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Abstract

Electrophysiological signals of cortical activity show a range of possible frequency and

amplitude modulations, both within and across regions, collectively known as cross-fre-

quency coupling. To investigate whether these modulations could be considered as mani-

festations of the same underlying mechanism, we developed a neural mass model. The

model provides five out of the theoretically proposed six different coupling types. Within

model components, slow and fast activity engage in phase-frequency coupling in conditions

of low ambient noise level and with high noise level engage in phase-amplitude coupling.

Between model components, these couplings can be coordinated via slow activity, giving

rise to more complex modulations. The model, thus, provides a coherent account of cross-

frequency coupling, both within and between components, with which regional and cross-

regional frequency and amplitude modulations could be addressed.

Introduction

Electrophysiological activity of interconnected neurons encompasses multiple oscillatory com-

ponents [1,2]; these are subject to modulation of frequency [3–5] and amplitude [6,7]. Modu-

lation may have various utilities [8,9], such as sequence encoding [10,11], rectification of local

neural activity [12,13] and long-rage information transfer [14,15]. The mechanisms behind

these effects, however, are still not well-understood. In theory, they could all be manifestations

of a single underlying principle. To contemplate this possibility, we propose a model that

describes frequency and amplitude modulations as systematic relationships between slow and

fast oscillatory components of neural population activity.

Systematic relationships between oscillatory components are collectively known as cross-

frequency coupling (CFC). Jensen & Colgin [2] listed six types of CFC of interest to electro-

physiology: phase-phase, phase-frequency, phase-amplitude, frequency-frequency, amplitude-

amplitude and amplitude-frequency couplings (PPC, PFC, PAC, FFC, AAC, and AFC, respec-

tively). Empirical studies have mostly observed PPC [16–20], PAC [21–23] and occasionally

AAC [24–26]. To our knowledge, PFC, AFC and FFC have not been empirically observed so

far. Shortcomings of current CFC detection methods may, in part, be responsible for this. In
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particular, PFC may have been misidentified as PAC [9,27]. In anticipation of further progress

in measurement, it is desirable to have a model predicting the conditions under which these

modulations could arise, as part of an encompassing account of CFC.

We propose a neural mass model (NMM) for CFC. The neural mass approach collectively

describes neuronal activity by representing it at the level of neural populations. NMMs gener-

ate oscillatory activities through the interaction of neuronal populations within and across

regions. NMMs have been successfully used to describe various mesoscopic brain activities

[28] such as ongoing alpha, beta, gamma, delta, and theta band activity [29–31], the sleep spin-

dle/k-complex [32,33], as well as evoked activity [34,35].

Recently we introduced a NMM that manifests PAC [36]. The model consists of four neural

populations: pyramidal neurons, excitatory interneurons, slow and fast inhibitory interneu-

rons. A noise source, which represents un-modeled activity of neighboring brain regions,

serves as external input. The noise drives both the pyramidal neuron and the fast inhibitory

interneuron populations. Like its predecessor NMMs, the four-populations model generates

slow activity comparable to alpha, theta, and delta band oscillations through interactions

between pyramidal neuron and slow-inhibitory interneuron populations. Unique to our

NMM, the fast inhibitory interneuron population has a dynamic self-feedback mechanism,

which plays a crucial role in generating fast oscillatory activity.

Within this mechanism, the mean level of noise input acts as a bifurcation parameter for

the fast inhibitory interneuron population. For zero noise level, no fast oscillations arise. As

the noise level is increased, fast activity emerges in the model’s output, due to the self-feedback

of the fast-inhibitory interneuron population. The fast activity is comparable to interneuron

gamma (ING), which has been observed in neocortex and allocortex, e.g., in visual cortices

and hippocampus [37–39]. In Chehelcheraghi et al. [36], we demonstrated that the mean level

of input noise is a critical factor for the modulation of fast activity (see also [40]). From a cer-

tain nonzero noise level, fast oscillations occur and above a critical level, the model produces a

PAC signal: modulation of fast activity amplitude by the phase of the slow rhythm. Here we

will first show that noise below that level leads to PFC: modulation of fast activity frequency by

the phase of the slow rhythm. Next, we will demonstrate that besides PAC and PFC, other

types of CFCs, namely FFC, AAC and AFC can all be modeled based on the four-populations

model, depending solely on the choice of mean input noise level.

The four-populations model is considered to represent a cortical patch between a few milli-

meters and a centimeter in diameter, in which oscillations in various frequencies can be

observed [41]. Thus, we considered the four-populations model to represent a local region.

Empirical studies reports CFC between local regions. For instance, AAC was observed across

brain regions such as superior temporal and fusiform gyri [42]. We therefore connected two

identical four-populations models symmetrically via populations of pyramidal neurons. These

between-region populations relay slow oscillatory activity from one region to the other, and

allow the slow oscillations within both components to become synchronized. Synchronized

slow activity thus serves as a common modulator for the fast activities within both regions.

The between-region pyramidal populations could, in principle, be replaced by or extended

with an arbitrary oscillator (e.g., a thalamic pacemaker [43]). While allowing such possible

extensions, the current study used pyramidal units which we consider as the generic between-

region connectivity.

Although both PFC and PAC can arise within a single component, here we will operate

from the onset with a two components of the four-populations model, to show the role of syn-

chronization of the slow activity between the components in modeling cross-regional PAC

and PFC. In the first simulation, the two components of the four-populations model were used

to show PFC across the regions. Similarly, cross-regional PAC was shown in the second
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simulation. In both simulations, the second component has zero mean noise level, thereby pre-

venting any fast oscillations to emerge within the second component. Thus, cross regional

PAC and PFC arise via synchronization with the slow oscillations that connect the two compo-

nents. In the third, fourth, and fifth simulations, FFC, AAC and AFC were generated, respec-

tively, each as a function of the levels of nonzero mean noise input to both components. Based

on the results, we propose the present model as an inclusive theoretical framework for the dif-

ferent CFC phenomena.

Methods

Overview

As illustrated in Fig 1, the present model consists of two identical components labelled as

Node 1 and Node 2. Each component is a four-populations NMM node which simulates

electrophysiological activity [36]. The four populations represent, respectively, pyramidal neu-

ron, excitatory interneuron, slow inhibitory interneuron, and fast inhibitory interneuron of

the cortex. In each node, interaction between the pyramidal neurons and slow inhibitory inter-

neurons generates a steady-state activity, which is considered as its main (intrinsic) oscillation

(e.g. alpha band activity in visual cortex in [33]. Unique to our four-populations model, the

fast-inhibitory interneuron population has dynamic self-feedback. The feedback enables the

fast inhibitory interneurons to generate oscillations in the gamma range. This fast activity can

Fig 1. Schematic diagram of the proposed model. Each node is comprised of four neural population units: pyramidal neurons, excitatory interneurons,

slow inhibtory interneurons and fast ihbitory internneurons. Each node is identical to the NMM in [36]. The nodes are mutually connected by the dynamics

of the pyramidal neurons. Two independent Gaussian noise sources drive the NMM nodes.

https://doi.org/10.1371/journal.pone.0173776.g001
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occur simultaneously with the slow activity, which is a prerequisite for CFC in the model. The

two four-populations nodes are mutually connected via two between-node pyramidal neuron

populations.

The emergence and stability of fast activity in each node depends on two parameters, P1

and P2, which represent the mean levels of noise input to the nodes [36]. Small values deacti-

vate the fast oscillations (damping). Values above the damping regime determine the type of

modulation between the slow and fast oscillation. For parameter values below a critical thresh-

old, resonance occurs, allowing frequency modulation, namely, PFC, AFC, and FFC; above the

threshold the fast oscillations reach a steady-state, in which the frequency is invariant, and

amplitude modulation results, allowing for PAC and AAC. For an analytical account of this

mechanism, see [44]). We systematically vary the values of P1 and P2 in order to demonstrate

that PFC, PAC, FFC, AAC and AFC appear as a function of the parameters P1 and P2, without

changing model structure or connectivity.

Model

Each of the four neural population units of a node, pyramidal neurons, excitatory interneurons,

slow inhibitory interneurons, and fast inhibitory interneurons, has two variables: mean firing rate

fr(t) which is a function of mean membrane potential vm(t), and mean post synaptic potential v(t).
The mean membrane potential is obtained from the weighted summation of inputs. The mean

membrane potential is converted to the mean firing rate via a sigmoid function:

frðtÞ ¼ SigðvmðtÞÞ ¼
umax

1þ expð� rðvmðtÞ � vyÞÞ

Here vmax is the maximum firing rate of the population of neurons, vθ is the value of the

potential for which a 50% mean firing rate is achieved, and r is the slope of the sigmoid at vθ;

The parameter vθ will serve as mean firing threshold. The sigmoid function is parametrized

equally for all populations in the model. A second-order differential equation called the den-

dritic transfer function relates the mean firing rate, fr(t), of a population to the un-weighted

mean post synaptic potential, v(t), of that population via the dendritic transfer function:

HðSÞ ¼
Go

S2 þ 2oSþ o2
;

where G and ω characterize the mean strength and speed, respectively. Different population

units are distinguished by their time constant T ¼ 1

o
½sec� and the low frequency gain of the

dendritic transfer function G
o
½mV:sec�. The dendritic transfer function of each population unit

is denoted as Hlx(S), in which l 2 {p: pyramidal neuron population, q: excitatory interneuron

population, f: fast inhibitory interneuron population, s: slow inhibitory interneuron popula-

tion} and x 2 {1,2} is the node number, e.g. Hs2(S) denotes the dendritic transfer function of

the slow inhibitory interneuron population in the second node.

Four interconnected population units constitute a single node. Inputs to each population

unit are the weighted outputs from the other units, reflecting the mean excitatory or inhibitory

post synaptic potentials of an excitatory or inhibitory population (EPSP or IPSP). The input

synaptic potentials are weighted by constant connectivity strengths which are called synaptic

gains. A synaptic gain between populations is represented by Cαβ where α, β 2 {p: pyramidal

neuron population, q: excitatory interneuron population, f: fast inhibitory interneuron popula-

tion, s: slow inhibitory interneuron population}. Here α and β refer to target and source popu-

lation, respectively; e.g. the constant Cps is the gain of the synaptic connection from the slow

inhibitory population to the pyramidal neuron population.
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The pyramidal neuron population unit excites all three interneuron population units within

the node and in turn receives input from them. The slow inhibitory interneuron population

unit inhibits the fast inhibitory interneuron population unit. The fast inhibitory interneuron

population has an extra state variable, vff(t), for the dynamic self-inhibition. The dynamics of

the self-feedback in the fast inhibitory population is of first order and serves as a low pass filter

with cut-off frequency fc ¼ 1

ð2ptf Þ
.

As shown in Fig 1, Nodes 1 and 2 have identical structure. The two nodes are mutually con-

nected via the pyramidal populations. The synaptic gain of Node 1 to Node 2 is represented by

K21, while that in the inverse direction is given as K12. The dendritic transfer functions of pyra-

midal neurons between the nodes are labeled as Hp21(S) and Hp12(S). For each node, indepen-

dent Gaussian noise excites both the fast inhibitory interneuron and pyramidal neuron units.

The noise represents the mean firing rate of unmodeled external neural populations. The noise

is passed through the dendritic transfer function of pyramidal neurons between the nodes, i.e.,

Hp21(S) and Hp12(S), in order to convert it to mean post synaptic potentials. The potentials are

weighted by factors Kp and Kf in order to excite the pyramidal neurons and fast inhibitory

interneurons, respectively. For each node, the mean membrane potential of the pyramidal

population is the main output. The pyramidal population unit has been the main output (and

input) unit in previous cortical neural mass models [29,35]. The mean membrane potential of

the neurons represents population activity of the node; thus, this output is comparable with

macroscopic electrophysiological brain signals, such as, LFP, ECoG, and EEG. The dynamics

of the full model is described as follows.

Equations for Node 1. Pyramidal neuron population:

d2vp1

dt2
¼ Gp1op1Sigðvmp1ðtÞÞ � 2op1

dvp1

dt
� o2

p1
vp1ðtÞ

vmp1ðtÞ ¼ Cpqvq1ðtÞ � Cpsvs1ðtÞ � Cpf vf 1ðtÞ þ K12vp12ðtÞ þ Kp1vn1ðtÞ

Excitatory interneuron population:

d2vq1

dt2
¼ Gq1oq1Sigðvmq1ðtÞÞ � 2oq1

dvq1

dt
� o2

q1
vq1ðtÞ

vmq1ðtÞ ¼ Cqpvp1ðtÞ

Slow inhibitory interneuron population:

d2vs1

dt2
¼ Gs1os1Sigðvms1ðtÞÞ � 2os1

dvs1

dt
� o2

s1vs1ðtÞ

vms1ðtÞ ¼ Cspvp1ðtÞ

Fast inhibitory interneuron population:

d2vf 1

dt2
¼ Gf 1of 1Sigðvmf 1ðtÞÞ � 2of 1

dvf 1

dt
� o2

f 1
vf 1ðtÞ

tf 1

dvff 1ðtÞ
dt

¼ � vff 1ðtÞ þ vf 1ðtÞ

vmf 1ðtÞ ¼ Cfpvp1ðtÞ � CfsðtÞvs1ðtÞ � Cff vff 1ðtÞ þ Kf 1vn1ðtÞ
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External inputs:

d2vp12

dt2
¼ Gp12op12Sigðvmp2ðtÞÞ � 2op12

dvp12

dt
� o2

p12
vp12ðtÞ ðFrom Node 2Þ

d2vn1

dt2
¼ Gp12op12n1ðtÞ � 2op12

dvn1

dt
� o2

p12
vn1ðtÞ ðFiltered noiseÞ

n1ðtÞ ¼ NðP1; s
2

1
Þ ðWhite noiseÞ

Equations for Node 2. Pyramidal neuron population:

d2vp2

dt2
¼ Gp2op2Sigðvmp2ðtÞÞ � 2op2

dvp2

dt
� o2

p2
vp2ðtÞ

vmp2ðtÞ ¼ Cpqvq2ðtÞ � Cpsvs2ðtÞ � Cpf vf 2ðtÞ þ K21vp21ðtÞ þ Kp2vn2ðtÞ

Excitatory interneuron population:

d2vq2

dt2
¼ Gq2oq2Sigðvmq2ðtÞÞ � 2oq2

dvq2

dt
� o2

q2
vq2ðtÞ

vmq2ðtÞ ¼ Cqpvp2ðtÞ

Slow inhibitory interneuron population:

d2vs2

dt2
¼ Gs2os2Sigðvms2ðtÞÞ � 2os2

dvs2

dt
� o2

s2vs2ðtÞ

vms2ðtÞ ¼ Cspvp2ðtÞ

Fast inhibitory interneuron population:

d2vf 2

dt2
¼ Gf 2of 2Sigðvmf 2ðtÞÞ � 2of 2

dvf 2

dt
� o2

f 2
vf 2ðtÞ

tf 2

dvff 2ðtÞ
dt

¼ � vff 2ðtÞ þ vf 2ðtÞ

vmf 2ðtÞ ¼ Cfpvp2ðtÞ � CfsðtÞvs2ðtÞ � Cff vff 2ðtÞ þ Kf 2vn2ðtÞ

External inputs:

d2vp21

dt2
¼ Gp21op21Sigðvmp1ðtÞÞ � 2op21

dvp21

dt
� o2

p21
vp21ðtÞ ðFrom Node 1Þ

d2vn2

dt2
¼ Gp21op21n2ðtÞ � 2op21

dvn2

dt
� o2

p21
vn2ðtÞ ðFiltered noiseÞ

n2ðtÞ ¼ NðP2; s
2

2
Þ ðWhite noiseÞ

Modeling CFC in neural mass models
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Parameters. Table 1 shows the parameter values that are common to all current CFC sim-

ulations. The two nodes are identically parametrized, except for the time constant of the

dynamic self-feedbacks in the fast inhibitory interneurons, τf1 and τf2. As we will explain fur-

ther in the subsection Choice of Slow and Fast Oscillation Frequencies, these parameters were

fixed at different values for the sake of obtaining FFC, AAC and AFC. The remaining parame-

ter values are those suggested by [33] and [30], same as in our previous study [36]. Jansen and

Rit [33] assumed that synaptic connections are active in equal proportions between interacting

units, and proposed to the fix ratios of synaptic gains. The set of parameters was modified by

Wendling et al., [30] to model fast inhibitory interneurons. The modified set of parameters has

been the basis set for fast oscillations in many neural mass modeling studies, including the cur-

rent one.

Noise sources and fast oscillations. Table 2 shows how the values of the main parameters

P1 and P2 were systematically varied in order to enable different types of CFCs. Two indepen-

dent noise sources, NðP1; s
2
1
Þ and NðP2; s

2
2
Þ, excite both the pyramidal neurons and the fast

Table 1. Model parameters: Fixed values.

Parameter Interpretation Notation Value

Synaptic gain from excitatory interneurons to pyramidal neurons Cqp1, Cqp2 135

Synaptic gain from pyramidal neurons to excitatory interneurons Cpq1, Cpq2 108

Synaptic gain from slow inhibitory interneurons to pyramidal neurons Csp1, Csp2 33.75

Synaptic gain from pyramidal neurons to slow inhibitory interneurons Cps1, Cps2 33.75

Synaptic gain from fast inhibitory interneurons to pyramidal neurons Cfp1, Cfp2 40.5

Synaptic gain from pyramidal neurons to fast inhibitory interneurons Cpf1, Cpf2 27

Synaptic gain from fast inhibitory interneurons to slow inhibitory interneurons Cfs1, Cfs2 10.8

Synaptic gain of fast inhibitory interneurons self-feedback Cff1, Cff2 135

Noise excitation weight for pyramidal neurons Kp1, Kp2 40

Noise excitation weight for fast inhibitory interneurons Kf1, Kf2 108

Average time constant of pyramidal neurons membrane potential, the inverse divided

by 2π is equivalent to low cut-off frequency [sec]

ωp1
-1, ωp2

-1 10−1

Average time constant of between node pyramidal neurons membrane potential, the

inverse divided by 2π is equivalent to low cut-off frequency [sec]

ωp21
-1,

ωp12
-1

100−1

Average time constant of excitatory interneurons membrane potential, the inverse

divided by 2π is equivalent to low cut-off frequency [sec]

ωq1
-1, ωq2

-1 100−1

Average time constant of slow inhibitory interneurons membrane potential, the

inverse divided by 2π is equivalent to low cut-off frequency [sec]

ωs1
-1, ωs2

-1 50−1

Average time constant of fast inhibitory interneurons membrane potential, the inverse

divided by 2π is equivalent to low cut-off frequency [sec]

ωf1
-1, ωf2

-1 200−1

Average dendritic gains of pyramidal neurons [mV] Gp1, Gp2 0.32

Average dendritic gains of between node pyramidal neurons [mV] Gp21, Gp12 3.2

Average dendritic gains of excitatory interneurons [mV] Gq1, Gq2 3.2

Average dendritic gains of slow inhibitory interneurons [mV] Gs1, Gs2 22

Average dendritic gains of fast inhibitory interneurons [mV] Gf1, Gf2 50

Expected spiking threshold voltage [mV] vθ 5

Half-maximum firing rate [Hz] υ0 2.5

Variance of membrane potential over individual neurons in the population [mV-1] R 1.12

Variance of white noise [Hz2] σ2
1, σ2

2 0.5

Between node synaptic gain K21, K12 40

Average time constant of self-synaptic decay in fast inhibitory interneurons [sec] τf1 0.01

τf2 0.005

https://doi.org/10.1371/journal.pone.0173776.t001
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inhibitory interneurons of Nodes 1 and 2, respectively. The noise sources represent the unmo-

deled mean firing rates, which originate from various cortical and subcortical regions. As long

as the mean noise level P is too small, fast oscillations fail to arise due to damping. Higher levels

of noise trigger fast oscillations, for which P serves as a bifurcation parameter. We will refer to

the bifurcation value as limit-cycle threshold. When a P parameter value is below the limit-

cycle threshold, the fast inhibitory population with feedback serves as a resonance filter. Such a

filter is selective to a specific frequency in the input and the output contains the resonance fre-

quency component. In this regime, the frequency of the fast oscillation is sensitive to the slow

oscillations in the modulating input. Hence, the resonance is suitable as a frequency modula-

tion mechanism. For PFC and FFC simulations, the parameter was set in the resonance range.

When P value is above the threshold, a limit cycle emerges corresponding to the fast oscilla-

tion. In this type of oscillation, the amplitude of the fast oscillation is sensitive to modulatory

input. Therefore, the limit cycle oscillation is a suitable mechanism for amplitude modulation.

For PAC and AAC simulations, thus, the P parameters are set to obtain a limit-cycle osillation.

For AFC, P values were set to obtain a limit cycle in one node and resonance oscillations in the

other.

Slow oscillations, generation and synchronization. As in previous NMM studies [29,45],

the model generates slow oscillations through the interactions between the pyramidal and slow

inhibitory interneuron populations within each node. When nodes are connected, the slow

oscillations synchronize, desynchronize, or show intermittent synchronization behavior,

depending on the coupling strengths K12 and K21 between them [46]. Synchronization will not

arise for small values of K12 and K21. We used K12 = K21 = 40 throughout this study, which

assures that the slow oscillations are synchronized.

Choice of slow and fast oscillation frequencies. For frequency modulation, intuitively,

the condition ffast >> fslow should be met where ffast is the frequency of the fast oscillation and

fslow is that of the slow one. We set the slow oscillation in the delta band and the fast oscillation

in the gamma band, the slowest and the fastest commonly observed in EEG. To generate slow

oscillation in the delta band (~3Hz), the time constants of the pyramidal neurons in both

nodes were set to op1 ¼ op2 ¼ 10 rad
s . This value differs by a factor 10 from that used in previ-

ous studies to obtain alpha oscillations [29,30,36]. In order to keep the stationary conditions of

the model unaffected, the low frequency gain (G
o
) was kept in the same proportion, meaning G

was changed from 3.2 (for alpha) to 0.32 (for delta). The frequency of the fast oscillations is

tuned through the time constant of the dynamic feedback, τf1 and τf2. These were set to 0.5 ms

and 1ms, respectively, resulting in 51Hz and 42Hz gamma activity in the first and the second

node, respectively. These frequencies were chosen to be different in order to show that for

FFC, AAC, and AFC in general the fast oscillations do not need to have the same frequencies.

For amplitude modulation, the condition should be met that
ffast
fslow

> 2 [27]. The fast and slow

frequencies chosen above meet these conditions.

Evaluation of Cross-Frequency Coupling (CFC)

To assess the CFC generated by our model, the output of each node was decomposed into

fast-oscillation (FO) and slow-oscillation (SO) signals, respectively, by high-pass or low-pass

filtering at a 15Hz cut-off frequency (fc). For filtering we used the eeglab13.4.4b Matlab tool-

box [47]. FO and SO signals were always normalized to zero mean and unit variance. To

evaluate frequency modulation, the average number of zero crossings of the FO signal was

calculated for each positive and negative phase of the SO signal in the same node. The aver-

age number of zero crossings was obtained by calculating the zero-crossing rate according to
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the following equation:

zcr ¼
1

2T

XT�fs

t¼0

IfFOðtÞ � FOðt þ 1Þ < 0g;

in which T is the time interval of SO in negative (from sine(-π) to sine(0)) or positive (from

sine(0) to sine(π)) phases and fs is the sampling frequency. The indicator function I{A} is 1 if

its argument is true and 0 otherwise. The average over T does not reflect small fluctuations,

which do not cross zero. As a result, the number zcr tends to be lower than the actual fre-

quency, i.e., the average numer of zero crossing is not identical to the average frequency, but

may serve as an index is of it. The power spectral density (PSD) of the output signal was cal-

culated using the [48] method. A Hanning time window of length equal to 16348 data point

was moved stepwise with 25% overlap. Amplitude modulation was evaluated by visual

inspection, comparing the envelope of the FO signals with the SO signal.

Simulation specifications

The model was implemented and ran in Matlab/Simulink 8.0 (R2012b), using a 4th order

Runge—Kutta method with fixed time step of 0.0001 seconds. The number of iterations was

chosen sufficiently large to assure stationarity of the dynamics. Transient dynamics were omit-

ted from data analyses and graphical presentations of the results. The model is available at

Zenodo website [49].

Results

Phase-frequency coupling

For P1 a value of 4.5, lower than the limit cycle threshold, was selected (Table 2), which assures

that the node operates as a resonance filter circuit in the gamma band. As shown in Fig 2, for

every positive phase of the slow oscillation in Node 1, the average zero crossings of fast oscilla-

tion in Node 1 was increased and for every negative phase it was decreased. Amplitude of the

fast oscillation was slightly modulated as well, but far less pronounced than frequency. This

illustrates that in the resonance regime, the fast oscillation is more sensitive to frequency than

to amplitude modulation. The value of P2 was set to 0 in order to deactivate the fast oscillation

in the second node. The PFC arises within Node 1. The slow oscillation in the first node was

synchronized with that in the second node (Fig 2). As a consequence, the frequency of the fast

oscillation in Node 1 also correlates with the phase of the slow oscillations in Node 2, resulting

in cross-node PFC. Note that cross-node PFC was generated only through the settings of mean

noise input levels, P1 and P2, while connection strengths remained fixed. The cross-node PFC

arises through cross-node phase-phase coupling of the slow oscillations, combined with local

phase-frequency coupling. Although the fast oscillation in Node 2 appears to be oscillating at

around 18Hz, this is due to the cut-off frequency of the filters. As we will report in the Power

Table 2. P parameters for each CFC simulation.

Interpretation Notation cross-node PFC cross-node PAC FFC AAC AFC

Mean Input Noise Level P1 4.5 7 4.5 7 7

P2 0 0 4.5 7 4.5

Note: the value 0 deactivates fast oscillation; 4.5 induces a resonance regime and 7 induces a stable limit cycle corresponding to fast oscillations.

https://doi.org/10.1371/journal.pone.0173776.t002
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spectrum densities (PSDs) of Model output, the inhibitory interneurons in Node 2 do not pro-

duce any fast oscillations.

Phase-amplitude coupling

The mechanism for implementing cross-node PAC is similar to above, except that in the first

node, the value of parameter P1 was set to 7, which is higher than the limit cycle threshold

which triggers a steady-state gamma band oscillation. P2 again was set to 0, in order to deacti-

vate the fast oscillation in the second node (Table 2). The amplitude of the fast oscillation in

Node 1 was modulated by the slow activity via the coupling between the slow and the fast

inhibtory interneurons. Through the synchronization of the slow oscillations across the nodes,

the slow oscillation in Node 2 also correlates with the amplitude changes of the fast oscillation

in Node 1, resulting in cross-node PAC (Fig 3).

Frequency-frequency coupling

With FFC, two distinct fast oscillations change their frequencies over time. Thus, two fre-

quency-modulated signals are required. To enable this, P1 and P2 were both set to 4.5, i.e. in

the resonance regime. The resulting FFC is shown in Fig 4. Fast oscillations in both nodes

show increase and decrease in average number of zero crossings within, respectively, the nega-

tive and positive phases of the slow oscillations. The synchronized slow oscillations modulate

Fig 2. Phase-Frequency Coupling (PFC) simulation. Time domain signals are shown for visual inspection of each CFC. FO1,

SO1, FO2 and SO2 are the filtered output of the Node 1 and Node 2 respectively. The frequency of FO1 varies between positive

(yellow stripes) and negative (green stripes) phases of SO1. SO1 and SO2 are synchronized (i.e., cross-node PPC). Integers

below the FO time waves are average numbers of FO zero crossings, which is used as an index of average frequency of each

phase. Local PFC between FO1 and SO1 and cross-node PFC between FO1 and SO2 are observed.

https://doi.org/10.1371/journal.pone.0173776.g002
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the frequency of the fast oscillations. Thus, the FFC is the result of two local PFCs of which the

slow signals are synchronized between nodes.

Amplitude-amplitude coupling

AAC refers to the correlation between two amplitude signals from two distinct fast oscillations.

Therefore, AAC requires a pair of amplitude-modulated signals. To achieve this, P1 and P2

were both set to 7, well above the limit cycle threshold. Time constants for the fast interneuron

populations self-feedback were set to obtain a fast oscillation of about 51Hz in Node 1, and of

about 42Hz in Node 2. As shown in Fig 5, the amplitudes of the fast oscillations were modu-

lated by synchronization between the slow oscillations. As a result, the amplitude of the fast

oscillation in Node 1 correlated with that of the fast oscillation in Node 2. AAC is thus the

product of two local PACs of which the slow signals are synchronized between nodes.

Amplitude-frequency coupling

AFC is the most complex type of CFC; amplitude of one fast oscillation correlates with the

fluctuations in the frequency of the other. To obtain AFC, PAC is generated in Node 1, i.e., the

P1 is set to 7, well above the limit-cycle threshold value, and P2 is set to 4.5, in the resonance

regime. PAC within Node 1 and PFC within Node 2 were combined via the cross-node phase

synchronization. The synchronized slow oscillations between nodes simultaneously modulate

the amplitude of the fast oscillation in Node 1 and the frequency of the fast oscillation in Node

2, resulting in AFC between the fast oscillations of Nodes 1 and 2 (Fig 6).

Fig 3. Phase-Amplitude Coupling (PAC) simulation. The instantaneous amplitude of FO1 correlates with the synchronized

SO1 and SO2. Local PAC between FO1 and SO1 and cross-node PAC between FO1 and SO2 are observable. Integers below the

FO time waves indicate average number of zero crossings of FOs.

https://doi.org/10.1371/journal.pone.0173776.g003
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Power Spectrum Densities (PSDs) of model output

Fig 7 shows PSDs of outputs from Nodes 1 and 2 in each CFC simulation. Peaks appear in the

delta (< 4Hz) and gamma (>30Hz) bands, which indicates stationary oscillatory activity. In

case of frequency modulation (Panels a and c), the gamma activity shows wider peaks than in

case of amplitude modulation (Panels b and d). In Panel e, where both modulations occur, a

narrow (Node 1) and a wide (Node 2) bands can be observed in the gamma activity. In the

PFC and PAC results (Figs 2 and 3), the fast oscillation in Node 2 appeared to have oscillatory

activity around 18Hz. However, no peak at 18Hz exists in Panels a and b. Thus, the apparent

‘18Hz oscillation’ is shown to be an artifact of filtering. (Note that numbers of zero crossings of

fast oscillations in Figs 2–6 are slightly lower than that of their actual frequency due to the esti-

mation method of the zero crossing)

Discussion

As suggested by Jensen and Colgin [2], coupling between slow and fast neural activity could

take one of six forms: PFC, PAC, FFC, AAC, AFC or PPC. The first five of these were obtained

in a model consisting of two mutually connected four-populations NMM nodes. For PAC or

PPC, models have previously been developed with greater neurological detail than the present

one [50–52]. Instead, we aimed to understand the systematic relationship among the cross-fre-

quency couplings (CFCs). Neural mass models afford this based on their relative simplicity

while preserving sufficient neural plausibility for simulating population level

Fig 4. Frequency-Frequency Coupling (FFC) simulation. The frequency of FO1 and FO2 varies for the synchronized SO1 and

SO2. Integers below the FO time waves are the average number of zero crossings, which is an index of average frequency of each

phase. The numbers change between positive and negative phases of synchronized SO1 and SO2. Local PFC between FO1 and

SO1, and between FO2 and SO2 are also observed.

https://doi.org/10.1371/journal.pone.0173776.g004
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electrophysiological signals [30,33,45]. The neural mass modeling approach has been used for

both quantitative estimation of the system parameters in cortical and subcortical regions

[43,53–55] and qualitative simulation for neural systems behavior [31,56–58]. Here, all results

are qualitative, as they serve the purpose of introducing a plausible common mechanism for

the emergence of different types of CFC.

Each node of the model represents a patch of cortical tissue, anywhere between a few milli-

meters and a centimeter in diameter, in which oscillations in various frequencies can be

observed [41]. Whereas nodes were connected symmetrically to represent interconnected

brain electrical activity sources within a cortical region, asymmetric inter-node connectivity is

more likely to represent hierarchical structures, such as top-down/bottom-up connectivity in

visual cortex [59]. Addressing this issue will require further elaboration of the inter-node con-

nectivity of the model.

To generate different types of CFC, the model structure and connectivity were not changed,

rather, the level of input noise of the nodes (parameters P1 and P2) was varied. The noise level

determines the stability of the fast activity: when P is in the resonance regime, local PFC

occurs, while the parameter is set above the limit-cycle threshold, local PAC emerges. The

results showed that PFC and PAC are two phases of a CFC which are determined by the stabil-

ity of the fast inhibitory activity. The modeled fast activity represents interneuron gamma

(ING). Thus, the simulation results predict that, as the mean noise input level to a cortical

region changes, stability of ING will change, and CFC will change in appearance between fre-

quency and amplitude modulation.

Fig 5. Amplitude-Amplitude Coupling (AAC) simulation. The instantaneous amplitude of FO1 and FO2 correlate with the

synchronized SO1 and SO2. Integers below the FO time waves indicate average number of zero crossings of FOs.

https://doi.org/10.1371/journal.pone.0173776.g005
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The slow activity of the nodes was synchronized via the inter-node connection. The local

fast activities are modulated via the synchronized slow activity. Our results show how local

ING can be modulated across brain regions via a common intrinsic slow activity, e.g., alpha

band activity in visual cortices. Cross-regional PAC was reported even between bilateral motor

cortices in monkeys [60]. For the inter-hemispheric PAC, other regions, such as, the subthala-

mic nucleus, could also contribute as a pacemaker. A pacemaker region could replace or com-

plement the between-node pyramidal population [43,61]. This would not affect to the

framework of cross-regional PAC/PFC generation, as long as the slow activities of the individ-

ual nodes remain synchronized in the same frequency band. Across brain regions of which the

main frequencies differ, e.g., alpha rhythms in visual cortices and theta in hippocampus, m:n

synchrony (where m6¼n) is needed for modulation of local fast activities. Neural mass model-

ing studies have been addressing the issue of cross-frequency phase-phase coupling (PPC), in

which coupling strength between the nodes is the major parameter of interest [46]. The cur-

rent study, however, does not address the issue since our main parameters were the mean

noise input levels.

The model also successfully implemented AAC, FFC and AFC. In all simulations, ampli-

tude and/or frequency of fast activity was modulated by synchronized slow activity. The

assumption of a common modulator is in accordance with empirical studies. For example,

AAC measurement provided evidence that two fast activities were modulated by a common

slow activity in LFP signals [24–26]. To our knowledge, PFC, FFC and AFC have not yet been

reported in brain signals. The model predicts FFC if slow activity in two regions is phase syn-

chronized while stability of ING in both is intermediate, i.e., in the resonance regime. Likewise,

Fig 6. Amplitude-Frequency Coupling (AFC) simulation. The instantaneous amplitude of FO1 correlates with the synchronized

SO1 and SO2. The frequency of FO2 is about constant while the frequency of FO1 varies for the synchronized SO1 and SO2. See

average number of zero crossings in FOs, indicated as integers below the FO time waves.

https://doi.org/10.1371/journal.pone.0173776.g006
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AFC is expected when the slow activity is synchronized while ING is stable in one region but

intermediately stable in the other.

Our PFC, FFC and AFC results provide a possible explanation why frequency modulations

are scarcely reported. Frequency modulation occurred when the model was in the resonance

regime, where amplitude modulation also occurrs to some extent. This suggests that in the

brain signal, PFC and PAC may co-exist. Since PFC measures are still under-developed com-

pared to PAC measures [6,62–65], PFC may fail to be observed in a noisy signal such as EEG,

while the weaker PAC is detected.

The frequency modulation could be more than a mere transient state to amplitude modula-

tion. Empirical studies have shown that fast inhibitory interneurons fire at a specific phase of

the gamma band oscillation [37,66]. The gamma frequency, in this context, is synonymous to

the average number of spiking. As the gamma frequency increases/decreases according to the

slow phases, the inhibitory population changes in excitability. In the current model, the range

between the maximum and minimum frequencies is larger in the frequency modulation than

in the amplitude modulation. Such a wide range of excitability is beneficial, for example, for

implementing a gating function for information transfer.

In our model, frequency was determined by the fixed time constants of the neural popula-

tions (see also [67]). Frequency modulation was realized by through the effect of mean input

noise level on the gain of the sigmoid block. The product of the gain and the time constant

determines the resonance frequency. In principle, the time constants could also be considered

as function of noise level [40]. This, however, would not change the principle behind the cur-

rent approach.

Fig 7. The comparison of PSDs in different forms of CFC. PFC: Phase-Frequency Coupling, PAC: Phase-Amplitude

Coupling, FFC: Frequency-Frequency Coupling, AAC: Amplitude-Amplitude Coupling, AFC: Amplitude-Frequency Coupling.

https://doi.org/10.1371/journal.pone.0173776.g007
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We conclude that two fundamental forms of CFCs in cortex are PFC and PAC. They

emerge as modulations of ING. The couplings can either be kept local or spread across regions

via PPC, depending on the synchronization of slow intrinsic oscillation between these regions.
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