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Abstract

The increasing resistance to carbapenems is an alarming threat in the fight against multiresis-

tant bacteria. The dissemination properties of antimicrobial resistance genes are supported by

their detection in a diverse population of bacteria, including strains isolated from the environ-

ment. The objective of this study was to investigate the presence of carbapenemase-produc-

ing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan

area (Spain). Identification of β-lactamases and other resistance determinants was deter-

mined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors,

plasmid addiction systems, plasmid partition systems and replicon typing was performed. The

results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloa-

cae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent

enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-

type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All

the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition sys-

tem, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneu-

moniae isolates carried a low number of virulence-associated factors and none of the detected

clones has previously been identified in the clinical setting. These findings support the high dis-

semination potential of the carbapanemase-encoding genes and reinforce the idea that the

environment is another reservoir that may play an important role in the capture, selection and

dissemination of carbapenem resistance genes.

Introduction

The current therapeutic options to combat infections caused by the increasingly detected

Escherichia coli and Klebsiella pneumoniae clinical isolates resistant to third and/or fourth gen-

eration cephalosporins are becoming increasingly fewer [1]. Carbapenems are usually the last
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resort to fight against these difficult-to-treat infections as, in most cases, these microorganisms

also exhibit a multidrug resistance phenotype [2]. Unfortunately, Enterobacteriaceae strains

resistant to carbapenems are emerging and compromising the outcome of patients receiving

these drugs and posing a serious threat to the health care system [2].

Previous studies have revealed the presence of carbapenemase- and/or extended-spectrum

β-lactamase-producing Enterobacteriaceae in samples collected from rivers, effluents and hos-

pital sewage systems [3]. The enzymes detected include KPC, IMI, VIM, IMP, OXA-48-type

and NDM, highlighting their carriage in K. pneumoniae and E. coli strains [3]. The presence of

these resistant determinants in aquatic environments can be understood according to different

scenarios: i) these niches constitute a reservoir of novel carbapenem resistance genes (e.g.

KPC-2 homologs have been identified in the genera Chromobacterium, commonly isolated

from aquatic environments) [4]; ii) resistant bacteria of human origin are released into the

environment hence spreading their resistance genes into environmental species [5]; iii) carba-

penemase-producing Enterobacteriaceae (CPE) detected not only in farms but also in com-

panion pets and wild animals, can also reach the environment via manure [3].

Recently there has been great interest in tracing plasmids conferring drug resistance, partic-

ularly carbapenem resistance, as a result of the promiscuity of these genes. Their incredible

mobilization ability has forced the introduction of accurate surveillance and control measures

to hinder their spread, with special effort in the clinical setting. Over the past years plasmid

characterization has mainly been based on identification of the plasmid incompatibility group

[6]. More recently, however, the study of plasmid addiction systems (PAS), and to a lesser

extent, plasmid partition systems (PPS), has gained relevance. These mechanisms ensure stable

transmission of plasmids by post-segregational killing of plasmid-free daughter cells and driv-

ing plasmid positioning during bacterial division processes. Their role in plasmid maintenance

may represent a potential key factor involved in their successful dissemination [7,8].

At present, there are few epidemiologic studies regarding CPE recovered from rivers. Some

studies have been conducted in Portugal [9], US [10], Tunisia [11], India [12] and China

[13,14], but none in Spain. Moreover, little attention has been directed towards the prevalence

of PAS and PPS in carbapenemase-encoding plasmids. The aim of the present study was to

explore the presence of CPE in the Llobregat river ecosystem, an important river in the Barce-

lona metropolitan area which is the most populous metropolitan area in the Mediterranean

coast and hence with a high anthropogenic impact and scarce contribution of animal fecal

contaminants [15]. Isolates and plasmids harboring these resistance elements were character-

ized in order to gain new insight into the factors supporting their dissemination worldwide.

Materials and methods

Collection of river samples and selection of carbapenem-resistant

Enterobacteriaceae

Eleven sediment and 12 water samples were collected from the Sant Joan Despı́ station (UTM:

31T 420339 4578455) of the Llobregat river, Catalunya, Spain from May to December, 2014.

This river receives anthropogenic impact via secondary effluents of municipal wastewater

treatment plants and industrial effluents along the river course in the Barcelona metropolitan

area [16] whereas the impact of animal fecal contaminants is very low and irregular [15]. River

water was used without further processing while five g of sediment were homogenized in PBS

(1:10). After settling, the resulting supernatant was used for bacterial isolation. Serial dilutions

of water and of the sediment supernatant in PBS were inoculated on chromID1 CARBA

SMART chromogenic culture media (BioMérieux) for screening CPE. Plates were incubated

at 37˚C for 48 h in aerobic conditions. The colonies obtained were identified by MALDI-TOF
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(VITEK MS, BioMérieux) and those identified as Enterobacteriaceae were selected for further

analysis. Differentiation between Raoultella species (R. planticola and R. ornithinolytica) was

carried out by PCR as described previously [17].

Antimicrobial susceptibility testing

Antimicrobial susceptibility to β-lactams of all the enterobacterial isolates recovered was stud-

ied by the disk diffusion method following EUCAST guidelines [18]. In addition, the MICs of

meropenem, imipenem and ertapenem were determined by the Etest (BioMérieux) according

to the manufacturer’s recommendations. Evidence suggestive of carbapenemase production

was determined using EUCAST screening cut-off values (disk inhibition zones of<25 mm for

meropenem and/or ertapenem, and/or <23 mm for imipenem; or MICs> 0.12 mg/L for mer-

openem and/or ertapenem and/or > 1 mg/L for imipenem).

Finally, the MIC of additional antimicrobials was also determined by the Etest in all the iso-

lates. The compounds studied were: amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazo-

bactam, ceftazidime, cefotaxime, cefepime, cefoxitin, aztreonam, gentamicin, amikacin, nalidixic

acid, ciprofloxacin, trimethoprim-sulfamethoxazole, fosfomycin and colistin. Interpretation of

the results was performed according to the EUCAST clinical breakpoints when available [19].

Otherwise, CLSI breakpoints were used (e.g. cefoxitin and nalidixic acid) [20].

Detection of antimicrobial resistance genes, virulence genes and the

phylogenetic group

All the isolates selected were screened by means of PCR and sequencing analysis to detect the

presence of the following carbapenemase genes: blaOXA-48, blaVIM, blaKPC, blaNDM, blaIMI,

blaIMP. In addition, carriage of further resistance genes such as those encoding ESBLs (blaTEM,

blaSHV, blaCTX-M), plasmid-mediated AmpCs (blaDHA, blaAAC, blaACT, blaFOX, blaCMY), the

blaOXA-1 gene, and plasmid-mediated quinolone resistance genes (aac(6’)-Ib-cr, qnrA, qnrB,

qnrS) was also studied by PCR and sequencing. Individual amplifications (S1 Table) were per-

formed with the exception of the plasmid-mediated ampC β-lactamase genes, which were

assessed according to the previously described multiplex PCR [21]. Identification of the phylo-

genetic group (A, B1, B2, C, D, E or F) of the E. coli strains was similarly detected by PCR

according to the most recent classification [22].

All E. coli strains were screened for the presence of 49 virulence factors (including 19 adhe-

sins, 4 siderophores, 11 toxins, 6 capsule synthesis-associated genes, and 9 miscellaneous

genes). Screening was performed by multiplex PCRs according to previously reported method-

ology [23]. In the case of K. pneumoniae, the presence of 9 virulence-associated genes was

assessed by PCR. The set of factors included: the adhesin-encoding genes fimH (Type 1 fim-

briae) andmrkD (Type 3 fimbriae), the capsule- and LPS-associated genes wabG and uge, the

two genesmagA and rmpA related to the mucoid phenotype, as well as other virulence-associ-

ated genes such as ureA (intestinal colonization), allS (liver infection) and kfuBC (iron uptake

system) [24].

Clonal relatedness

Clonality of the E. coli isolates was analyzed by pulsed-field gel electrophoresis (PFGE) as

described previously (http://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-

protocol-508c.pdf). Data were analyzed using GelCompar II v.4.6 (Applied Maths, SintMar-

tens-Latem, Belgium). Requisites for strains to belong to the same pulsotype were to have a

similarity criterion above 85%, with a position tolerance of 1% and an optimization of 1%.
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Multilocus sequence typing (MLST) identification was carried out for E. coli, K. pneumo-
niae and E. cloacae by means of PCR and sequencing according to the protocols specified at

the web sites http://mlst.ucc.ie/mlst/dbs/Ecoli, http://bigsdb.web.pasteur.fr/klebsiella/

klebsiella.html and http://pubmlst.org/ecloacae, respectively.

Plasmid characterization

Identification of plasmid replicons was accomplished using the PCR-based replicon typing

method as described previously [6,25,26]. The presence of PAS, according to previously

reported methodology, was sought by PCR of 3 type I systems: Hok-Sok, PndA-PndC,

SnrB-SnrC; and 5 type II systems: PemK-PemI, CcdA-CcdB, RelB-RelE, ParD-ParE, VagC--

VagD [7]. The following genes encoding PPS were also determined by PCR: parAB, parMRC
and sopAB. The primer sequences and annealing temperatures are shown in S1 Table.

Plasmid size was determined by PFGE of total DNA digested with S1 nuclease. Hybridiza-

tion was then carried out to confirm all positive cases detected in the PCR screening. Specific

DNA probes were obtained by PCR amplification with the same primers reported in S1 Table.

The digoxigenin PCR DIG Probe Synthesis kit (Roche Diagnostics) was used to obtain digoxi-

genin-labeled probes. Hybridization and detection were performed according to the manufac-

turer’s instructions.

Transferability of the carbapenemase-containing plasmids (blaVIM-1, blaKPC-2, blaIMI-2) was

attempted by conjugation at 37˚C and 30˚C using a kanamycin-resistant derivative of E. coli
HB101 as recipient. Transconjugants were selected on Luria-Bertani (LB) agar plates supple-

mented with 300 μg/mL kanamycin and 200 μg/mL ampicillin. Transformations were then

carried out for strains for which no transconjugant could be obtained. Plasmids were extracted

by using the hot alkaline method [27] and were transformed by electroporation into electro-

competent E. coliHB101. Selection of transformants was done on LB agar plates containing

300 μg/mL kanamycin and 200 μg/mL ampicillin. Successful conjugation and transformation

was confirmed by specific PCR amplification.

Results

Identification and characterization of carbapenem-resistant

Enterobacteriaceae isolates

High density colonies grew on the CARBA SMART agar plates inoculated with the river and

sediment samples. A total of 224 colonies were obtained: 50 from river water and 174 from

sediment samples. However, only 8 (3.6%) isolates, all recovered from sediment samples, were

found to be Enterobacteriaceae. The remaining isolates were: Pseudomonas putida (56%),

Aeromonas spp. (26.5%), Pseudomonas fluorescens (7.5%), Pseudomonas chlororaphis (4%),

Pseudomonas aeruginosa (3.5%), and other non-Enterobacteriaceae species (2.5%).

The molecular studies revealed that 5 isolates carried KPC-2 (3 E. coli, 1 K. pneumoniae, 1

Enterobacter cloacae), 1 strain was positive for VIM-1 (R. ornithinolytica) and 1 for IMI-2 (E.

cloacae), whereas the remaining isolate (Klebsiella oxytoca) carried two carbapenemases: KPC-

2 and VIM-1 (Table 1).

No strain was positive for the presence of additional β-lactam resistance determinants (i.e.

ESBLs and plasmidic ampCs). Contrarily, up to 4 strains belonging to 4 different species were

positive for the blaOXA-1 gene. Five strains were positive for the aminoglycoside acetyltransfer-

ase gene (2 carried the cr variant) and 3 for the presence of the qnrB gene (two qnrB6 and one

qnrB5 variants) (Table 1). IMI-2-producing E. cloacae (3-CAR) was the only strain which was

negative for the presence of any of the additional resistance genes evaluated.
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All 3 E. coli strains belonged to different pulsotypes (data not shown) and different STs:

ST1434 (1-CAR), ST216 (2-CAR) and the newly described ST5001 (4-CAR) (Table 1). Regard-

ing the phylogenetic group, all 3 strains belonged to group A. The ST identified for the K.

pneumoniae strain was ST634, whereas two new STs, ST822 and ST823, were assigned to the E.

cloacae strains (3-CAR and 7-CAR, respectively).

Antimicrobial susceptibility profile of the strains

Susceptibility to the 18 antibiotics evaluated (11 β-lactams and 7 non-β-lactams) is shown in

Table 2. All the isolates showed the expected hydrolytic profile according to the carbapene-

mase encoded whereas variable results were observed for the remaining antimicrobials (ami-

noglycosides, quinolones, trimethoprim-sulfamethoxazole and fosfomycin). Overall, all strains

(100%) were resistant to amoxicillin, amoxicillin/clavulanic acid and ertapenem. Most strains

(n = 7, 88%) were non-susceptible to piperacillin/tazobactam, ceftazidime, cefotaxime, cefe-

pime, aztreonam and imipenem; followed by 5 strains (63%) non-susceptible to meropenem.

Thus, ertapenem was the least active carbapenem (MIC50 of 24 μg/mL and MIC90 of 32 μg/ml)

whereas meropenem and imipenem were slightly more active (MIC50 of 4 μg/mL and MIC90

of 32 μg/ml, and MIC50 of 4 μg/mL and MIC90 of 12 μg/ml, respectively).

Regarding non-β-lactam compounds, all strains (100%) were susceptible to gentamicin and

colistin, 7 (88%) to amikacin and trimethoprim-sulfamethoxazole, whereas 5 strains (63%)

were non-susceptible to ciprofloxacin and fosfomycin.

Detection of virulence genes

With respect to the analysis of the virulence-related genes, the three E. coli strains collected to

study for presence of 49 virulence-related factors were only positive for the type I fimbrial

adhesin fimH.

In the case of the K. pneumoniae strain, it was positive for the two fimbrial adhesin-encod-

ing genes fimH (type I fimbriae) andmrkD (type 3 fimbriae), the two genes related to LPS and

capsule biosynthesis wabG and uge, as well as ureA, the ureasa A subunit related to

colonization.

Characteristics of the carbapenemase-encoding plasmids

Replicon typing analysis (Table 1) revealed that there was variability for the type of carbapene-

mase-encoding plasmids encountered in terms of incompatibility group and size. Specifically,

for the 5 strains only positive for KPC-2, this resistance determinant was located in an IncN

Table 1. Features of the CPE strains and their carbapenemase-carrying plasmids.

PCR detection of antimicrobial resistance genes Characterization of the carbapenemase-carrying plasmids

Isolate Species Sampling date MLST Carbapenemases Oxacillinase Other resistance

genes

Plasmid size Inc groups PAS PPS

1-CAR E. coli 2014/07/08 ST1434 blaKPC-2 — — blaOXA-1 aac(6’)-Ib-cr qnrB6 70 kb IncN — — vagCD — — —

2-CAR E. coli 2014/07/08 ST5001 blaKPC-2 — — — — — 48 kb — IncR — — — — parAB

3-CAR E. cloacae 2014/05/27 ST822 — blaIMI-2 — — — — 170 kb — — IncFIB — — — —

4-CAR E. coli 2014/07/08 ST216 blaKPC-2 — — — aac(6’)-Ib — 48 kb — IncR — — parDE ccdAB —

5-CAR R. ornithinolytica 2014/05/27 — — blaVIM-1 blaOXA-1 aac(6’)-Ib qnrB5 70 kb — IncR — vagCD — — —

6-CAR K. pneumoniae 2014/05/27 ST634 blaKPC-2 — — — — — 97 kb — — IncFIIK vagCD — — —

7-CAR E. cloacae 2014/07/08 ST823 blaKPC-2 — — blaOXA-1 aac(6’)-Ib-cr qnrB6 70 kb IncN — — vagCD — — —

8-CAR K. oxytoca 2014/05/27 blaKPC-2 — blaVIM-1 blaOXA-1 aac(6’)-Iba — 60 kb IncN — — — — — parAB

a, This strain was positive for the presence of the aac(6’)-Ib gene although it was detected in a different plasmid of circa 240 kb.

https://doi.org/10.1371/journal.pone.0175246.t001
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(70 kb), IncR (48 kb) or IncFIIK (97 kb) plasmids. In the case of the two VIM-1-producing

microorganisms, this gene was carried in an IncR (70 kb) or IncN (60 kb) plasmids, being the

latter also positive for KPC-2. Lastly, the results showed that the IMI-2-positive strain carried

this resistance determinant in a larger, IncFIB plasmid (170 kb).

The analysis of PAS of the carbapenemase-encoding plasmids detected in the present study

revealed that VagCD was the most prevalent system, being present in 4 (50%) strains (E. coli
1-CAR, R. ornithinolytica 5-CAR, K. pneumoniae 6-CAR, E. cloacae 7-CAR), followed by the

ParDE (12.5%) and CcdAB (12.5%) systems which were codetected in the same strain (E. coli
4-CAR) (Table 1). On the contrary, three strains (E. coli 2-CAR, E. cloacae 3-CAR, K. oxytoca
8-CAR) were negative for the presence of all of the systems studied. The results obtained for

the presence of PPS revealed that only two (25%) strains (E. coli 2-CAR, K. oxytoca 8-CAR),

which were negative for PAS, carried the parAB genes. Only the IMI-2-producing E. cloacae
(3-CAR) strain was negative for all the PAS and PPS evaluated. These results indicate that

Table 2. Minimum inhibitory concentrations (MIC) of the studied strains.

MICs (μg/mL)b

Antimicrobialsa Environmental strains Recipient

strain

Transconjugants/Transformant

1-CAR 2-CAR 3-CAR 4-CAR 5-CAR 6-CAR 7-CAR 8-CAR TC-1-CARe TC-7-CARf TF-4-CARg

E. coli E. coli E.

cloacae

E. coli R.

ornithinolytica

K.

pneumoniae

E.

cloacae

K. oxytoca E. coli-

HB101d

E. coli-

HB101

E. coli-

HB101

E. coli-

HB101

KPC-2 KPC-2 IMI-2 KPC-2 VIM-1 KPC-2 KPC-2 KPC-2, VIM-1 KPC-2 KPC-2 KPC-2

AMP >256 >256 >256 >256 >256 >256 >256 >256 2 >256 >256 >256

AMC 48 48 128 >256 48 128 96 96 2 32 32 24

TZP >256 32 4 >256 >256 192 >256 >256 1.5 >256 >256 >256

FOXc 64 192 >256 >256 >256 24 >256 48 3 24 24 32

CAZ 4 6 0.25 6 >256 8 4 >256 0.064 4 6 2

CTX 6 6 0.25 8 32 6 16 48 0.064 8 6 3

FEP 8 6 0.94 16 24 3 6 4 0.047 5 4 2

ATM 32 32 >256 >256 0.5 192 16 48 0.016 48 48 12

IPM 3 1.5 �32 12 8 4 4 3 0.19 4 4 2

MEM 4 1.5 �32 �32 1.5 12 1.5 4 0.016 2 1.5 0.5

ERT �32 24 �32 �32 2 �32 1.5 4 0.002 1.5 1.5 2

GEN 0.38 0.38 0.25 1.5 1.5 0.19 1.5 0.38 0.19 0.5 1 0.25

AMK 3 1.5 2 4 1.5 1 12 2 0.75 4 12 0.75

NALc 256 >256 4 12 6 16 >256 >256 2 4 4 4

CIP 2 0.38 0.125 0.75 0.5 0.75 16 2 0.002 0.064 0.064 0.006

SXT 0.19 0.19 0.94 0.19 0.19 0.19 0.38 >32 0.094 0.032 0.032 0.064

FOF 1 8 >1024 384 >1024 1024 16 >1024 2 4 2 1.5

CST 0.047 0.032 0.047 0.094 0.094 0.064 0.032 0.064 0.094 0.094 0.094 0.125

a, AMP, ampicillin; AMC, amoxicillin/clavulanic acid; TZP, piperacillin/tazobactam; CAZ, ceftazidime; CTX, cefotaxime, FEP, cefepime; ATM, aztreonam;

IPM, imipenem; MEM, meropenem; ERT, ertapenem; GEN, gentamicin; AMK, amikacin; CIP, ciprofloxacin; SXT, trimethoprim-sulfamethoxazole; FOF,

fosfomycin; CST, colistin.
b, Numbers in bold-face indicate resistance values according to EUCAST.
c, Bold-face numbers for cefoxitin and nalidixic acid refer to resistance values according to CLSI breakpoints as no value is reported in EUCAST guidelines.
d, E. coli HB101 was the strain used as recipient in the conjugation and transformation experiments.
e, E. coli transconjugant obtained from strain 1-CAR and HB101 that received blaKPC-2-encoding plasmid.
f, E. coli transconjugant obtained from strain 7-CAR and HB101 that received blaKPC-2-encoding plasmid.
g, E. coli transformant obtained from strain 4-CAR and HB101 that received blaKPC-2-encoding plasmid.

https://doi.org/10.1371/journal.pone.0175246.t002
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none of the plasmid-related stability systems studied here was associated with a particular car-

bapenem-resistance mechanism.

Regarding plasmid mobilization experiments, blaKPC-2-encoding transconjugants could be

obtained from strains 1-CAR and 7-CAR. Additionally, a blaKPC-2-encoding tranformant was

recovered from strain 4-CAR. The MICs for different antibiotics were evaluated for receptor

and transconjugant/transformant strains and are shown in Table 2. Of note, the MICs of ERT

and FOX were much lower in recipient strains than in donor strains. These changes might be

due to the presence of chromosomally-encoded resistance mechanisms, as outer membrane

permeability alterations, in the donor strains affecting the susceptibility to both antibiotics.

Discussion

The increasing rates of resistance to antimicrobial compounds that play a key role in the clini-

cal setting, such as carbapenems, have led to an urgent need to understand the global spread of

their resistance mechanisms. As a result, the role and impact of other ecological niches, such as

rivers and hospital sewage systems, is of important concern, as is the detection of β-lactamases

and other unrelated resistance mechanisms in these strains.

The CPE identified in the present work were only recovered from sediment samples. These

results are in agreement with recent works which report increased load and longer persistence of

bacteria inhabiting sediment samples in comparison with river water samples. Thereby these

results suggest higher probability for detecting CPEs in sediment than river water [28]. Accord-

ingly, the CPE isolated in this study were E. coli (3 strains, positive for KPC-2), K. pneumoniae
(KPC-2-producer), K. oxytoca (KPC-2- and VIM-1-producer), E. cloacae (one positive for KPC-

2 and one positive for IMI-2) and, lastly, R. ornithinolytica (VIM-1-producer). In terms of envi-

ronmental epidemiology, the most prevalent microorganism producing KPC-2 is Klebsiella, fol-

lowed by Enterobacter [5], albeit other microorganisms such as E. coli and Raoultella spp. have

also been reported [5,29]. The VIM-1 enzyme has occasionally been detected in environmental

samples and in a narrow spectrum of genera (e.g. K. pneumoniae [11] and E. coli [9]). There is

only one previous identification in a R. ornithinolytica strain collected from fecal carriers in

Spain [30] whereas, to our knowledge, this is the first identification of blaVIM-1 in this bacteria

isolated from the environment. On the contrary, only three IMI-2 identifications have been doc-

umented so far: one Enterobacter asburiae (river sample, US) [10], one E. cloacae (clinical isolate,

China) [14], and one E. coli (clinical isolate, Spain) [31]. Thus, this is also the first time that the

IMI-2 determinant has been detected in bacteria of environmental origin in Europe.

Despite the increasing rates of carbapenem resistance in the clinical setting, it is rather

infrequent to codetect several carbapenemases in the same strain. The most frequently identi-

fied microorganism is K. pneumoniae with a percentage estimated at 5.3% on considering car-

bapenemase-positive isolates in Greece, a carbapenemase endemic country [32]. In the present

study we have codetected blaVIM-1 and blaKPC-2 in the same IncN plasmid in a K. oxytoca
strain, being this the first case reported from an environmental strain.

In a multicenter study conducted in 2013 it was shown that the most prevalent carbapene-

mase in Enterobacteriaceae in Spain was OXA-48 (n = 271; 71%), followed by the VIM-type

enzymes (n = 96; 25%), whereas the KPC family was uncommon (2%), and no isolate was an

IMI-type producer [33]. Surprisingly, in the present study, in which the isolates were recovered

only one year later, no OXA-48 was detected and VIM-type carbapenemases were represented

at a lower frequency than KPC-type enzymes. Previous results available in the literature also

describe a major prevalence of KPC and VIM determinants in the aquatic environment

[3,9,12,29]; whereas, to our knowledge, no report has detected an OXA-48-producing CPE in

the same type of samples.
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The characterization of the virulence potential of the E. coli strains detected in this study

revealed that they only were positive for fimH and belonged to the phylogenetic group A (usu-

ally associated with commensal strains that carry very few virulence factors). Three STs were

identified in E. coli: i) ST1434, previously detected in Mexico in two strains recovered from

water and human feces which were categorized as non-pathogenic [34]; ii) ST216, identified

among ESBL-producing E. coli strains of fecal origin in the US [35] and Europe [36], and as

the most prevalent ST in IMP-producing strains recovered from gulls feces in Australia [37];

and iii) ST5001, a singleton newly described in this study. Both ST1434 and ST216 belong to

clonal complex CC10, from which several KPC-producing isolates have previously been

described, although only in surveillance culture studies in Israel [38]. Concerning K. pneumo-
niae, even though strain 6-CAR possessed the most prevalent virulence factors reported in

clinical isolates (fimH,mrkD, wabG, uge and ureA) [24], it was negative for the genes most sig-

nificantly associated with invasive human infection (rmpA, fyuA, iutA, clbA-R, iroN) [39]. This

strain belonged to ST634, a singleton for which no previous information could be found. Alto-

gether, this information suggests that the virulence potential of the E. coli and K. pneumoniae
isolates found in the present study may be considered of low risk. In the case of the two E. cloa-
cae isolates, both belonged to STs of new description.

Plasmid addiction and partition systems have not been studied in depth when characteriz-

ing clinically-relevant plasmids. vagCD has been reported as the most represented PAS in clini-

cal samples related to the spread of β-lactamases, followed by ccdAB, pemIK and hok-sok [40].

Concerning PPS, parAB has also been associated with carbapanemase-producing plasmids, as

in the case of the widespread pOXA-48a plasmid in K. pneumoniae [41]. Similar results were

detected in the present study: vagCD and parAB were the PAS and PPS, respectively, most fre-

quently detected. These findings suggest that these systems deserve more attention and further

research in order to clearly define their role in the successful dissemination of such plasmids.

Moreover, on integrating all the traits reported for the carbapenemase-producing plasmids

found in the present work, most of the strains were shown to respectively harbor different plas-

mids. Nonetheless, the results obtained from the plasmid characterization suggest that the KPC-

2-producing strains E. coli CAR-1 and E. cloacae CAR-7 may harbor the same plasmid (i.e,

70-kb IncN plasmid carrying the VagCD system as well as the blaOXA-1, aac(6’)-Ib and qnrB6
determinants). As these two strains belonged to different species, and taking into consideration

the successful plasmid mobilization results for these two strains, it is easy to assume the occur-

rence of an in vivo environmental transference of this plasmid supporting its dissemination abil-

ity. This fact would provide means for this resistance determinant to eventually reach a human-

adapted bacterial clone endangering the efficacy of the antimicrobial armamentarium.

Overall, the present study reports for the first time the presence of CPE recovered from

a river ecosystem in the Barcelona metropolitan area. The results show that several species

produce, and sometimes coproduce, different carbapenemases which are carried in different

plasmids. No epidemiological relationship between these environmental isolates and the path-

ogenic strains detected in the clinical setting was found, hence suggesting that they might

rather act as reservoirs. Surprisingly, KPC-2 was the most prevalent enzyme in contrast with

the clinical situation in our country. These results reinforce the necessity to take into account

all the diverse reservoirs encountered, including humans, animals and the environment, in the

fight against antimicrobial resistance.
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