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Abstract

The geometrical confinement of small cell colonies gives differential cues to cells sitting at

the periphery versus the core. To utilize this effect, for example to create spatially graded dif-

ferentiation patterns of human mesenchymal stem cells (hMSCs) in vitro or to investigate

underpinning mechanisms, the confinement needs to be robust for extended time periods.

To create highly repeatable micro-fabricated structures for cellular patterning and high-

throughput data mining, we employed here a simple casting method to fabricate more than

800 adhesive patches confined by agarose micro-walls. In addition, a machine learning

based image processing software was developed (open code) to detect the differentiation

patterns of the population of hMSCs automatically. Utilizing the agarose walls, the circular

patterns of hMSCs were successfully maintained throughout 15 days of cell culture. After

staining lipid droplets and alkaline phosphatase as the markers of adipogenic and osteo-

genic differentiation, respectively, the mega-pixels of RGB color images of hMSCs were

processed by the software on a laptop PC within several minutes. The image analysis suc-

cessfully showed that hMSCs sitting on the more central versus peripheral sections of the

adhesive circles showed adipogenic versus osteogenic differentiation as reported previ-

ously, indicating the compatibility of patterned agarose walls to conventional microcontact

printing. In addition, we found a considerable fraction of undifferentiated cells which are pref-

erentially located at the peripheral part of the adhesive circles, even in differentiation-induc-

ing culture media. In this study, we thus successfully demonstrated a simple framework for

analyzing the patterned differentiation of hMSCs in confined microenvironments, which has

a range of applications in biology, including stem cell biology.
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Introduction

Learning how spatial confinement orchestrate the differentiation processes of cells is essen-

tial for the investigation of mechanisms that regulate morphogenesis of multicellular system

and tissue regeneration processes [1–3]. While numerous studies have shown the impor-

tance of spatial gradients of soluble factors during development [1,4], the importance of

spatial patterning [5–11] and of the mechanical environment such as stiffness or surface

tethering of the material emerged as additional key factors that regulate cell fate, including

that of stem cells [12–19]. Moreover, gradients of mechanical forces can guide the spatially

differentiation pattern of stem cell populations [6,20]. The mechanosensory inputs from

the environment are converted into cellular signals by various mechanisms, including the

stretching of molecules within the force-bearing protein networks by which the extracellular

environment is coupled via the cytoskeleton to the cell nucleus and the resulting mechano-

transduction processes take an essential role in regulating cell differentiation [21–28].

While many of the mechanisms have been delineated from single cell studies, investigations

of differentiation processes of multicellular systems under micro-confined conditions are

required to finally close the gap of our understanding how single cell studies might relate to

the tissue level.

While numerous patterning methods are currently utilized to investigate how spatial con-

finement regulates cell functions [29,30], many of them cannot confine cell populations for

extended time periods. For example, cells can scrape off microprinted adhesion molecules

which often limits the durability of the pattern to several days in some cases [31,32]. In the

past, the combination of micro contact printing of cell adhesive molecules such as fibronec-

tin and adsorption of blocking agents such as polyethylene glycol was commonly used for

cell patterning [33]. Because of the weak physisorption of adhesive and blocking agent onto

the substrate surface, those patterns can be removed by cells in long-term cell culture. This

is a particularly pressing problem for the study of stem cell differentiation processes. To

improve on the long term-stability of micro patterns, agarose micro structures were recently

developed for cell patterning based on repellency [34]. Utilizing the extremely inert property

of agarose with respect to cellular adhesion [35] and biomolecular absorption [36], it was

shown to successfully contain cellular patterns for more than 10 days [37]. This method does

not limit the adhesive types such as poly-L-lysine (PLL) or proteins, therefore, it is suitable

for patterning of a variety of surface chemistries, proteins, and cells. Since agarose is com-

monly available in biological laboratories for various uses [38–40], this patterning method is

simple and generic and can easily be applied in a wide context of biomedical research. Here

we show that it is well suited for stem cell differentiation experiments that run over extended

time periods. The simple and high-throughput agarose micro-patterning technique is com-

bined here with high-throughput machine learning-based image processing, since such

experiments involve numerous microphotographs of hMSCs. Early studies [6] have classified

the differentiation of hMSCs by superposition of single color stains, for example, Oil Red O

staining and Fast Blue staining for adipogenic and osteogenic differentiation, respectively,

using color CCD images. While simple thresholding is intuitive, there is room for improve-

ment for high-throughput image analysis with better accuracy and reproducibility. Sup-

ported by increasing computational speed, machine learning analysis is getting increasingly

popular in biology [41]. Especially, supervised learning approach with support vector

machine (SVM) available in open source libraries is quite effective for discriminating data

into known classes [42]. SVM algorithm, which is much simpler than the cutting-edge

machine learning methods such as deep learning [43], is applied here to classify spatially dif-

ferentiated hMSCs.
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Materials and methods

Whole procedure of hMSC culture and analysis

In this study, we designed an experimental framework to investigate how geometrical con-

straints influence the differentiation of hMSC populations, using materials and technologies

that are widely available in biology laboratories. The procedure consists of three steps: (1) fab-

rication of agarose micro-wall arrays (Fig 1A), (2) cultivation and differentiation of hMSCs

(Fig 1B), and (3) machine learning based classification with support vector machine for the

microphotograph of differentiation-marker-stained hMSCs (Fig 1C).

Preparation of micro-molds

PDMS micro-molds were prepared by a photolithographic method [44]. Briefly, negative pho-

toresist (SU-8 2035) (Nippon Kayaku, Tokyo) was coated on a 2-inch-diameter Si-wafer (p-

type, mirror-finished <100> surface) (SEMITEC, Chiba) with a spin-coater (1H-D7) (Mikasa,

Tokyo) spinning first at 500 rpm for 10 s and then at 4,500 rpm for 30 s more. The photoresist

covering the Si-wafer was baked at 95˚C for 10 min. The photoresist was exposed to UV-light

at an intensity of 9.9×103 mW/cm2 for 12 s with a mask aligner (MA-10) (Mikasa) through a

photomask having a desired pattern. The photoresist after UV-exposure was baked at 95˚C for

3 min and treated with a developer, 2-methocy-1-methylethyl acetate (130–10505) (Wako,

Osaka). The remaining photoresist on the wafer was used as a mold for the micro molds.

PDMS and a curing agent for PDMS (Sylpot 184 W/C) (Dow Corning Toray, Tokyo) were

mixed at a ratio of 10 to 1. The PDMS mixture was poured into the Si-wafer mold and cured at

80˚C for 3 h. The cured PDMS was peeled off from the Si-wafer, trimmed, and punched out

with a 2-mm-diameter through hole on the center of desired pattern as an application port for

agarose solution, resulting in a micro-mold for casting agarose micro wall array.

Fabrication of agarose micro-wall array

Agarose micro-wall arrays were fabricated on a cell culture surface as previously described

[34]. Briefly, the surface of the PDMS micro-mold was cleaned with mending tape (MP-18)

(Sumitomo 3M, Tokyo). After rinsed with ethanol and deionized water, the PDMS micro-

mold was placed on a PLL coated glass bottom dish (D11141H) (Matsunami Glass Ind.,

Osaka). The mold and dish were placed in a vacuum desiccator connected to a vacuum line

and degassed at a gauge pressure of -98 kPa for 1 hour. Immediately after degassing, the mold

and dish were removed from the desiccator and 2w/v% agarose aqueous solution (A2576)

(Sigma-Aldrich, St. Louis, MO) heated to boiling in a microwave oven was poured into the

hole on the PDMS micro-mold by a micro-pipette. It was placed on a plate heater with a sur-

face temperature of 50˚C until the agarose solution was guided into the PDMS micro-mold by

negative pressure and completely filled the space inside. The mold and dish were then cooled

at 4˚C for 30 min to induce the gelation of agarose. The gelated agarose was dehydrated in a

drying oven (EO-300B) (ASONE) at 70˚C for 2 d. Peeling off the PDMS micro-mold, the

dehydrated agarose patterns remained on the surface of the glass bottom dish. The surface of

micro-wall was monitored with a three-dimensional laser scanning confocal microscope (VK-

8710) (Keyence, Osaka).

Cell culture

Human mesenchymal stem cells (hMSC) were a kind gift from Dr. Sandra Hoffman. hMSCs

were isolated from Poietics™ Human Bone Marrow (Lonza, Basel) [45] as previously described

[46]. The passage numbers of hMSCs was kept at 6 or below. hMSCs were cultured in growth
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Fig 1. Experimental procedures. (A) Fabrication of agarose micro-wall arrays: Agarose solution was

introduced into degassed polydimethylsiloxane (PDMS) mold on a poly-L-lysine (PLL) coated glass culture

surface. After gelation and dehydration of agarose solution, agarose micro-wall array was recovered on the glass

surface by removal of the PDMS mold. (B) Cultivation and differentiation of human mesenchymal stem cells

(hMSCs): hMSCs were seeded on the agarose micro-wall array. After 1-d cultivation in growth medium, the

Agarose micro-confinement and machine learning for MSC differentiation analysis
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medium consisting of Dulbecco’s modified Eagle’s Medium (DMEM, low glucose, Gluta-

MAX™ supplement, pyruvate; 21885) (Thermo Fisher Scientific, Waltham, MA), 10% MSC

qualified FBS (12662–029) (Invitrogen, Carlsbad, CA), 1% non-essential amino acids (11140–

035) (Invitrogen), 1 ng/mL human recombinant basic fibroblast growth factor (13256–029)

(Invitrogen) and 100 unit/mL penicillin and 100 μg/mL streptomycin (15140–122) (Thermo

Fisher Scientific, Waltham, MA). To induce the differentiation of hMSCs, adipogenic induc-

tion medium (PT-3102B and PT-4135) (Lonza) and osteogenic differentiation medium were

prepared. The osteogenic differentiation medium was composed of DMEM freshly supple-

mented with 50 μg/mL (+)-sodium L-ascorbate (A4034) (Sigma-Aldrich), 1 mM β-glycero-

phosphate (G9422) (Sigma-Aldrich) and 10 nM dexamethasone (D4902) (Sigma-Aldrich). For

expansion, hMSCs were seeded in tissue culture flasks (T75 cm2) (TPP, Trasadingen) at a den-

sity of 2500 cells/cm2. hMSCs near confluence were trypsinized and frozen in MSC qualified

FBS containing 10% DMSO (D2438) (Sigma-Aldrich) for further use. For patterned differenti-

ation, hMSCs at passage 5 were thawed in growth medium and cultured in tissue culture flasks

for a few days. The fabricated agarose micro-wall array was washed with PBS followed by ster-

ilization by UV for 15 min. It was preincubated with hMSC growth media for more than 30

min in humidified CO2 incubator prior to seeding hMSCs. hMSCs before reaching confluence

were trypsinized and then seeded on the adhesive dots surrounded by agarose micro-wall on

the glass bottom dish at a density of 2×104 cells/cm2. After 24 hours of initial culture with

growth medium, the medium was replaced to either growth, adipogenic, osteogenic or mixed

medium (adipogenic:osteogenic = 1:1 in volume) and cultured for 14 days. The medium was

replaced every 3 days. As a control without patterns, hMSCs were cultured in 12-well plate

(92012) (TPP), which was coated with 0.001% poly-L-lysine (P4707) for 1 hour prior to cell

seeding (Sigma-Aldrich).

Staining

After 14 days of cell culture with differentiation or control medium, the cells were once rinsed

with PBS and fixed by 4% paraformaldehyde (PFA) (P6148) (Sigma-Aldrich) in PBS for 1 min.

Subsequently, alkaline phosphatase was stained with freshly prepared and filtered staining

solution containing 1 mg/mL Fast Blue RR salt (F0500) (Sigma-Aldrich) and 200 μg/mL Naph-

thol AS-MX phosphate (N4875) (Sigma-Aldrich) in 0.1 M Tris buffer (pH 8.5) for 30 min. The

cells were then further fixed by 4% PFA in PBS for 20 min. After rinsing with PBS and 60% iso-

propanol, the cells were stained with 30 mg/mL lipid (Oil Red O) Staining Kit (MAK194)

(Sigma-Aldrich) solution in 60% isopropanol.

Analysis of hMSC differentiation

The stained cells were imaged with an inverted phase-contrast microscope (Axiovert 200M)

(Carl-Zeiss, Oberkochen) equipped with a digital color CCD camera (AxioCam MRc) (Carl-

Zeiss) with a pixel resolution of 1388×1040. The microscopic images of the cells obtained from

the digital color CCD camera were analyzed by a home-made software of machine learning

based classifier (available as an open source in S1 File). In this study, the lipid droplets stained

medium was replaced into four different types of culture media; (1) growth, (2) adipogenic, (3) osteogenic, and

(4) adipogenic-osteogenic mixture media and hMSCs were cultivated for more 14 days. After the further

cultivation, cells were fixed and stained for adipogenic and osteogenic markers and then observed by

microscope. (C) Machine learning based classification of hMSC patterned differentiation: The classifier with

support vector machine was trained with supervised data composed of small regions of microphotographs

selected by a human operator. The trained classifier automatically labeled each pixel based on the classified

result.

https://doi.org/10.1371/journal.pone.0173647.g001
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by Oil Red O, the alkaline phosphatase-positive part and the area negative to both of the stains

were automatically classified as (1) adipogenic, (2) osteogenic and (3) non-differentiated areas,

respectively, based on the intensity balance of RGB channels of the color image. The software

was coded in the programing language Python 3.5.1 with an open source platform (Anaconda

4.0.0) (Continuum Analytics, Austin, TX) including a computer vision library (OpenCV

3.1.0), a numerical computing library (NumPy 1.10.4), and machine learning library (scikit-

learn 0.17.1). For machine learning, the small images mainly containing (1) adipogenic, (2)

osteogenic, and (3) non-differentiated areas were first imported to the software as training

data. In this step, the software learns the representative distribution of the pixel intensities of

those three different areas in RGB space and thus creates a benchmark on how to classify given

pixel to those three categories using a support vector machine (SVM). After the training step,

color CCD images of hMSCs in dots or flat areas were processed by the software to evaluate

the spatial differentiation of hMSCs to adipogenic and osteogenic lineages. Data processing to

classify those hMSC differentiation was performed on a tablet style PC (Surface Pro 3) (Micro-

soft, Redmond, WA). Post analysis of classified images to determine the spatial distribution of

differentiated area was performed by MATLAB 2013b (Mathworks, Natick, MA).

Results and discussion

Agarose micro-confinement array

A PDMS micro-mold with five different diameters of circle columns (800, 400, 200, 100, and

50 μm) was prepared on the PLL-coated glass bottom dish (Fig 2A and 2B). Agarose solution

with a volume of 50 μL was applied from the center hole of the degassed PDMS micro-mold by

simply pipetting (Fig 2C and 2D). In this experiment, ultra-low-gelling-temperature type aga-

rose (A2576) (Sigma-Aldrich) was used to prevent the agarose solution from gelling during

the poring of the solution into the micro-mold. The solution was then immediately sucked

into the space between micro-mold and the surface of glass bottom dish, guided by the nega-

tive pressure caused by the degassed PDMS micro-mold (Fig 2E). After the gelation and dehy-

dration of agarose, the micro-cast agarose was created on the glass bottom dish by peeling the

micro-mold from the dish (Fig 2F).

The structure of micro-walls was clearly observed in phase-contrast micrographs (Fig 2G

and 2H). The structures of PDMS micro-mold were precisely transferred to agarose patterns,

thus, it resulted in the agarose wall containing circular vacant spaces with five different diame-

ters corresponding to the original mold (Fig 2G). In the smallest case, the circular cell-adhesive

area with a diameter of 50 μm surrounded by dry agarose wall with 4 μm-height was success-

fully fabricated on PLL-coated glass bottom dish (Fig 2H, 2I and 2J).

The previous study has already revealed that the height of the agarose micro-wall was

always shrunk, resulting in round edges of agarose microstructures due to the dehydration of

agarose during the fabrication [34]. On the other hand, both high accuracy and high reproduc-

ibility of size have been confirmed in both planar and height dimensions except for the edges.

Although the edges of agarose micro-walls were often rounded, this hardly effect the cells in

this study because the cells were unable to adhere to the agarose surface.

Cultivation of hMSCs on a PLL surface contained by agarose micro-

walls

Within a few hours after seeding, the hMSCs adhered to the PLL-coated glass bottom surfaces.

The edge of the agarose micro-wall was clearly observable, indicating that the agarose surface

Agarose micro-confinement and machine learning for MSC differentiation analysis
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Fig 2. Preparation of agarose micro-wall array. (A) Pattern design. (B) Polydimethylsiloxane (PDMS) mold with the designed

pattern was placed on a poly-L-lysine coated glass bottom dish. (C) Application of agarose solution to degassed PDMS mold. (D) Few-

hundred-μL-agarose solution was applied from the center hole of degassed PDMS mold. (E) The internal space of PDMS mold was

gradually filled with agarose solution without any external pumping. (F) The agarose micro-wall array recovered on the glass surface.

(G) Microphotograph of a part of agarose micro-wall array with variety features. Black bar indicates 800 μm. (H, I, and J)

Agarose micro-confinement and machine learning for MSC differentiation analysis
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successfully repelled the adhesion of hMSCs. The cells adhered on the circular adhesive areas

with 200, 400 and 800 μm of diameters, confined by agarose walls.

After 15 days of cell culture, the hMSCs showed confluence on all of the PLL-coated sur-

faces either with or without confinement by patterned agarose micro-walls. Throughout

the cell culture times with all types of different media, the circular patterns of hMSC were

completely maintained (Fig 3). The staining revealed the spatial distribution of lipid droplets

and alkaline phosphatase activity that are the markers of early adipogenic and osteogenic dif-

ferentiation, respectively. Additionally, the whole bottom surface of confinement was filled

with a monolayer of cells (S2 File, S1 Fig and S1 Movie), whereby we noted that the cell nuclei

closer to the center were higher than those at the periphery (S1 Movie). In general, the hMSCs

cultured with osteogenic differentiation factors (O or A/O mix in Fig 3) showed strong alkaline

phosphatase activity, while weaker (A) or faint signals (G) were observed in the other condi-

tions. In addition, adipogenic differentiation was observed only in the presence of adipogenic

induction factors (A or A/O mix in Fig 3). The spatial distribution of adipogenic and osteo-

genic differentiation of hMSCs seemed random without agarose patterns.

Importantly, spatial gradients of differently differentiated cells emerged for hMSCs culti-

vated in a mixed medium (A/O mix in Fig 3). Confirming the observations made by Chris

Chen and colleagues [6], hMSCs at the center of the adhesive surfaces preferentially differenti-

ated into adipocytes, while those at peripheral regions underwent osteogenesis. They showed

by measuring traction forces revealed gradients of stress that preceded and mirrored the pat-

terns of differentiation, where regions of high stress resulted in osteogenesis, whereas stem

cells in regions of low stress differentiated to adipocytes [6]. For hMSCs cultured on micro-

printed adhesive islands, it was concluded that cells at the edge of the micropattern apply

higher traction forces to the substrate as they are lacking cell-cell contacts to nearest neighbors

and that cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment [8].

What these authors, however, did not describe or analyze further, presumably due to the

inherent instability of the micropatterned edges, is an additional observation made with our

method: a considerable fraction of cells does not stain at all when cultured in all of these three

induction media, and this fraction of undifferentiated cells is preferentially located as well in

the peripheral regions of the confined adhesive islands (Fig 3).

Machine learning based classification of patterned hMSC differentiation

For further analysis of the differentiation patterns of hMSCs in confined spaces, we developed

a machine learning-based image processing software (S1 File), which automatically classifies

adipogenic, osteogenic, and undifferentiated areas of hMSC populations in RGB color images.

In the following image analysis procedure, adipogenic and osteogenic areas were characterized

by OilRed O staining of lipid droplets (red) and Fast Blue staining of alkaline phosphatase

(blue), respectively. The areas negative to both of stains were regarded as resulting from undif-

ferentiated cells. As a pre-training step, three reference groups of microphotographs mainly

containing (1) adipogenic, (2) osteogenic, and (3) background were prepared (training data in

S1 File and S2 Fig) as machine-learning based classifier. The size of micrographs was around

100×100 pixel square. Those training microphotographs purposely contain several dark areas,

where it is hard for human visions to precisely discriminate the colors. The intensities of each

pixel in RGB space were plotted in the 3D scatter graph (Fig 4A). The plots from those three

reference areas formed three clusters in RGB color space. Those clusters roughly distributed

Microphotograph, three-dimensional view, and cross-sectional profile of the smallest feature of agarose micro wall. White rectangle in

(I) indicates the area of cross-sectional profile (J). White bar indicates 20 μm.

https://doi.org/10.1371/journal.pone.0173647.g002
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around the diagonal line from the origin (R = 0, G = 0, B = 0) to the point at maximum value

(R = 255, G = 255, B = 255). Based on those representative distributions of RGB pixel intensi-

ties of reference areas, the software creates the steric borders in RGB space to classify each

pixel of given color image to three categories utilizing a SVM. The training time for the pre-

pared data was 118±0.390 s (mean±SD, n = 3). Since several pixels of different reference

Fig 3. Differentiation of human Mesenchymal Stem Cells (hMSCs) after 15 days in culture. Micrographs from the left to right rows show

hMSCs cultivated in the control, 800, 400, and 200 mm-diameter confinements, respectively. Micrographs from upper to lower lines show

hMSCs cultivated in growth, adipogenic, osteogenic, and adipogenic-osteogenic mixture media, respectively. White bar indicates 200 μm. G:

Growth, A: Adipogenic, O: Osteogenic, and A/O mix: Adipogenic-osteogenic mixed media.

https://doi.org/10.1371/journal.pone.0173647.g003
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images are locating close in RGB space, there is an inevitable error when classifying pixels to

three groups. In this case, the accuracy of classification for training data was calculated 98.2%

(error / total = 1,621 / 91,184 pixels). After the training step, the color images of hMSCs

were processed by the pre-trained machine learning based classifier to distinguish the (1)

Fig 4. Machine learning based classification of patterned human Mesenchymal Stem Cell (hMSC) differentiation. Graph (A)

shows the color distributions of pixels enclosed in (1) OilRed O positive (Adipogenic), (2) FastBlue positive (Osteogenic), and (3) negative

(Undifferentiated or background) areas in a red-green-blue (RGB) three-dimensional color space. Microphotographs (B-E) show the

stained surfaces of hMSCs cultured in growth, adipogenesis, osteogenesis, and adipgenesis-osteogenesis mixture media, resulting in

classified images (F-I), respectively. White bar indicates 200 μm.

https://doi.org/10.1371/journal.pone.0173647.g004
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adipogenic, (2) osteogenic, and (3) undifferentiated areas (Fig 4B–4I and S3–S6 Figs). The clas-

sification results appear to be accurate and the analyzing time per a target image with a pixel

resolution of 1380×1040 was 53.5±0.146 s (mean±SD, n = 54), which is realistic scale for bio-

logical image analysis. Some pixels are detected adipogenic in the image of the hMSCs cultured

with osteogenic medium (Fig 4D and 4H). The lipid droplets produced in adipogenic cells has

at least several μm in size, therefore, those dispersed pixels observed in osteogenic condition

are thought to be inevitable errors of classification described previously. Those errors could be

corrected by further image filtering. However, we used those classification results to keep the

process simple, because evaluated 98.2% of accuracy was enough for our image analysis.

The automatic classification by machine learning-based method utilized here has two mer-

its for analyzing hMSC patterns: (1) elimination of threshold determination and (2) reduction

of analysis time. Manual partitioning and classification of microscopic image are typically

achieved by careful tuning of threshold values. While simple thresholding works intuitively

and efficiently for intensity-based monochrome images such as fluorescent image, it gets

increasingly difficult to set the proper thresholds as the dimension of information increases

such as color images. This is obvious from Fig 4 that simple thresholding does not work to seg-

ment the three clusters even in three-dimensional RGB space. Even in cases where a rough par-

titioning of differentiation pattern is available, manual operation in single pixel level is not

practical for analyzing hundreds of images in terms of reproducibility and analysis time. In our

machine learning-based approach, SVM automatically finds the optimized borders of different

clusters in RGB space from reference images and thus achieved more accurate and reproduc-

ible classification of differentiation patterns than manual partitioning in single pixel level.

Since the staining methods of hMSCs are often limited to non-fluorescent dyes, this machine

learning-based classifier could be a simple and useful tool to analyze the cells in color images.

In comparison to the deep learning approach gaining attention recently [47], deep learning

based image processing enables us to realize a more complex analysis where a target image

pixel was classified by the information of not only the target single pixel but also pixel informa-

tion of its surrounding; however, the computation cost of deep learning is around 10-times

larger than that of SVM used in this study. Therefore, the machine learning algorithm should

be carefully selected to match the complexity of problem and availability of the computational

resources.

Software based analysis tends to occupy human resources to develop the software. In this

study, the software was composed of mainly two parts; image processing and machine learning

classification. The image processing part mainly performed the transformation of image data

into the digital data based on the open-source image processing library “OpenCV.” The classi-

fication part performed machine learning, which decided the threshold to divide the different

classes and actual classification to the digital data of images into the classes based on the

decided threshold in learning phase. This classification part is based on a classical algorithm;

support vector machine, which is also available in the other open-source library “scikit-learn.”

Incorporating these conventional algorithms into the original code of this study via open-

source library could suppress the cost software development. Even though illustrated here

using spatial gradients of hMSC patterns, our advanced machine-learning-based data analysis

process, including deep learning based image processing, should find a wide range of applica-

tions in biomedical research, as we are providing the original code as an open source.

Spatial analysis of hMSC differentiation

To quantify the geometrical effect of agarose walls, the spatial distribution of hMSC differenti-

ation was analyzed (Fig 5). The images obtained from the machine learning-based classifier
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Fig 5. Segmental analysis of fraction of human Mesenchymal Stem Cells (hMSCs) differentiated into

different linages. (A) Post-process to determine the localization of hMSC patterned differentiation. (B) Graphs

from the left to right rows show the relationships between the ratio of hMSC differentiation pattern and the distance

from the periphery of agarose wall with diameters of 800, 400, and 200 μm, respectively. The lines of graphs from

upper to lower indicate hMSC cultivation conditions; growth, adipogenic, osteogenic, and adipogenic-osteogenic

Agarose micro-confinement and machine learning for MSC differentiation analysis
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were segmented into coaxial ring-shaped regions with 25 μm of thickness (Fig 5A). The frac-

tions of adipogenic (red), osteogenic (blue) and undifferentiated (white) areas in each region

were calculated. The results were plotted with respect to the distance from the center of the

adhesive circles (Fig 5B). Again, we qualitatively confirm the trend that hMSCs showed prefer-

ential adipogenic versus osteogenic differentiation at central versus peripheral parts of the

adhesive islands, respectively, as reported previously [6]. Our cellular patterning method by

agarose micro-wall reproduced the patterned differentiation of hMSCs in confined space (Fig

3 and target data in S1 File), as previously observed with conventional micro contact printing,

confirming that the emergence of patterned differentiation is driven by geometrical confine-

ment. However, the fraction of undifferentiated cells had not been quantified before. Here we

show now that the largest fraction of undifferentiated cells (cells that did not show lipid droplet

production nor alkaline phosphatase activity) were preferentially found close to the confining

agarose walls (A, O, and A/O mix in Figs 3 and 5B). Even in adipogeneic medium, cells located

on the middle area between the vicinity of confining walls (undifferentiation), and the central

part (adipogenesis) were slightly stained ALP positive (A in Figs 3 and 5B). In many images,

undifferentiated cells separated the ALP positive regions from the confining agarose walls (Fig

3 and S3–S6 Figs). Future research has to provide further insights into the mechanisms of our

findings.

Conclusion

Here we introduced a new framework to analyze the patterned differentiation of hMSCs in

spatial confinement and we illustrate that confinement of hMSCs by agarose micro-walls gen-

erate the same trends as previously reported when using conventional micro contact printing

approaches [6]. Since this is primarily a method paper, it should be noted that this repellency-

guided confinement can be exploited for a large range of biomedical applications. While we

used PLL-coated glass bottom for this report, other surface chemistries or adhesive proteins

such as fibronectin, collagen and laminins can be utilized as coatings as different extracellular

matrices interact with different integrin subtypes and thereby trigger distinct mechanotrans-

duction pathways [48,49]. Our method is thus a simple alternative when conventional printing

approaches do not allow to fabricate sufficiently stable adhesive islands. Machine learning-

based image analysis showed efficient classification of differentiated hMSCs, which allowed

high-throughput analysis of our bright field images and to quantify the existence and locations

of a significant fraction of undifferentiated cells which has not been described previously. This

study demonstrated that this simple agarose micro-engineering and image analysis allowed

stem cell phenotyping in microenvironments, which is of growing interest in basic biology.

This approach can be implemented in typical biology laboratories without the requirement of

special instruments, once users have access to PDMS molds.

Supporting information

S1 Movie. Scanning cross-sectional view of a representative confocal microscope image

taken from the data set analyzed in S2 Fig. White dashed circle indicates the boundary of

confinement. Moving yellow horizontal line indicates the position of cross-sectional view

showing the lower view in the movie. White scale bars indicate 100 μm.

(MP4)

mixture media, respectively. The error bar in each graph indicates the standard deviation (Number of analyzed

images showing a single confinement: N = 5, 5, and 12 for 800, 400, and 200 μm confinements, respectively).

https://doi.org/10.1371/journal.pone.0173647.g005
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S1 File. A Python program of machine learning based classifier with training and target

data.

(ZIP)

S2 File. Materials and methods for staining and imaging of cell nuclei.

(DOCX)

S1 Fig. Confocal microscopy for hMSCs cultivated in 400 μm confinement in adipogenic-

osteogenic mixed medium under conditions as in Fig 3. (A) Phase-contrast micrograph. (B)

Fluorescent micrograph. Nuclei were stained with blue-fluorescent dye. White dashed circle

indicates the boundary of confinement. (C) Merged image between (A) phase-contrast and (B)

fluorescent micrographs. White scale bars indicate 100 μm.

(TIF)

S2 Fig. Training data for pre-training a machine learning based classifier for human Mes-

enchymal Stem Cell (hMSC) differentiation. Microphotographs (A-C) show training data

for OilRed O positive (Adipogenic), FastBlue positive (Osteogenic), and negative (Undifferen-

tiated or background) areas, respectively. Black angle symbol indicates 50-pixel length in both

horizontal and vertical directions.

(TIF)

S3 Fig. Machine learning based classification for human Mesenchymal Stem Cells

(hMSCs) cultured in the control (without any confinements). Microphotographs (A-D)

show the stained surfaces of hMSCs cultured in growth, adipogenesis, osteogenesis, and adip-

genesis-osteogenesis mixture media, resulting in classified images (E-H), respectively. White

bar indicates 200 μm.

(TIF)

S4 Fig. Machine learning based classification for human Mesenchymal Stem Cells

(hMSCs) cultured in 800 μm diameter confinements. Microphotographs (A-D) show the

stained surfaces of hMSCs cultured in growth, adipogenesis, osteogenesis, and adipgenesis-

osteogenesis mixed media, respectively, resulting in classified images (E-H). White bar indi-

cates 200 μm.

(TIF)

S5 Fig. Machine learning based classification for human Mesenchymal Stem Cells

(hMSCs) cultured in 400 μm diameter confinements. Microphotographs (A-D) show the

stained surfaces of hMSCs cultured in growth, adipogenesis, osteogenesis, and adipgenesis-

osteogenesis mixed media, respectively, resulting in classified images (E-H). White bar indi-

cates 200 μm.

(TIF)

S6 Fig. Machine learning based classification for human Mesenchymal Stem Cells

(hMSCs) cultured in 200 μm diameter confinements. Microphotographs (A-D) show the

stained surfaces of hMSCs cultured in growth, adipogenesis, osteogenesis, and adipgenesis-

osteogenesis mixed media, respectively, resulting in classified images (E-H). White bar indi-

cates 200 μm.

(TIF)
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