) indicate some structure deformations between
Figs. 2(b) and 2(d). Without any registration between two
images, the preHQ-guided NLM filtering result [as shown in
Fig. 2(e)] of Fig. 2(b) using Fig. 2(d) as prior image still
retains good image quality, revealing that image registration
accuracy may not be an obstacle. After comparing Fig. 2(c)
with Fig. 2(e), we observed that preHQ-guided NLM

filtering reduces noise and streak artifacts better than tradi-
tional NLM filtering.

Xu and Muller used a similar approach to explore
the preHQ-guided NLM filtering method for
sparse-view CT.26 But they found that using an artifact-free
image lpreHQ registered and a low-dose image lLD with severe
view-aliasing artifacts to calculate the weighting coefficient
as in Eq. (12) may yield inferior filtering result, because
of the challenge to perform patch matching. Thus,

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 3. Illustration of the preHQ-guided NLM image filtering for sparse-view CT: (a) one transverse CT image of a patient; (b) FBP reconstruction from sparse-
view projection data; (c) conventional NLM filtering of low-dose image in (b); (d) a deformed version of (a) serving as the prior image for preHQ-guided NLM
filtering; (e) prior image registered to (a); (f) registered prior image with simulated view-aliasing artifacts; (g) the corresponding preHQ-guided NLM filtering
result with Eq. (11); (h) corresponding preHQ-guided NLM filtering result with Eq. (13). (Figure reprinted from the work of Xu and Mueller26).
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they proposed to transform lpreHQ registered into a tandem-
image lpreHQ registered+degraded with view-aliasing artifacts
resembling those in lLD, and then employed lpreHQ regis-

tered+degraded and lLD for patch matching. The preHQ-guided
NLM filtering method for sparse-view CT with artifact-
matched scheme can be described as:26

In Eq. (13), the high quality image lpreHQ registered is still
used to determine the pixel estimates although the degraded
image lpreHQ registered+degraded is employed to calculate the
weight coefficients. Figure 3 illustrates that the filtering
method in Eq. (13) is better than that in Eq. (11) for sparse-
view CT image.

One potential drawback of the preHQ-guided NLM filter-
ing method is that the pixel intensity of filtering result may
resemble that of prior image when there are attenuation dif-
ference (e.g., due to kVp mismatch, detector difference, etc.)
between the current low-dose image and prior image. Fig-
ures 4(a) and 4(b) illustrate the same transverse slices of the
NCAT phantom as Figs. 2(a) and 2(d) except for different
kVp settings. Because the attenuation coefficient of the X-ray
in materials is energy-dependent, the pixel intensity of
Figs. 2(a) and 4(a) at the same location is different, as indi-
cated by the profiles in Fig. 4(c). The preHQ-guided NLM
filtering results of Fig. 2(b), using Figs. 4(a) and 4(b) as
prior image, are shown in Figs. 4(d) and 4(e). It is observed
that the pixel intensity of Figs. 4(d) and 4(e) are closer to the
prior image in Fig. 4(a), rather than that of the ground truth
image in Fig. 2(a). To mitigate this issue, a modified preHQ-
guided NLM filtering method accounting for changes in pixel
intensity was given as:61

where Cjk ¼ EðPðlLDj ÞÞ=EðPðlpreHQ registered
k ÞÞ is a local

adjusting factor used to account for changes in pixel intensity
due to different kVp settings. This strategy was also applied in
perfusion CT imaging,54,61 where the pixel intensity of differ-
ent scans can change due to contrast enhancement. However,
a large PW size may be desired to strengthen Cjk, because a
small PW may lead to an imprecise estimation of EðPðlLDj ÞÞ.
Using Eq. (14) and a large PW, the filtering results in

Figs. 4(g) and 4(h) demonstrate higher intensity accuracy
than those in Figs. 4(d) and 4(e), as indicated by the profiles.
Meanwhile, we also observed that this strategy may still
induce small pixel intensity inaccuracies, especially for rela-
tively non-uniform regions. More sophisticated approaches
may be required to further improve its performance.

Finally, we observed that the low-contrast objects and sub-
tle structures in Figs. 2(e), 3(g), 3(h) and 4(g), 4(h) are not as
well-preserved as the high-contrast objects. One reason for
this observation is that a fixed SW size and constant filtering
parameter h were used for both cases, resulting in adequate
filtering for high-contrast objects but excessive filtering for
other regions. Using the adaptive filtering strategies illus-
trated in Section 3.A.1(1), the preHQ-guided filtering results
may be further improved, especially for low-contrast objects
and subtle structures.

Database-assisted image filtering: Because previous
high quality image of the same patient may not always be
available for some clinical applications, Xu et al. extended
to utilize a database of high quality CT images from other
patients, for guided NLM image filtering.62 However, the
CT images from other patients are typically less similar to
the current low-dose image than those from the same
patient. Therefore, the authors first picked a set of images
from the database with similar anatomical structures to the
current low-dose image, and registered them to the current
low-dose image to construct the set of database priors.
Then, they subdivided current low-dose image and data-

base priors into blocks (e.g., 129 9 129), and then per-
formed block registration and guided NLM filtering in a
blockwise fashion using Eq. (11). The reason for construct-
ing a set of database priors rather than a single one is to
considerably improve the ultimate filtering result, because
one database prior unlikely matches the target image from
a different patient. In their study, the authors found that
three database priors are sufficient to faithfully restore all

guidedNLMðlLDj Þ ¼

P
k2SWj

exp �
����
����PðlLDj Þ � PðlpreHQ registeredþdegraded

k Þ
����
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the features, for either low-flux or sparse-view CT
images.62

To avoid the need for error-prone image registration and
massive image storage, Ha and Mueller also proposed to
replace the high quality image database with a database of
high quality small patches (e.g., 7 9 7). Two types of
patch database were investigated for NLM filtering of low-
flux CT image,63 a localized patch database with anatomi-
cal region tags (e.g., lung, heart, spine) and a global patch
database with no tags. For each pixel j in the low-flux CT
image, the patch is first extracted and matched with the
database patches to find a certain number of most similar
patches. Then, the patch database-assisted NLM image fil-
tering was expressed as:63

assistedNLMðlLDj Þ

¼

P
l2SPj

exp �
����
����PðlLDj Þ �PðlSPl Þ

����
����
2

2;a
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 !

� lSPl

P
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exp �
����
����PðlLDj Þ �PðlSPl Þ

����
����
2

2;a

=h2

 ! (15)

where SPj denotes the selected patches from the database
for pixel j, l indexes the selected patches, and lSPl denotes
the central pixel intensity of the lth selected patch. This
method was validated on low-flux CT images, and demon-
strated better recovery of the image features than the con-
ventional NLM filtering. Also, the global patch database-
assisted filtering removed a lower amount of structural
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FIG. 4. Illustration of the preHQ-guided NLM image filtering for low-flux CT: (a) the same transverse slice of NCAT phantom as Fig. 2(a) except for different
kVp setting; (b) the same transverse slice of NCAT phantom as Fig. 2(d) except for different kVp setting; (c) profile comparison between Fig. 2(a) and Fig. 4(a);
(d) preHQ-guided NLM filtering of Fig. 2(b) using Eq. (11) with Fig. 4(a) as prior image, SW = 332, PW = 132, h = 0.007; (e) preHQ-guided NLM filtering
of Fig. 2(b) using Eq. (11) with Fig. 4(b) as prior image, SW = 332, PW = 132, h = 0.007; (f) profile comparison between Fig. 2(a) and the filtering results in
Figs. 4(d) and 4e; (g) preHQ-guided NLM filtering of Fig. 2(b) using Eq. (14) with Fig. 4(a) as prior image, SW = 332, PW=132, h = 0.007; (h) preHQ-guided
NLM filtering of Fig. 2(b) using Eq. (14) with Fig. 4(b) as prior image, SW = 332, PW = 132, h = 0.007; (i) profile comparison between Fig. 2(a) and the fil-
tering results in Figs. 4(g) and 4(h). [Colour figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 44 (3), March 2017

1175 Zhang et al.: Applications of NLM algorithm in LDCT 1175



information than the localized patch database, because of a
larger patch variety.63 Nevertheless, it is still unknown
whether the method works on sparse-view CT images,
which are degraded with severe view-aliasing artifacts and
may jeopardize the search for matched patches from the
database.

3.A.2 NLM-regularized image restoration

Generic NLM-regularized image restoration: In addition
to applying the filter directly to a FBP reconstructed LDCT
image, the low-dose image can also be restored by solving
the following problem:

l� ¼ argminfjjl� lLDjj22 þ bUðlÞg (16)

where lLD represents the FBP reconstructed low-dose
image, as defined above. The first term in Eq. (16) is a
data-fidelity term, the second term is a regularization term,
and b > 0 is a scalar control parameter that balances the
two terms. Too small b may not eliminate noise/streaks in
LDCT image, while too large b may remove valuable
image features.

The NLM-based regularization models illustrated in
Section 2.B can be employed in Eq. (16) for the restora-
tion of FBP reconstructed LDCT images. Hashemi et al.
explored the nonlocal TV regularization for low-flux CT
image restoration with promising results.12 For sparse-view
CT, while lLD is severely degraded with view-aliasing arti-
facts and some structures are hardly resolved, the resulting
image restoration may only yield inferior image quality
because of the challenge to find similar patches within the
image.

preHQ-regularized image restoration: As discussed in
Section 3.A.1(2), if a previous high quality CT image of the
same patient is available, the prior image can be formulated
into the NLM-based regularization models in Section 2.B, to
generate the preHQ-induced NLM regularization models,
which are given as:54,58
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The preHQ-induced NLM regularizations in Eqs.(17),
(18), (19) can all potentially be employed in Eq. (16) for the
restoration of FBP reconstructed LDCT images. The prior
image contains similar anatomical structures and provides
excellent correspondence to a current low-dose image, further
improving image restoration over the use of generic regular-
izations.

3.A.3. NLM-regularized image reconstruction

Generic NLM-regularized image reconstruction: The
NLM-based regularization models in Section 2.B can be also
employed for statistical image reconstruction (SIR) of LDCT
image. In practice, the SIR method either uses calibrated
transmitted photons (before log-transform) with the pML cri-
terion or calibrated line integrals (after log-transform) with
the PWLS criterion.64 Because of its computational advan-
tage, the PWLS criterion is a common choice and is
described as:

l� ¼ argmin
l� 0

fðy� AlÞTR�1ðy� AlÞ þ bUðlÞg (21)

where y 2 RI�1 is the vector of the measured line integrals,
and I is the total number of line integral measurements;
l 2 RJ�1 is the vector of attenuation coefficients of the
object to be reconstructed, and J is the number of image
pixels; A 2 RI�J is the system or projection matrix;P 2 RI�I is the covariance matrix, and because the mea-
surement among different detector bins are assumed to be
independent, the covariance matrix is diagonal and
expressed as R¼ diagfr2yig64; the symbols T and �1 indicate
transpose and inverse operators, respectively. The first term
in Eq. (21) is a data-fidelity term that models the statistics
of projection measurements, while the second term can be
the NLM-based regularization demonstrated in Section 2.B.

Chen et al. first explored the NLM-based regularization
for Bayesian reconstruction of emission tomography43 and
X-ray CT,65 and impressive reconstruction results were
observed in noise suppression and tissue feature preservation.
Later, they also applied a joint estimation strategy to solve
the convergence problem caused by the weight update in
iterations.66 Zhang et al. compared the performance of
NLM-based regularization with traditional MRF model-
based regularizations for SIR of LDCT, and found the NLM-
based regularization can provide better noise reduction and
resolution preservation for both phantoms and patient
data.50,67,68
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Similarly to NLM filtering, the use of locally adaptive fil-
tering parameter h in NLM-based regularization can also
improve the image quality of the resulting reconstruction.68

While the local noise level in the SIR reconstructed image is
difficult to estimate, an empirical approach to determine
locally adaptive filtering parameter was given as:68

h2j ¼ s � mean
����
����PðljÞ � PðlkÞ

����
����
2;a

; k 2 SWj

( )
þ t (22)

where s and t are two constants. The rationale behind this
mathematical expression is that the value of h should depend
on the similarity between the patch of the target pixel and the
patches within the corresponding SW. When SW contains
many patches similar to P(lj), h needs to be decreased to
reduce the influence of the other patches. Conversely, when
very few similar patches exist in SW for P(lj), h needs to be
increased to relax the selection.69

Figure 5 shows the reconstructed images from the low-
dose projection data (20 mAs, 120 kVp) of a patient by
the following methods: the FBP method, the FBP recon-
struction followed by NLM filtering (referred to as
FBP + NLM filtering), the NLM-regularized SIR using
constant filtering parameter (referred to as PWLS-NLM),

and the NLM-regularized SIR using adaptive filtering
parameters in Eq. (22) (referred to as PWLS-adapti-
veNLM). The FBP + NLM filtering method cannot elimi-
nate the streak artifacts within the image, but the two
NLM-regularized SIR methods do not have such problem
because of the statistical modeling of the projection data.
As observed in the zoom-in views of three detailed
regions, the PWLS-adaptiveNLM outperforms the PWLS-
NLM on the reconstruction of subtle structures, demon-
strating the need to introduce spatial adaptivity into NLM-
based regularization. Nevertheless, besides adjusting the fil-
tering parameter h, other approaches may be used to make
the NLM-based regularization adaptive, such as those men-
tioned in Section 3.A.1(1).

The NLM-regularized image reconstruction for sparse-
view CT27 can also be formulated as Eq. (21). While a penal-
ized least-squares criterion (i.e., the covariance matrix R is
set to be identity matrix) may be adequate in relatively high
flux imaging application, a more accurate modeling of the
projection measurements would be important for a limited
number of X-ray photons in each detector bin.70 Thus, the
PWLS criterion in Eq. (21) can be a better choice to account
for the credibility of each measurement in both sparse-view
and low-flux cases.

(a) (b)

(c) (d)

FIG. 5. One reconstructed slice of a patient from low-flux projection data: (a) FBP reconstruction; (b) FBP reconstruction followed by NLM filtering (SW = 172,
PW = 52, h = 0.012); (c) PWLS-NLM reconstruction (SW = 172, PW = 52, h = 0.008); (d) PWLS-adaptiveNLM reconstruction (SW = 172, PW = 52,
s = 1 9 10�3, t = 4910�6). All images are displayed with the same window. (Figure reprinted from the work of Zhang et al.68). [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 6(a) illustrates one transverse CT image of a
patient, which is reconstructed from 1160 full projection
views with the FBP method and serves as the ground truth
for reference. Figures 6(b)–6(e) shows the reconstructed
images by the FBP method, FBP+NLM filtering, PWLS-
NLM and PWLS-adaptiveNLM, from 145 projection views
which were evenly extracted from the 1160 projection views.
The NLM-regularized image reconstructions can suppress
the view-aliasing artifacts more effectively than the FBP and
FBP + NLM filtering methods while retaining good image
quality. Also, the PWLS-adaptiveNLM is superior to the
PWLS-NLM in preserving the subtle structures within the
lung region, which may be of great importance for diagnosis.

preHQ-regularized image reconstruction: The preHQ-
induced NLM regularizations described in Section 3.A.2(2)
were also used for low-flux and sparse-view CT image recon-
struction as in Eq. (21) with promising reconstruction
results.58,71,72 It was also demonstrated that they may outper-
form the generic NLM-based regularizations in terms of
reconstructed image quality, or potentially yield good images
from lower dose acquisition, because of the introduction of a
previous high quality image.58,71,72 Finally, because optimiza-
tion of the criterion in Eq. (21) is routinely performed by an
iterative algorithm and the reconstructed image is updated
after each iteration, the artifact-matched scheme may not be
needed as in Section 3.A.1(2).

3.A.4. NLM-based projection data denoising

The NLM filter can also be applied to CT projection data
before image reconstruction.16 The accessible projection data
are commonly calibrated transmitted photons (before log-

transform) or calibrated line integrals (after log-transform).64

The calibrated transmitted photons can be described by a
Poisson distribution or ‘Poisson + Gaussian’ distribution with
consideration of the electronic noise, while the calibrated line
integrals can be approximated by a Gaussian distribution with
a nonlinear signal-dependent variance.64 Therefore, the local
noise level of the projection data can be easily determined.
Taking the calibrated line integrals as an example, the vari-
ance of each measurement can be given as:73–75

r2yi ¼
1
�N0i

expð�yiÞ;

or

r2yi ¼
1
�N0i

expð�yiÞ 1þ r2e
�N0i

expð�yiÞ
� �

(23)

where yi represents the line integral measurement along the
ith X-ray path, �yi and r2yi are the mean and variance of yi, �N0i

denotes the mean number of incident photons, and r2e denotes
the variance of electronic noise. As a result, the filtering
parameter h employed for each projection measurement can
be adjusted adaptively as h2i ¼ er2yi ¼ 2cr2yi jPWij, which is
similar to Eq. (3) but defined in the projection domain. The
NLM-based projection data denoising can then be performed
similarly as that in Eq. (1).

If the projection data of previous high quality scan and cur-
rent LDCTscan are both available, the same strategy as that of
the image domain in Eq. (11) can be potentially used to per-
form preHQ-guided projection data denoising. However, reg-
istration of the projection data can be more challenging than
that of the images, which may impede its practical application.

The denoisied projection data can then be reconstructed
by the FBP method. The CT projection data denoising is

(a) (b) (c)

(d) (e)

FIG. 6. A reconstructed slice of one patient dataset: (a) FBP reconstruction from the full 1160 projection views; (b) FBP reconstruction from 145 projection
views; (c) FBP+NLM filtering from 145 projection views (SW = 172, PW = 52, h = 0.01); (d) PWLS-NLM reconstruction from 145 projection views
(SW = 172, PW = 52, h = 0.006); (e) PWLS-adaptiveNLM reconstruction from 145 projection views (SW = 172, PW = 52, s = 1 9 10�3, t = 4 9 10�6). All
the images are displayed with the same window.
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advantageous because noise is removed early in the pipeline
preventing its propagation into the reconstruction process.17

However, the edges in the projection domain are usually not
well defined as compared to those in the image domain,
which may result in edge sharpness loss in the ultimate
reconstructed image, as shown in Fig. 7(a).

3.A.5. NLM-regularized statistical projection
restoration

NLM-based regularizations can also be used for statistical
projection restoration of low-flux CT. Similar to the SIR
methods, statistical projection restoration can optimize either
the pML or PWLS criterion in the projection domain to esti-
mate the ideal noiseless projection data from the acquired
noisy ones.22–25 For instance, the PWLS criterion in the pro-
jection domain is given as:

q� ¼ argminfðy� qÞTR�1ðy� qÞ þ bUðqÞg (24)

where q 2 RI�1 is the vector of ideal noiseless line integrals
to be estimated, and U(q) denotes a penalty term in the pro-
jection domain. Although this projection restoration is also
typically optimized by an iterative algorithm, the computa-
tional speed is far more rapid than that of the SIR.

Similar to the regularization model of Eq. (4) in the image
domain, the corresponding NLM-based regularization in the
projection domain can be described as:

UðqÞ ¼
X
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X
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where the weighting coefficient is also computed as:
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Also, similar to the preHQ-induced NLM regularization
model of Eq. (17) in the image domain, the corresponding

regularization in the projection domain can be described
as:

UðqÞ ¼
X
i

X
m2SWi

ximðq; ypreHQ registeredÞ�

/ðqi � ypreHQ registered
m Þ

(27)

where ypreHQ registered 2 RI�1 represents the projection data
of previous high quality scan registered to the projection data
of current low-dose scan, and the weighting coefficient is
given as:
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The other NLM-based regularization models can also be
adapted from the image domain to the projection domain. And
all regularization models can potentially be used for the statistical
projection restoration of low-dose projection data with Eq. (24).

The restored projection data are then reconstructed by the
analytical FBP method. The NLM-regularized statistical pro-
jection restoration may have similar drawbacks to the NLM-
based projection data denoising, that is, the ultimate FBP
reconstructed image may lose edge sharpness, as illustrated
in Fig. 7(b).

3.B. Four-dimensional CT scanning

For imaging respiratory motion-involved sites, such as the
thoracic and upper abdominal regions, four-dimensional CT
(4D-CT), and four-dimensional cone-beam CT (4D-CBCT)
have been widely used to resolve organ motions and reduce
motion artifacts.13,76,77 To achieve low-dose imaging, the same
strategies (i.e., low-flux or sparse-view acquisition) can be
employed as in three-dimensional CT scanning. In 4D-CT and

(a)           (b)

FIG. 7. One reconstructed slice from the same low-flux projection data as Fig. 5: (a) NLM-based projection data denoising followed by FBP reconstruction
(SW = 52, PW = 32, ɛ = 15); (b) NLM-regularized statistical projection restoration followed by FBP reconstruction (SW = 52, PW = 32, ɛ = 3).

Medical Physics, 44 (3), March 2017

1179 Zhang et al.: Applications of NLM algorithm in LDCT 1179



4D-CBCT, the projection data can be sorted into different
groups corresponding to different breathing phases. After phase
binning, each phase image can be reconstructed independently
with either analytical (e.g., FBP, FDK) or iterative reconstruc-
tion methods. Each phase image can also be improved with the
methods presented in Section 3.A. However, these methods
neglect the highly temporal correlation between the images at
successive phases, which could potentially improve the image
quality of each phase. The same anatomical features may exist
in successive phases, with slight motion and deformation.
Therefore, Li et al. developed a partial temporal nonlocal
means filter for 4D-CT, which uses a partial temporal profile to
determine the similarity between pixels and exploits redundant
information in both temporal and spatial domains to achieve
noise reduction.78 In addition, a temporal NLM (TNLM)
method was proposed for image enhancement and reconstruc-
tion of 4D-CT and 4D-CBCT, to exploit the temporal redun-
dancy among images at successive phases.13,76,77

Let us divide a respiratory cycle into N phases labeled by
n=1,2,. . .,N. The image of phase n is denoted by
lfng 2 RJ�1, and a periodic boundary condition along the
temporal direction is assumed, i.e., l{N+1} = l{1}. The
TNLM regularization model is described as:13,76,77
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And according to Section 2.B, the TNLM regularization
model can also be given as:
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¼
X
j

/ lfngj �
X
k2SWj

wjkðlfng;lfnþ1gÞ�lfnþ1g
k

0
@

1
A (31)

Uðlfng; lfnþ1gÞ ¼ 1
p

X
j

 X
k2SWj

wjkðlfng; lfnþ1gÞ �

ðlfngj � lfnþ1g
k Þ2

!p=2

; 0\p\2

(32)

It can be seen that the TNLM regularization models are
very similar to those described in Section 3.A.2(2), although
they exploit neighboring phases instead of a previous high
quality image.

3.B.1. TNLM-regularized image restoration

Let gfng 2 RJ�1 denote the reconstructed image of phase n
by the analytical FBP/FDK method from the phase binned pro-
jection data. The TNLM-based image restoration or enhance-
ment method for 4D-CT/4D-CBCTcan be given as:13

l�fng
n o

¼ argmin
XN
n¼1

�
ðlfng � gfngÞTðlfng � gfngÞ
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2

2

þ bUðlfng; lfnþ1gÞ
( )

(33)

3.B.2. TNLM-regularized image reconstruction

Let yfng 2 RI�1 denote the vector of phase binned line
integrals of phase n, Afng 2 RI�J represent the projection
matrix of phase n that maps the image l{n} into a set of pro-
jections corresponding to various projection anglesPfng 2 RI�I represent the covariance matrix for phase
binned line integrals of phase n, then the TNLM-based image
reconstruction method for 4D-CT/4D-CBCT can be
described as:13,76,77

Also, as discussed in Section 3.A.3(1), Eq. (34) may be
replaced with the following form when the X-ray flux is rela-
tively high:
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In these optimization problems, the images at every phase
are reconstructed altogether instead of independently.

Figure 8 illustrates the 4D-CBCT images of the NCAT
phantom from sparse-view acquisitions (30 projection views
spanned evenly in 360° rotation), by the following methods:
analytical FDK reconstruction, TNLM-regularized image
restoration or enhancement (referred to as TNLM-E) in
Eq. (33), and TNLM-regularized image reconstruction (re-
ferred to as TNLM-R) in Eq. (35). Both TNLM-E and
TNLM-R methods mitigate the view-aliasing artifacts to a
large extent, as compared with the FDK method. In the
absence of other problems such as data truncation, the
TNLM-R method can yield higher image quality than the
TNLM-E method.13

In addition, Kazantsev et al.79,80 argued that structurally
similar features may exist in much more distant time frames
than simply adjacent ones, although the two neighboring
frames have a higher probability to be structurally similar to
the central frame. Therefore, they proposed to employ all
available temporal data to improve the spatial resolution of
each individual time frame. However, this approach would
inevitably further increase the computational burden,
although the patch selection as in Eq.(10) can be utilized to
accelerate the process to some extent.

4. DISCUSSIONS AND CONCLUSIONS

This paper reviews various applications of the NLM algo-
rithm in LDCT from low-flux and sparse-view acquisitions.
The NLM algorithm can be used as a filter for image/projec-
tion filtering, which is a typical non-iterative procedure. The
NLM algorithm can also be formulated as a regularization
term for regularized image/projection restoration and image
reconstruction, routinely performed by optimizing an objec-
tive function with an iterative algorithm. Based on the form
of objective function, iterative algorithms including gradient
descent, conjugate gradient, expectation maximization, itera-
tive coordinate descent, separable paraboloidal surrogates81

may be employed to obtain the solution. Moreover, accelera-
tion techniques including ordered subsets,82 nonhomoge-
neous update,83 alternating direction method of multiplier,84

first-order method based on Nesterov’s algorithm85 can also

be combined. Generally, the computational load of the NLM-
regularized strategies is much higher than that of the NLM-
based filtering strategies due to iterations. However, CT
image quality may be remarkably improved despite the
increased computational time. For instance, NLM-regularized
image reconstruction takes advantage of projection data (e.g.,
statistical modeling) and imaging geometry (e.g., projection
matrix), and can produce better image quality than NLM-
based filtering or restoration strategies, as demonstrated in
Figs. 5, 7, and 8.

For CT from low-flux acquisitions, the NLM strategies for
noise and streak artifacts reduction can operate in both image
and projection domains. While the noise and streak artifacts
in low-flux CT images cannot be modeled with a general dis-
tribution, the noise properties of low-flux projection data are
fairly well understood.64 Comparing Fig. 7(a) with Fig. 5(b),
it is found that the projection denoising performs better than
the image denoising in terms of noise and streak artifacts sup-
pression, for this specific patient study. This finding is con-
sistent with the results from a study by Xia et al., who
applied a partial diffusion equation based denoising tech-
nique for breast CBCT on both projection data and recon-
structed images.86 However, projection denoising and
statistical projection restoration may lose edge sharpness in
the ultimate reconstructed image (as shown in Fig. 7),
because the edges in the projection domain are usually not as
well defined as those in the image domain. Compared
Fig. 5(d) with Fig. 7(b), NLM-regularized statistical image
reconstruction (operating in image domain) better preserves
the edge/detail than the NLM-regularized statistical projec-
tion restoration (operating in projection domain). This find-
ing is also consistent with a previous study87 which
compared the performances of the image domain and projec-
tion domain PWLS implementations using anisotropic diffu-
sion filter-based regularization. Overall, the NLM-
regularized statistical image reconstruction in Eq. (21), which
optimizes an objective function defined in the image
domain and also takes advantage of noise properties of the
projection data, seems to yield the best image quality of all
NLM strategies.

While the use of previous high quality scan to improve
current LDCT image reconstruction has become a research

FIG. 8. 4D-CBCT images of the NCAT phantom at the maximum inhale (MI) and the maximum exhale (ME) phases generated by three different methods from
sparse-view acquisitions. (Figure reprinted from the work of Jia et al.13).
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endeavor, one major limitation is that the previous high qual-
ity image usually needs be registered to a current low-dose
image. The NLM-based strategies do not heavily depend on
registration accuracy, hence a rough registration can be suffi-
cient because of the patch-based search mechanism. Because
direct filtering of the LDCT image is usually problematic, the
introduction of a previous high quality image can signifi-
cantly improve current low-dose image filtering, as shown in
Figs. 2 and 3. Similarly, a previous high quality image can
also be formulated into the NLM-based regularization mod-
els, to improve image restoration or reconstruction of the cur-
rent LDCT. While generic NLM-regularized image
restoration or reconstruction may already be able to generate
good image quality for LDCT, preHQ-regularized image
restoration or reconstruction can potentially further improve
image quality or yield as good image from lower dose acqui-
sition. Finally, although preHQ-guided projection data
denoising and preHQ-regularized statistical projection
restoration can be applied in theory, they may not be practical
due to the following reasons: (a) the registration of the pro-
jection data is more challenging than the registration of the
images; (b) it is more difficult to find sufficient similar
patches in the projection data than in the images. Instead, the
previous high quality scan-induced NLM strategies in the
projection domain can be converted to the image-domain
strategies (i.e., preHQ-guided image filtering, preHQ-regular-
ized image restoration, and preHQ-regularized statistical
image reconstruction) after the FBP reconstruction of previ-
ous high quality projection data, so that the edge/detail of the
resulting image can be better preserved.

Introducing spatial adaptivity to the NLM algorithm can
be beneficial to improve the image quality of LDCT, espe-
cially for low-contrast objects and subtle structures, as illus-
trated in Figs. 5 and 6. The reason is that uniform smoothing
strength can be too weak for some regions but too strong for
others within the image, hence the need for spatially-variant
adaptive smoothing. Spatial adaptivity can be incorporated
into the NLM algorithm in different ways, including design-
ing adaptive filtering parameter h, employing adaptive SW,
excluding dissimilar patches within the SW. So far, these
adaptive approaches have mainly been explored for generic
NLM strategies but rarely for preHQ-induced NLM strategies
for two main reasons: (a) it is more difficult to incorporate
spatial adaptivity for preHQ-induced NLM strategies because
of the introduction of previous high quality image; and (b) it
is less important to incorporate spatial adaptivity because the
previous high quality image can provide more correspon-
dence to the current LDCT image for structure recovery.
However, spatially-variant adaptive smoothing may still be
beneficial to preHQ-induced NLM strategies and may be an
interesting topic for further investigation. Finally, since aniso-
tropic structure is commonly observed in real-world images,
some anisotropic NLM algorithms were also proposed to
improve the denoising performance, such as substituting the
square patches of fixed size by spatially adaptive shapes,88

using image gradient information to estimate the edge orien-
tation,89 and incorporating structure tensor into weighing

calculation.90 Investigation on these strategies for LDCT
applications can be another interesting research topic.

While NLM-based strategies have been successfully used
in the LDCT scenario, two drawbacks include sophisticated
parameter tuning and heavy computational burden. For
NLM-based image/projection filtering, four parameters gen-
erally need to be tuned: SW size, PW size, standard deviation
a of the Gaussian kernel, and filtering parameter h. More
parameters may be needed when the adaptive scheme is used.
And for NLM-regularized image/projection restoration or
image reconstruction, an additional parameter (scalar control
parameter) needs to be selected. Determining the optimal val-
ues for these parameters is challenging, and in practice, they
are usually set empirically via the extensive trial-and-error
process. It was found that SW size, PW size and standard
deviation a do not usually have noticeable effects on the
reconstructed image when set in a reasonable range; filtering
parameter h and control parameter b need to be manually
tuned. Also, the superior performance of NLM-based strate-
gies is offset by the cost of increased computational time.
One time-consuming procedure is the calculation of patch
distance within a large SW. Various schemes have been pro-
posed to speed up this process, including preselecting
patches,52,91 neglecting Gaussian kernel,92,93 taking advan-
tage of symmetry,10 and employing GPU for parallel process-
ing.10,94 For NLM-regularized image reconstruction,
employing an iterative algorithm to optimize the objective
function is also time-consuming because of multiple re-pro-
jection and back-projection operation cycles in the projection
and image domains. Many software15,83–85 and hardware95–99

approaches have been investigated to substantially reduce the
reconstruction time. With advancements in fast computation
through the development of dedicated software and hardware,
the computational burden may be not a major challenge in
the future, and the NLM-based strategies may move closer
for clinical use.

We have only reviewed the applications of the NLM algo-
rithm in a standard LDCT scenario (low-flux or sparse-view
acquisition), however, it may also be applied to other low-
dose problems such as interior CT and short-scan CT, or to
suppress artifacts caused by other imperfections. Moreover,
the NLM algorithm may also be used in perfusion
CT,54,61,78,100 dual-energy CT,101,102 and multi-energy CT103

scenarios, although special adjusting strategies are needed to
account for changes in pixel intensity due to contrast perfu-
sion or energy differences. We hope this review will motivate
more studies in the fields.

Finally, it is worth mentioning that many other filters may
potentially be applied to LDCT in similar manners as demon-
strated in this review, and the NLM filter is essentially one of
them. Because of patch use, NLM-based strategies may yield
better image quality than traditional filters-based strategies.
Recently, sparse dictionary learning104,105 has drawn great
interest, which also takes advantage of the patches and can be
considered as an extension of the NLM algorithm.106 Suc-
cessful applications of dictionary learning have been reported
in the LDCT scenario for projection denoising,107–109 image
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denoising110–112 and reconstruction.113–115 For instance, Chen
et al.112 proposed an image-domain artifact suppressed dic-
tionary learning method to suppress the streak artifacts and
noise in LDCT image, which designed novel discriminative
dictionaries to cancel the streak artifacts in high-frequency
bands. Xu et al.114 used the dictionary learning-based sparsi-
fication as regularization term in SIR for LDCT, and demon-
strated superior performance in noise reduction and structural
feature preservation. The other strategies reviewed in this
paper may also be explored for dictionary learning in the
future.
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