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Abstract

Accumulator models explain decision-making as an accumulation of evidence to a response 

threshold. Specific model parameters are associated with specific model mechanisms, such as the 

time when accumulation begins, the average rate of evidence accumulation, and the threshold. 

These mechanisms determine both the within-trial dynamics of evidence accumulation and the 

predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-

making by seeing what parameters vary when a model is fitted to observed behavior. The recent 

identification of neural activity with evidence accumulation suggests that it may be possible to 

directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, 

evidence accumulation is often noisy, and noise complicates the relationship between accumulator 

dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of 

inferences can be made about decision-making mechanisms based on measures of neural 

dynamics, we measured simulated accumulator model dynamics while systematically varying 

model parameters. In some cases, decision- making mechanisms can be directly inferred from 

dynamics, allowing us to distinguish between models that make identical behavioral predictions. 

In other cases, however, different parameterized mechanisms produce surprisingly similar 

dynamics, limiting the inferences that can be made based on measuring dynamics alone. 

Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the 

behavioral level, but we caution against drawing inferences based solely on neural analyses. 

Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful 

approach to understand decision-making and likely other aspects of cognition and perception.

Cognitive modeling allows us to infer the mechanisms underlying perception, action, and 

cognition based on observed behavior (Busemeyer & Diederich, 2009; Farrell & 

Lewandowsky, 2010; Townsend & Ashby, 1983). In the domain of decision-making, 

accumulator models (also called sequential-sampling models) provide the most complete 

account of behavior for many different types of decisions (Bogacz, Brown, Moehlis, 
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Holmes, & Cohen, 2006; Brown & Heathcote, 2005; Brown & Heathcote, 2008; Laming, 

1968; Link & Heath, 1975; Link, 1992; Nosofsky & Palmeri, 1997; Palmer, Huk, & 

Shadlen, 2005; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Reddi & Carpenter, 2000; 

Shadlen, Hanks, Churchland, Kiani, & Yang, 2006; Smith & Vickers, 1988; Usher & 

McClelland, 2001; Vickers, 1979). These models assume that evidence for a particular 

response is integrated over time by one or more accumulators. A response is selected when 

evidence reaches a response threshold. Variability in the time it takes for accumulated 

evidence to reach threshold accounts for variability in choice probabilities and response 

times observed in a broad range of decision-making tasks.

Particular accumulator model parameters represent distinct decision-making mechanisms 

(Figure 1). An encoding time (te) parameter defines the time for sensory and perceptual 

processing, a drift rate parameter (v) defines the mean rate of evidence accumulation, a 

starting point parameter (z) determines the initial state of an accumulator, a threshold 
parameter (a) defines the level of evidence that must be reached before a response is 

initiated, and a motor response time (tm) parameter defines the time to execute a response 

(Figure 1A). By identifying parameter values that maximize the match between observed 

and predicted behavior (e.g., Vandekerckhove & Tuerlinckx, 2007), the models can reveal 

the mechanisms underlying variation in decision-making behavior across different 

experimental conditions. For example, manipulations of speed versus accuracy instructions 

affect the response threshold (Brown & Heathcote, 2008) (Wagenmakers, Ratcliff, Gomez, 

& McKoon, 2008), manipulations of experience (Nosofsky & Palmeri, 1997; Palmeri, 1997; 

Petrov, Van Horn, & Ratcliff, 2011; Ratcliff, Thapar, & McKoon, 2006) or stimulus strength 

(Palmer et al., 2005; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998) affect drift rate, 

and manipulation of dynamic stimulus noise prolong encoding time (Ratcliff & Smith, 

2010). In addition, many accumulator models assume that some of these mechanisms can 

vary over trials to explain within-condition variability in behavior, with additional 

parameters defining the degree of variability in other parameters.

Recent neurophysiological and neuroimaging studies have identified potential linking 

propositions (Schall, 2004; Teller, 1984) between accumulator models and measures of brain 

activity (Forstmann, Ratcliff, & Wagenmakers, 2015; Forstmann, Wagenmakers, Eichele, 

Brown, & Serences, 2011; Gold & Shadlen, 2007; Palmeri, Schall, & Logan, 2014; Shadlen 

& Kiani, 2013; Smith & Ratcliff, 2004). Different approaches have established different 

kinds of connections between models and neural measures (Turner, Forstmann, Love, 

Palmeri, & Van Maanen, in press). One approach has been to fit a model to behavior, and 

use the fitted parameters as a tool for interpreting or identifying neural signals. Correlating 

model parameters and neural signals across subjects and conditions can provide insight into 

what brain regions might be involved in determining the model threshold, drift rate, and non-

decision time (Forstmann et al., 2008; Heekeren, Marrett, Bandettini, & Ungerleider, 2004; 

van Maanen et al., 2011; White, Mumford, & Poldrack, 2012). Another approach has been 

to jointly model behavioral data and neural responses together, significantly constraining 

parameter estimates (Cassey, Gaunt, Steyvers, & Brown, in press; Turner, van Maanen, & 

Forstmann, 2015).
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Another line of work suggests that the firing rates of certain neural populations directly 

represent the evidence accumulation process proposed in the accumulator model framework. 

In these studies, animals are trained to perform perceptual decision-making tasks and neural 

activity is recorded from one or more intracranial electrodes simultaneously while animals 

perform the task. Neural responses can then be analyzed aligned to the timing of task events 

(e.g., stimulus onset) or the behavior of the animal (e.g., response initiation). Specifically, 

the firing rates of neurons within a distributed network of areas including pre-frontal cortex 

(Ding & Gold, 2012; Hanes & Schall, 1996; Heitz & Schall, 2012; Kiani, Cueva, Reppas, & 

Newsome, 2014; Kim & Shadlen, 1999; Mante, Sussillo, Shenoy, & Newsome, 2013; 

Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012), superior colliculus (Horwitz & 

Newsome, 1999; Ratcliff, Cherian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, 

& Segraves, 2007), posterior parietal cortex (Churchland, Kiani, & Shadlen, 2008; de 

Lafuente, Jazayeri, & Shadlen, 2015; Mazurek, Roitman, Ditterich, & Shadlen, 2003; 

Roitman & Shadlen, 2002), premotor cortex (Cisek, 2006; Thura & Cisek, 2014; Thura, 

Cos, Trung, & Cisek, 2014), and basal ganglia (Ding & Gold, 2010) exhibit dynamics 

consistent with accumulation of perceptual evidence. Following the onset of a stimulus, the 

firing rates of these neurons gradually rise over time depending on the animal's upcoming 

choice. Consistent with expected accumulator model dynamics, the rate of rise depends on 

stimulus strength and RT. Importantly, activity converges to a fixed firing rate shortly before 

the response is initiated regardless of the stimulus and RT, consistent with a threshold 

mechanism for decision termination (Hanes & Schall, 1996). The finding that certain neural 

populations might be implementing the computations proposed by accumulator models 

suggests that neural activity from these populations can provide a window onto the dynamics 

of evidence accumulation in the brain.

The proposed link between accumulator model dynamics and neural dynamics suggests that 

we could infer the parameters of the decision-making process directly from analyses of 

neural dynamics. Conversely, the best-fitting parameters of model fits to behavioral data 

could be used to directly generate predictions about expected neural dynamics. For example, 

one straightforward mapping for accumulator models associates the encoding time 

parameter with the measured onset of accumulation when neural activity first begins to rise 

from baseline, the starting point parameter with measured baseline activity before the 

stimulus turns on and before accumulation begins to rise, the drift rate parameter with 

measured growth rate of accumulation, and the response threshold parameter with measured 

activity prior to the onset of the observed motor response (Figure 1C). If we observe changes 

in the measured neural onset, then without ever fitting a model to data, we might assert that 

differences in the encoding time parameter in the accumulator model explains why people or 

animals are slow in one condition and fast in another. We could also choose to constrain an 

accumulator model by setting the encoding time parameter equal to the measured neural 

onset time across conditions. Working in the other direction, suppose that an accumulator 

model fitted to behavior required that there be changes in the encoding time parameter 

across conditions. This model could be tested by examining whether there are concomitant 

changes in the measured neural onset.

Of course, both of these approaches are valid only if the mapping between model parameters 

and neural dynamics is one-to-one. A one-to-one mapping between parameters and 
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dynamics is indicated when variation in a certain parameter corresponds to variation in a 

unique measure of dynamics. For example, that variation in the onset time is only associated 

with variation in the encoding time parameter (Figure 1C), and not the drift rate, starting 

point, or threshold. A direct mapping between model parameters and dynamics may seem 

almost self-evident, but several factors can make things more complicated than intuition 

might suggest. To begin with, noise is ubiquitous in neural activity (Faisal, Selen, & 

Wolpert, 2008) and many accumulator models assume that evidence is noisy (e.g., Ratcliff & 

Smith, 2004). As we will see, within-trial noise introduces additional sources of variability 

such that qualitatively different model parameters can sometimes predict very similar 

dynamics. The mapping between accumulator model parameters and neural dynamics can 

also be obscured because of averaging over trials that resulted in different RTs, which is 

often necessary to combat noise in analyses of neural data (Figure 1C). If not done properly, 

this averaging can further obscure the mapping between model parameters and neural 

dynamics.

To understand how variation in accumulator model parameters relates to variation in neural 

dynamics, we quantified how variation in accumulator model parameters relates to variation 

in model dynamics (i.e., the trajectory of accumulated evidence). To do this, we applied 

commonly used neurophysiological analyses to characterize model dynamics generated from 

known sets of parameters. In the following section, we describe the accumulator models that 

were simulated, the parameters of those models that were varied, the measures of 

accumulator dynamics that were made, and how relationships between model parameters 

and dynamics were assessed.

General Simulation Methods

Model Overview

Researchers have proposed various accumulator model architectures that make specific 

assumptions about the form of evidence accumulation (e.g., the diffusion model, Ratcliff, 

1978; Ratcliff & Rouder, 1998; linear ballistic accumulator (LBA), Brown & Heathcote 

2008; leaky-competing accumulator (LCA), Usher & McClelland, 2001; linear approach to 

threshold with ergotic rate (LATER), Reddi & Carpenter, 2000). Our goal here was not to 

evaluate a specific architecture per se, but to evaluate the dynamics produced by different 

parameterized model mechanisms that can be shared across architectures. Therefore, we 

adopted a general modeling framework that included a broad range of decision-making 

mechanisms. We first provide a broad overview of the framework followed by a formal 

description of the model.

For biological plausibility, we modeled the decision process as accumulation of perceptual 

evidence to a positive response threshold (Figure 1B). For our purposes, the model activation 

can be identified with the firing rates of neurons that increase their activity in support of a 

particular response (Mazurek et al., 2003; Purcell et al., 2010; Ratcliff et al., 2007). Note 

that this approach is compatible with accumulator models, like the diffusion model (Ratcliff, 

1978), that represent the decision process using a single accumulator with positive and 

negative response thresholds because these models can usually be reformulated using 

multiple accumulators (Bogacz et al., 2006; Ratcliff et al., 2007; Usher & McClelland, 
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2001). For simplicity, we modeled only a single accumulator, but the framework can be 

naturally extended to explain choice behavior with the addition of more accumulators (e.g., 

LBA, LATER, LCA). To maintain focus on the decision making mechanisms and their 

resulting dynamics, we did not explore models that included competition among 

accumulators or leakage of accumulated information (Smith, 1995; Usher & McClelland, 

2001); analyses of model dynamics may help to distinguish between these mechanism as 

well (Bollimunta & Ditterich, 2012; Boucher, Palmeri, Logan, & Schall, 2007; Purcell et al., 

2010; Purcell, Schall, et al., 2012).

Recall that four primary parameters determine how accumulator-model mechanisms can 

vary across experimental conditions (Figure 1A). The encoding time (Te) determines the 

delay between the onset of a stimulus and the start of accumulation. Neurally, this parameter 

can be associated with afferent conduction delays, including the time needed to encode a 

stimulus with respect to potential responses. Typically, encoding time and post-decision 

motor time (Tm) are combined into a single “non-decision time” parameter (often denoted Tr 

or Ter) because the two parameters are indistinguishable using only behavior. However, 

because they can be distinguished in model and neural dynamics, we distinguish between 

them here, focusing specifically on encoding time because the motor time is relatively short 

and invariable for neurophysiological signals identified with some motor responses like 

saccadic eye movement (Scudder, Kaneko, & Fuchs, 2002). The drift or drift rate (V) 

determines the mean of perceptual evidence for a particular response, and therefore the rate 

of accumulation. The starting point (Z) determines the initial state of evidence at the start of 

the accumulation process. The threshold (A) determines the amount of evidence that must be 

accumulated before a motor response is initiated, and determines the tradeoff between 

accuracy and speed.

Each primary parameter is associated with stochastic parameters that can produce across-

trial variability in behavior. Following common conventions (e.g., Brown & Heathcote, 

2008; Ratcliff & Rouder, 1998), we assumed that encoding time varied according to a 

uniform distribution with range sT ; drift rate varied according to a Gaussian distribution 

with standard deviation sV; starting point varied according to a uniform distribution with 

range sZ; threshold varied according to a uniform distribution with range sA (some previous 

models have assumed normally-distributed thresholds (e.g., Grice, 1968; Grice, 1972), but 

we used a uniform to eliminate the possibility that the threshold could be placed below the 

starting point). In other words, primary parameters determine the mean of parameter 

distributions, and stochastic parameters determine the variability. We adopt the convention 

of using upper-case variables to refer to primary parameters that define a fixed parameter 

distribution over trials, and lower-case variables to refer to a sample from the distribution on 

an individual trial. To be clear, a model assuming all four sources of across-trial variability 

would be non-identifiable based on behavioral data alone, but variability in the four 

mechanisms can possibly be distinguishable based on analysis of accumulator dynamics.

The other major source of variability is within-trial noise. Many accumulator models assume 

that evidence is noisy (Figure 1B, inset; Ratcliff, 1978; Usher & McClelland, 2001), perhaps 

because of some combination of within-trial stimulus noise, momentary variation of the 

evaluation of a percept, or intrinsic variability in the brain; other models do not assume 
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within-trial variability (Brown & Heathcote, 2005; Brown & Heathcote, 2008; Reddi & 

Carpenter, 2000). Here, we explored different levels of within-trial noise to understand what 

impact this noise might have on measures of model dynamics. Following common 

convention (e.g., Link & Heath, 1975), we assumed that within-trial variability in drift rate is 

normally distributed with standard deviation s (but see Jones & Dzhafarov, 2014; Ratcliff, 

2013).

If we assume that the evidence in the accumulator maps onto the firing rate of a neuron, then 

the translation from rate to spikes will introduce an additional source of noise in any 

measure of neural dynamics (Figure 1C; Churchland et al., 2011; Nawrot et al., 2008; Smith, 

2010, 2015). This additional source of variability can be added to the model dynamics by 

assuming that the neural activity is a doubly-stochastic process reflecting both rate 

variability (trial-by-trial variation in accumulated evidence) and point-process variability 

(Poisson-like spiking noise). This point-process variability has the potential to further 

obscure the relationship between model parameters and dynamics. However, because 

separate trials are generally recorded sequentially, the spiking noise is independent across 

trials and can be reduced by averaging. For the analyses reported in this paper, we reached 

the same conclusions regardless of whether we directly analyzed the model trajectories 

directly or used the model trajectories to drive a Poisson process and then analyzed the 

resulting spike count histograms (Figure 1C; Purcell et al., 2010; 2012), at least so long as 

the number of trials was ~20 or more (most neurophysiological studies record many more). 

Here, we report direct analyses of the model trajectories to demonstrate that our conclusions 

about the relationship between model parameters and dynamics are not an artifact of the 

conversion from spike rates to spike times, nor are they a consequence of limited statistical 

power. In practice, when comparing neural and model dynamics, one should always take 

spiking variability into account to ensure that differences between model and neural 

dynamics are not explained by differences in statistical power.

Simulation Details

At the start of a simulated trial, model activation, x(t), is fixed at starting point, z, which is 

sampled for that trial from a uniform distribution with range . Activation 

remains at z throughout the encoding time, te, which is sampled for that trial from a uniform 

distribution with range . After the encoding time, model dynamics are 

governed by the following stochastic differential equation (see Bogacz et al., 2006; Usher & 

McClelland, 2001):

where x is the model activation (accumulated evidence), v is the drift rate, which is sampled 

for that trial from the Gaussian distribution with mean V and standard deviation sV, and ξ is 

a within-trial Gaussian noise term with mean zero and standard deviation s. The process 

terminates when model activation exceeds a threshold, a, which is sampled for that trial from 

a uniform distribution with range .
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The predicted response time, RT, is the sum of the encoding time (te), the decision time – the 

time for the activation to reach threshold – and the motor time (tm; here, set to zero). 

Because firing rates cannot drop below zero, we initially explored versions of the model that 

included a lower reflecting bound at zero. However, we found that our results were 

qualitatively similar with or without such a lower bound, so we report results from a model 

that does not include a lower reflecting bound to be clear that this is not a crucial factor 

influencing our findings and conclusions.

By analyzing the relationship between model dynamics and model parameters, we hoped to 

inform the types of inferences that can be made by analyzing real neural signals. We 

therefore adopted simulation and analysis methods designed to mimic the type of data and 

analyses seen in actual neurophysiological experiments. Although closed-form solutions are 

available for expected behavior, simulations are needed to study the dynamics at the level of 

individual simulated trials. We used Monte-Carlo simulations to generate expected single-

trial model dynamics (e.g., Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). All simulations 

used a simulation time step dtτ = 0.1 ms, and model trajectories were downsampled to 1 ms 

resolution to match the resolution of typical neural recordings.

We simulated different parameter sets to represent different experimental conditions. For 

each parameter set, we generated 5000 simulated trials, with each trial providing one RT and 

one model activation trajectory, x(t). In some cases, we chose parameter sets by 

systematically varying individual parameters to understand the selective influence these 

parameters have on accumulator dynamics. In other cases, we randomly sampled parameters 

from specified ranges to ensure that our results were not specific to a particular parameter 

set. For those simulations, we sampled 2500 parameter sets from the following ranges: Te: 

0.15 - 0.5; V: 0.01 - 0.15; Z: 0.001 - 0.1; A: 0 - 0.15; sTe: 0 – 0.2; sV: 0 – 0.1 ; sZ: 0 – 0.1; sA: 

0 – 0.1). These parameters generated a diversity of RT distributions that spanned the range 

of RTs observed in typical decision-making experiments with humans and non-human 

primates. To ensure that each parameter set produced realistic behavior and dynamics, we 

also imposed several criteria. We required that Z < A so that the model produced non-zero 

decision times. In addition, we required that the leading edge (5th percentile) of the decision 

time distribution must be at least 50 ms to ensure a sufficiently long time interval over which 

to measure accumulator dynamics. Finally, we required that at least 90% of trials reached 

the threshold within 2.0 seconds of decision time (our maximum simulation time) to prevent 

excessively long decision times and reduce computational demands.

Measures of Model Dynamics

We applied several measures of model dynamics to identify the parameters underlying 

variability in RT. We considered two types of RT variability. First, we asked whether we 

could identify the parameters underlying within-condition variability in RT (i.e., random, 

across-trial variability). Here, the goal is to infer which stochastic parameters are greater 

than zero given the observed model trajectories. Second, we asked whether we could use 

model dynamics to identify mechanisms underlying across-condition variability in RT – for 

example, variation due to an experimental manipulation. Here, each set of primary 

parameters can be identified with a simulated experimental condition and the goal is to infer 
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which primary parameters have changed given the observed changes in the model 

trajectories. In both cases, the problem is not trivial because within-trial noise contributes to 

all variability in RT.

Both neural and model trajectories are very noisy at the level of individual trials (Figure 1), 

which makes it difficult to extract meaningful insights about model parameters based on 

single trials alone. Signal averaging is the most common method of noise reduction in 

analyses of neural data. Individual trials are first binned according to the condition or 

behavior of interest and then averaged in order to eliminate across-trial noise and reveal 

common underlying structure. To mirror this approach for our model dynamics, we will bin 

and average our model trajectories before analyzing the pattern of dynamics. Each measure 

of model dynamics (described below) will applied to the average trajectory for individual 

bins.

To understand sources of within-condition variability in RT, we analyzed the activation 

trajectories that produced different RTs for a single parameter set. We divided the 5000 

simulated trials for each condition into bins based on the predicted RT and averaged 

trajectories within each bin. We choose a bin size of 20 because it was large enough to 

average out some across-trial noise, but small enough to limit the range of RTs within a 

single bin, and also approximated the values used in physiological studies (e.g., Purcell et 

al., 2010; Purcell, Schall, et al., 2012; Woodman, Kang, Thompson, & Schall, 2008).

To understand sources of across-condition variability in RT, we evaluated several different 

approaches to binning trials that have been employed by previous neurophysiological 

studies. First, one could simply group all trials from a condition into a single bin and 

average. Alternatively, one could analyze response dynamics in small RT bins as described 

above and then averaging the resulting measurements over bins. Ultimately, we will show 

that both of these methods are problematic for inferring model parameters from dynamics, 

but focusing on the subset of trials that result in moderately fast RTs (e.g., 30th – 50th 

percentile) produces better results for the set of neural measured that we evaluated.

We adapted four measures of model dynamics that were developed to analyze observed 

neural responses (Figure 1C; Pouget et al., 2011; Purcell et al., 2010; Purcell, Schall, et al., 

2012; Woodman et al., 2008). Each measure was originally defined and developed to 

correspond conceptually to a particular accumulator model parameter in the absence of any 

sensory noise. We can then ask how effective is each measure once noise is introduced.

First, we measured the onset time of accumulation when activity first increased above the 

pre-stimulus baseline levels. To quantify the onset time, we used a sliding-window algorithm 

(+/−50 ms) that moves backward in 1 ms increments beginning at RT. The onset of 

activation was determined as the time when the following criteria are met: (1) activity no 

longer increases according to a Spearman correlation (alpha = 0.05) within the window 

around the current time; (2) activity at that time was lower than 50% of the maximum; and 

(3), as the window was moved backwards in time, the correlation remains nonsignificant for 

30ms. Our results were unchanged when we instead computed the onset as the time at which 

activation first exceeds 10% of the distance from baseline to threshold.
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Second, we measured the baseline of accumulation. This is the initial level of activation 

immediately following stimulus onset. To quantify the baseline, we computed the average 

activation in the initial 100ms of each simulated trial, which was always less than the 

minimum encoding time assumed by our choice of parameters.

Third, we measured the activity at RT. This is the level of activation near the time when the 

response was initiated. To quantify the activity at RT, we first aligned all simulated trials to 

the time of the initiated response. The activity at RT was then computed as the average 

activation in the 5ms window centered on response time.

Fourth, we measured the growth rate of accumulation to threshold. This is the average rate 

of accumulation from the time when activity first began increasing (onset time) until the 

threshold was reached. To quantify the growth rate, we estimated the slope of model 

activation from the onset time until RT. This was computed as the activity at RT minus the 

baseline, divided by the RT minus the onset time (see Figure 1C).

Simulation Results

Variability in accumulator model parameters causes variability in predicted behavior and 

model dynamics. We asked whether the source of variability could be inferred not by fitting 

parameterized models to behavioral data, as in cognitive modeling work, but by measuring 

accumulator dynamics directly, as in neurophysiological work. To do this, we simulated a 

general accumulator model architecture while introducing variability in particular 

parameterized mechanisms. We then measured accumulator dynamics in ways analogous to 

how neurons are analyzed in order to determine how variability in those dynamics relate to 

the variability we introduced via model parameters.

Within-Condition Variability in Parameters and Dynamics

To understand sources of within-condition variability in RT, we analyzed the model 

trajectories that produced different RTs given a set of parameters. We first examined a model 

architecture assuming no within-trial noise (“Noiseless”, s = 0) to validate our measures of 

neural dynamics and provide a baseline for comparison to noisy models. We started by 

simulating four versions of the model assuming across-trial variability in only one of the 

four primary parameterized mechanisms (encoding time, drift rate, starting point, threshold); 

in other words, in each of the four model versions, only one of the stochastic parameters, 

sTe, sV, sZ, or sA, were non-zero and all the rest were equal to zero. The left column of 

Figure 2 illustrates model dynamics for each version of the model using a representative set 

of primary parameter values; later, we generalize beyond this particular parameter set. In the 

absence of within-trial noise, there is a clear one-to-one mapping between variability in 

manipulated parameters and variability in measured dynamics. As anticipated by our earlier 

discussion, variability in encoding time (Te) maps onto variability in measured onset, 

variability in drift (V) maps onto variability in measured rate, variability in starting point (Z) 

maps onto variability in measured baseline, and variability in threshold (A) maps onto 

variability in activity at RT.
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To quantify this, following typical neural analyses, we grouped trials into bins of size 20 and 

plotted each measure of model dynamics as a function of the mean RT for all bins (Figure 

3A). A particular measure of model dynamics correlated with RT only for a single stochastic 

parameter in the model. This is illustrated in Figure 3A by the fact that only the diagonal 

panels show any relationship between manipulated model parameters and measured 

dynamics. Without within-trial noise (s = 0), the measured dynamics of accumulation and 

variability in the resulting behavior are exclusively determined by variability in a particular 

accumulator model parameter. In that case, the relationship between model dynamics and 

model parameters is one to one, straightforward and intuitive.

The relationship between variability in accumulator model parameters and measured model 

dynamics is more complicated with the addition of within-trial noise. The right column of 

Figure 2 illustrates variability in accumulator dynamics generated with the same set of 

parameters, but now with the addition of within-trial noise (Noisy, s = 0.1). All four 

parameter sets, regardless of the underlying source of variability, produce variation in the 

measured onset and growth rate with RT. This was clearly evident in the correlation between 

the measured onset and growth rate and RT for all four models. As shown in Figure 3B, 

there is a relationship between onset and RT (first row) and between growth rate and RT 

(second row) even when a seemingly incommensurate parameter was varied. This means 

that simply observing changes in the onset or growth rate of neural signals as a function of 

RT is not sufficient to draw conclusions about parameterized sources of variability in the 

decision process. Changes in the measured baseline and activity at RT can be somewhat 

diagnostic, but changes in the onset and growth rate could well reflect accumulator noise.

This “one-to-many” relationship between measured dynamics and manipulated parameters 

was not unique to the particular set of parameters we used in the above illustrations, but was 

observed across a broad range of parameter sets. To demonstrate this, we again simulated 

four model variants in which a single stochastic parameter (st, sv, sz, or sa) took on a value 

greater than zero. But instead of evaluating just a single set of parameters, we sampled from 

a broad range of values resulting in diverse RT distributions (see Methods). Across 2500 

sampled parameters sets, Figure 4 displays the average correlation between measured 

dynamic and RT for each of the manipulated stochastic parameters. As shown in the figure, 

without any within-trial noise (Noiseless, s = 0), there is a clear one-to-one mapping 

between the measures of model dynamics and stochastic parameters. However, within-trial 

noise of a standard magnitude (Noisy, s = 0.1) produces strong correlations between the 

measured onset of activity and RT and between the measured growth rate of activity and RT.

Figure 5 provides some intuition about why the dynamics under cases of within-trial noise 

take this form. The left panels illustrate example trajectories sampled from different ranges 

of RTs (fast, medium, and slow), while the right column shows the probability distribution 

of accumulated evidence at each time step conditional on the same RT range. Fast RTs result 

from positive samples of noise that elevate the observed growth rate, even if the underlying 

mean rate of growth is invariable. Slow RTs occur when accumulated evidence meanders 

around the starting point, only rising immediately prior to reaching the threshold. As a 

result, the actual end of encoding time (start of evidence accumulation) may have occurred 

long before activity first begins rising toward threshold.
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We found that the signal-to-noise ratio (SNR) of incoming evidence is a key factor 

influencing the correlation between measured onset and RT, and between measured growth 

rate and RT. In the accumulator model framework, SNR is defined by the ratio of the mean 

drift rate (V) over within-trial noise (s). To study the influence of SNR on model dynamics, 

we simulated a model in which within-trial noise was the only source of variability; in other 

words, all other stochastic parameters were set equal to zero. We varied the SNR, while all 

other primary parameters were randomly sampled as described above. The relationship 

between onset and RT is highly dependent on SNR. When SNR is high (≥10), the model 

trajectories are more likely to rise directly to threshold, and so measured onset does not 

correlate with RT (Figure 6A). However, when the SNR is low (roughly <5), the onset 

correlates strongly with RT. In this case, the growth rate correlates with RT irrespective of 

SNR because the within-trial noise is the only source of variability in the model. In contrast, 

the measured baseline and threshold are unaffected by SNR.

Across-Condition Variability in Parameters and Dynamics

The analyses above focused on within-condition variability in model dynamics and 

stochastic parameters, but accumulator models are also frequently used to infer changes in 

decision making across experimental conditions (e.g., variation in stimulus strength, speed-

accuracy instructions, etc.). To understand whether measuring neural dynamics can be used 

to directly identify changes in decision-making mechanisms across conditions, we also 

tested how variation in measured accumulator dynamics are related to manipulated variation 

in primary model parameters.

Quantifying changes in model dynamics and neural dynamics across experimental 

conditions raises a challenge of how to summarize dynamics across multiple trials. For 

speeded decision-making tasks in which a subject determines when to make their response, 

the total trial duration will vary substantially over trials. While it is straightforward to 

average RTs of different durations since those are simply point observations, there is no 

clear way to average trajectories of different durations because those are extended time 

series. Neurophysiological studies have dealt with this variability in different ways, but the 

choice of how to average and bin trials can have a marked influence on the form of resulting 

measured dynamics that can help or hinder inferences about underlying parameters.

One seemingly straightforward approach is to simply average across all trials regardless of 

their RT. A critical limitation of this approach is that it requires some explicit assumption 

about how to treat post-response accumulator activity (Figure 7A-D). For early time points, 

all of the model or neural trajectories can be averaged together at every time step, but at 

progressively later time points, increasingly more of the trajectories will have hit threshold 

and triggered a response. Once a trajectory has resulted in an RT and exited the process, how 

should it contribute to the average trajectory? Most accumulator models do not define the 

state of accumulated evidence after the response (but see Moran, Teodorescu, & Usher, 

2015; Pleskac & Busemeyer, 2010; Resulaj, Kiani, Wolpert, & Shadlen, 2009). Following 

the response, activity might continue to accumulate above the threshold after the decision is 

made (Figure 7a), decay back to baseline (Figure 7b), or remain at the threshold (Figure 7c). 
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Alternatively, we may exclude all post-response activity from the analysis of neural 

trajectories by clipping the trajectories after each response (Figure 7e).

Unfortunately, we do not know which assumption about post-response activity is correct in 

actual neural data and different assumptions about post-response activity can produce very 

different dynamics when averaged across trials. Figure 7e illustrates this point by showing 

the grand average model trajectories from the same set of parameters used in Figures 2-3, 

but differing only in the assumptions about post-response dynamics. The average trajectory 

is dramatically different depending on whether activity continues to accumulate (red), 

decays to baseline (blue) or remains at threshold (black). Simply dropping post-response 

activity and averaging across trials is also problematic for several reasons. As time 

progresses, the composition of RTs contributing to the average changes. As more trials drop 

out over time, the signal becomes progressively noisier as fewer trials contribute to the 

average and the dynamics are dictated by the sensory noise of individual trials. As a result, 

earlier and later time points may be associated with very different dynamics (e.g., higher 

growth rate early, lower drift rates later), resulting in a grand average that is nonlinear and 

non-representative of individual trials (Figure 7e, green curve).

An alternative approach is to first group trials into small RT bins as in the preceding section, 

compute the measures of model dynamics for each RT bin, and then simply average the 

resulting measures over all bins (i.e., imagine averaging all data points in each panel of 

Figure 3). This approach will minimize the contribution of post-response activity, but it is 

susceptible to the same influences of within-trial noise highlighted in the previous section. 

Figure 8 illustrates the problem for an example set of parameters in which across-condition 

variability is explained solely through different values of the drift rate, all stochastic 

parameters were fixed at zero, and there was accumulator noise (s = 0.1). For the faster RTs, 

the measured onset closely matches the actual end of encoding time because evidence rises 

directly from baseline to the threshold on those trials (Figure 8A). For moderate and slow 

RTs, however, the measured onset is often later than the actual end of encoding time (Figure 

8B,C). Because V (signal) is decreasing and s (noise) remains fixed, the SNR drops across 

conditions, resulting in increased correlations between onset and RT even though the 

encoding time parameter remains fixed (Figure 8D). To summarize, under this approach, 

conditions in which the SNR is different across conditions as a result of fixing within-trial 

noise and varying drift may result in non-selective influences on the measured onset.

One simple solution is to focus on a relatively small range of fast to moderate RTs (e.g., 30th 

to 50th percentile). This range of RTs is small enough to limit the influence of post-response 

activity and early enough to allow a good estimate of the true encoding time. Figure 9 shows 

the average model trajectories for the 30th-50th RT percentile generated from different sets of 

primary parameters; for each set of simulations, one primary parameter was varied across 

conditions (encoding time, starting point, drift rate, or threshold), while the other primary 

parameters were held fixed, within-trial noise was fixed at 0.1, and stochastic parameters 

were fixed at zero. In each case, the model dynamics qualitatively reflect the primary 

parameter that was varied. We applied this approach to a broad range of randomly sampled 

parameter sets that included within trial noise (s = 0.1; see Methods), and found that it 

captured variation in primary parameters reasonably well even with the inclusion of within-
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trial noise (Figure 10). Other solutions such as examining the full distribution onset, growth 

rate, baseline, and threshold across all RT bins or developing alternative measures of neural 

dynamics may work as well. The critical point is that the link between model parameters and 

neural dynamics is not assumed, but is directly tested through analysis of model dynamics.

General Discussion

The discovery that certain neural signals represent accumulated evidence has raised exciting 

new possibilities to constrain model parameters with measures of neural dynamics and 

predict neural dynamics based on parameters values fitted to behavior. To understand the 

relationship between accumulator model parameters and neural dynamics, we examined the 

relationship between accumulator model parameters and model dynamics. We systematically 

varied model parameter values over large ranges and quantified model dynamics by adapting 

established neurophysiological methods. Our simulations revealed both advantages and 

potential pitfalls of directly relating accumulator model parameters to measured neural 

dynamics. On the one hand, our results provide a simple example of using neural dynamics 

to distinguish alternative models that make identical behavioral predictions. On the other 

hand, our results show how within-trial noise and trial averaging can potentially obscure the 

relationship between model parameters and dynamics in misleading ways. In the following 

discussion, we review advantages and challenges of analyzing neural dynamics as a model 

selection tool. Methods that attempt to simultaneously explain both behavioral and neural 

data provide the strongest constraints on inferences about underlying mechanisms. We 

emphasize that, when possible, model and neural dynamics should be directly compared to 

avoid incorrect assumptions about links between measures of neural dynamics and model 

parameters.

Potential Pitfalls of Inferring Parameters from Model and Neural Dynamics

The discoveries that link accumulator models and neural dynamics (Hanes & Schall, 1996; 

Roitman & Shadlen, 2002) might seems to suggest that we can bypass fitting models to 

behavior altogether and simply “read out” the underlying parameters from the neural 

dynamics. Our simulations highlight some of the significant dangers of inferring parameters 

from dynamics in the absence of behavioral model fitting.

Our simulations show that the onset of neural activity does not necessarily reflect the end of 

encoding time, a component of the Ter parameter in accumulator models; introducing 

variability in the drift rate, starting point, and threshold parameters all manifest as variability 

in measured onset. This result has important implications for the interpretation of neural 

signals in decision-making experiments. During a variety of perceptual decision-making 

tasks, the onset time when firing rate increases correlates strongly with stimulus strength and 

RT in pre-frontal cortex (DiCarlo & Maunsell, 2005; Pouget et al., 2011; Purcell et al., 2010; 

Purcell, Schall, et al., 2012; Woodman et al., 2008) and superior colliculus (Ratcliff et al., 

2003; Ratcliff et al., 2007). Similar increases in the onset time with RT are sometimes 

observed in parietal neurons (Cook & Maunsell, 2002). It is tempting to interpret these 

increases in the onset activity as delays in the start of evidence accumulation, but our results 

indicate that this may simply reflect a signature of noisy evidence accumulation.
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The observation that the onset of neural activity may vary without explicit variation in 

encoding time has important implications for inferences about the nature of information flow 

across processing stages (Meyer, Osman, Irwin, & Yantis, 1988; Miller, 1982). Previous 

studies have used the onset of motor-related neural signals as a proxy for the start of a 

discrete stage of motor processing (Miller, 1998; Miller, Ulrich, & Rinkenauer, 1999; Osman 

et al., 2000; Smulders, Kok, Kenemans, & Bashore, 1995; Woodman et al., 2008). 

Experimental manipulations that prolong onset time have been interpreted as delays in the 

start of motor processing. Our simulations show that the measured onset of neural responses 

may be substantially different from the actual start time of evidence accumulation. Even a 

continuous flow of information to the accumulator network can produce correlations 

between the onset and RT or variation of onset with stimulus strength.

We found that the relationship between the encoding time parameter and the measured onset 

depends critically on SNR. If the SNR is low (roughly less than 5; see Figure 6), then one 

can expect reasonably strong correlations between onset and RT even in the absence of any 

explicit encoding time variability. SNR is tightly linked to stimulus strength, which is often 

manipulated in psychophysical studies (e.g., Palmer et al., 2005), meaning that the 

relationship between model parameters and dynamics may differ across conditions of the 

same experiment. Strong correlations between onset and RT may be observed for weaker, 

but not stronger stimuli, even with a fixed unvarying encoding time (Figure 8). In the 

absence of behavioral model fits, changes in the onset time alone are not conclusively 

diagnostic about the underlying cause of behavioral variability.

Our simulations highlight how methods of binning and averaging over trials can 

dramatically influence the resulting form of the measured dynamics. Simply averaging 

trajectories for all trials, as is common in many neural analyses, produces average 

trajectories that are highly dependent on assumptions about the form of post-response 

activity. Unless the behavioral state of the subject after the response is carefully controlled 

during an experiment and the model makes clear predictions about the form of post-response 

dynamics (e.g., Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj et al., 2009), then it 

is risky to draw strong conclusions that depend heavily on unchecked assumptions about 

post-response activity. Binning and averaging by small groups of RTs before applying 

measures of dynamics is one way to exclude post-response activity, but simply averaging 

over all RT bins can produce misleading results because the relationship between the 

measured onset and RT changes with SNR (Figures 6A and 8). One possible solution is to 

examine changes in measures of model dynamics over the full distribution of RT bins; for 

example, as drift rate increases, how does the measured onset change for every single RT 

bin? However, we found that simpler method may suffice. Binning over a limited subset of 

trials that produced fast to moderate RTs (~30th to 50th percentile) seems to provide a simple 

and reliable method for tracking across-condition parameter variability, at least in the subset 

of model architectures and model parameterizations that we explored here.

Of course, the analyses of model and neural dynamics that we applied here are not 

exhaustive. We selected four measures (onset, growth rate, baseline, and activity at RT) to 

inform the interpretation of past and future neurophysiological studies that used similar 

approaches (e.g., Woodman et al., 2008). Alternative methods for quantifying dynamics 
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could potentially provide additional insights about the underlying parameters. For example, 

although our analyses focused specifically on analyses of mean activity, the trial-to-trial 

variance and covariance of neural trajectories over time can reveal important insights about 

the underlying parameters (Churchland et al., 2011). For example, Churchland et al. (2011) 

showed that the trial-to-trial variance of LIP neurons exhibited signatures of noisy evidence 

accumulation. Similar responses have been observed in FEF movement neurons (Purcell, 

Heitz, Cohen, & Schall, 2012).

Neural Dynamics as a Model Selection Tool

Our simulations demonstrate a simple illustration of how neural dynamics might be used to 

resolve behavioral model mimicry. In many accumulator model frameworks, variation in the 

starting point and variation in threshold make indistinguishable predictions about variation 

in behavior because they both change the total evidence that must be accumulated for a 

choice. But these parameters have very different implications for the underlying neural 

mechanisms. For example, adjustments in neural activity at the time of RT are associated 

with changes in the strength of cortico-striatal connections (Lo & Wang, 2006), whereas 

adjustments of the baseline may be implemented through background excitation and 

inhibition (Lo, Wang, & Wang, 2015). Although the measured onset time and growth rate of 

neural dynamics appear to be less diagnostic about specific underlying parameters, variation 

in measured neural baseline and neural activity at RT can be associated more directly with 

variation in the starting point and threshold parameters of accumulator models. Examining 

neural dynamics can reveal underlying mechanisms that can be invisible based on fits of 

models to behavioral data alone.

A number of recent studies have provided further illustrations of the power of neural 

dynamics as a model selection tool in diverse experimental paradigms. For example, 

behavior in stop-signal tasks, in which subjects must withhold a preplanned response 

following an infrequent cue to stop, have traditionally been explained as a race between 

independent processes representing going and stopping (Logan & Cowan, 1984). Boucher et 

al. (2007) implemented the stop and go processes as either independent racing accumulators 

or interactive racing accumulators that inhibit one another (Boucher et al., 2007). Both 

models explained behavior equally well, but the interactive model provided a better account 

of neural responses from FEF movement neurons. More recently, Logan et al. (2015) 

showed that models in which stopping inhibition is not direct, but instead acts as a gating 

mechanism on the input to the go unit, provide an even better account of the neural 

dynamics (Logan, Yamaguchi, Schall, & Palmeri, 2015).

As another example, in the domain of visual search, Purcell et al. (2010, 2012) evaluated 

different accumulator models based on their ability to explain not only behavior (RT and 

accuracy), but also the dynamics of FEF movement neurons thought to implement the 

evidence accumulation process for this task. Models in which evidence was not integrated at 

all or integrated perfectly could be ruled out based on poor fits to behavior alone. Models 

that assumed leaky evidence accumulation provided an excellent account of behavior, but 

failed to explain the observed neural dynamics. The failure of the leaky models motivated a 

novel gating mechanism in which evidence accumulation begins only after the evidence 
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exceeds some constant level. In addition to providing an excellent fit to behavior, the gated 

model also predicted the observed neural dynamics.

Analyses of neural dynamics have also revealed crucial insights about the mechanisms 

underlying strategic adjustments of speed and accuracy. Traditionally, accumulator models 

explain tradeoffs between speed and accuracy through adjustments in the model threshold 

(e.g., Brown & Heathcote, 2008; Palmer et al., 2005; Wagenmakers et al., 2008). 

Surprisingly, recent experiments in which monkeys were trained to emphasize speed or 

accuracy in different blocks did not show the expected changes in the firing rates of LIP and 

FEF neurons around the time of the response (Hanks, Kiani, & Shadlen, 2014; Heitz & 

Schall, 2012). Instead, neurons in both areas showed changes in the baseline activity and in 

the dynamics of the evidence accumulation process; when speed was emphasized, the 

growth rate of neural responses was stronger irrespective of the subject's choice. One way to 

reconcile the model and the FEF data was to extend the model with a second stage of 

accumulation (Heitz & Schall, 2012). Alternatively, the LIP data were explained by 

assuming that adjustments in threshold are implemented through an evidence-independent 

urgency signal (Churchland et al., 2008; Hanks et al., 2014; Thura et al., 2014). Increasing 

urgency causes responses to rise faster irrespective of incoming evidence, leading to faster 

but more error-prone responses, whereas decreasing urgency allows more time for evidence 

accumulation, leading to slower and more accurate responses. Similar analyses of neural 

dynamics suggest that urgency signals may implement adjustments of response threshold 

following errors (Purcell & Kiani, 2016). Recent behavioral modeling suggests that the 

strength of urgency may vary considerably over subjects and experiments (Hawkins, 

Forstmann, Wagenmakers, Ratcliff, & Brown, 2015), but this model mechanism currently 

provides the most parsimonious explanation for both behavioral and neural data.

Modeling Behavioral and Neural Dynamics

While neural dynamics can provide a powerful tool to select among competing models, 

analysis of dynamics alone can produce misleading inferences about the underlying 

mechanisms. We recommend a modeling approach in which both behavioral and neural data 

are jointly considered; several approaches to doing so have been implemented (Turner et al., 

in press).

Figure 11 summarizes some different approaches that have been used to understand 

behavioral and neural data. Traditional neurophysiological approaches involve directly 

analyzing neural dynamics to infer the mechanisms that give rise to behavior (arrow 1). For 

examples, correlations between neural responses and behavior are taken as evidence that the 

neural population is somehow involved in generating the behavior; direct manipulations such 

as electrical microstimulation and pharmacological inactivation can help infer a causal role 

of a particular brain region in the behavior (Fetsch, Kiani, Newsome, & Shadlen, 2014; Gold 

& Shadlen, 2000; Hanks, Ditterich, & Shadlen, 2006; Monosov & Thompson, 2009; 

Stuphorn & Schall, 2006). However, without the aid of formal models, the precise 

mechanisms linking neural responses to observed behavior often remains murky.

Traditional cognitive modeling involves making inferences about mechanisms by optimizing 

model parameters to maximize the correspondence between predicted and observed behavior 
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(arrow 2 in Figure 11). This approach makes assumptions about the underlying cognitive 

mechanisms explicit and facilitates rigorous comparison of alternative models through 

evaluation of quantitative predictions. In the absence of neural data, however, these models 

make no explicit predictions for where and how these cognitive mechanisms are 

implemented in the brain. Additionally, as noted above, behavior alone may be inadequate to 

distinguish competing models.

Model-based cognitive neuroscience aims to combine the power of cognitive modeling with 

measures of neural activity. One approach involves directly relating model parameter values 

to observed neural dynamics (arrow 3 in Figure 11). A researcher might first fit a model to 

behavioral data and then identify correlations between fitted model parameters values and 

observed neural measures (Mulder, van Maanen, & Forstmann, 2014). For example, subject-

to-subject variation in the magnitude of the response threshold parameter is correlated with 

variation in the strength of BOLD responses in striatum and pre-supplementary motor area 

(Forstmann et al., 2008). This approach can identify particular brain areas that are somehow 

related to the mechanisms controlled by model parameters (O’Reilly & Mars, 2011), 

providing a useful tool for interpreting neural data.

A potentially more powerful approach is to simultaneously fit the neural and behavioral data 

by jointly maximizing the likelihood of behavior and dynamics. For example, Turner and 

colleagues developed a method to simultaneously fit model parameters to behavior while 

also constraining parameter estimates based on patterns of BOLD activation in cortex 

(Turner et al., 2015). An important advantage of this approach is that it incorporates 

constraints from the neural data as part of the fitting process, allowing one to identify 

whether a subset of parameter space can jointly explain both the behavioral and neural data. 

Still, it is common that the link that is established is one between model parameters and 

neural measures (arrow 3 in Figure 11).

Our simulations suggest, at least when appropriate forms of neural data are available, that 

best practices may be to establish links not between model parameters and neural dynamics 

(arrow 3) but between model dynamics and neural dynamics directly (arrow 4). One 

example is a “two-stage” approach, in which behavioral data are first fitted and then model 

dynamics are generated by the best fitting parameters (Boucher et al., 2007; Mazurek et al., 

2003; Purcell et al., 2010; Purcell, Schall, et al., 2012; Ratcliff et al., 2007). The key is that 

rather than directly comparing neural dynamics to the best-fitting model parameters, the 

neural dynamics are compared to the simulated model dynamics. Simulation methods should 

be chosen to match the statistical power of the neural analyses; for example, matching the 

number of simulated and observed trials, matching the simulated and observed firing rates, 

and simulating spiking noise based on observed model trajectories. Identical measures 

should then be applied to the model dynamics to allow for a direct comparison to observed 

neural dynamics. This approach avoids many potential pitfalls highlighted by our 

simulations; for example, incorrect assumptions about the direct relationships – or lack 

thereof – between model parameters and neural dynamics. One advantage of this two-stage 

approach is that the model dynamics represent a true prediction (not a fit) to the neural data. 

If the same parameter values that maximize the quality of fit to the behavior also provide a 
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good a priori account of the underlying neural dynamics without any additional fitting, this 

provides compelling validation of the model fits and guards against overfitting.

A complementary approach to link accumulator models to neural data is to replace model 

mechanisms specified by free parameters with actual neural data. Purcell et al. (2010; 2012) 

used the observed firing rates of visually-responsive FEF neurons during a visual search task 

as the input to a network of model accumulators in place of the mechanisms instantiated via 

the encoding time, starting point, and drift rate parameter. This neurally-constrained model 

provided a good fit to behavior, indicating that variability in the responses of the visually-

responsive neurons were sufficient to explain behavioral variability for this task. Note that 

this approach is distinct from the method described above because there is no comparison of 

neural and model dynamics; instead, the observed neural dynamics replace the 

parameterized model mechanisms.

Complementing Purcell et al. (2010, 2012), Cassey and colleagues (Cassey et al., in press) 

recently developed a joint modeling approach that simultaneously fitted the neural dynamics 

and used the model specification of those dynamics to drive an accumulation of evidence. 

With this approach, the influence of different parameters on the expected dynamics are 

directly incorporated into the fitting process, obviating the need for proposing and validating 

connections between specific measures of dynamics and model parameters.

Linking propositions

We have primarily made connections to work using single-unit recordings from individual 

neurons in awake and behaving non-human primates because these responses have been 

most strongly identified with a representation of the evidence accumulation process. To date, 

most neurophysiological studies of this type are limited to recordings within a single region 

of the brain, raising the question of whether it is valid to draw conclusions about the 

decision-making process based on analyses of a limited population of cells. It is highly 

doubtful that any one region implements the evidence accumulation process alone. Rather, 

neurophysiological evidence suggests that the evidence accumulation process is represented 

by a network of brain regions distributed throughout cortical and subcortical regions (Schall, 

2013; Shadlen & Kiani, 2013). When different regions of the network are observed during 

the same decision making tasks, neural responses exhibit remarkably similar dynamics in 

relation to common task events and behaviors. For example, during a visual search task with 

eye movement responses, visual and motor neurons distributed throughout parietal cortex 

(Thomas & Pare, 2007), prefrontal cortex (Bichot & Schall, 1999; Thompson, Hanes, 

Bichot, & Schall, 1996), and superior colliculus (McPeek & Keller, 2002; White & Munoz, 

2011) exhibit response properties consistent with a representation of perceptual evidence or 

the accumulation of evidence to a response threshold. During a motion-discrimination task, 

neurons throughout the same network of structures exhibit dynamics consistent with gradual 

accumulation of sensory evidence to a threshold (Ding & Gold, 2012; Horwitz & Newsome, 

1999; Kim & Shadlen, 1999; Purcell & Kiani, 2016; Roitman & Shadlen, 2002). Therefore, 

while the strongest conclusion about the decision making process would need to include 

recordings from multiple brain regions, even recordings from a single regions can provide 

critical insights about activity that is likely taking place throughout the network.
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Other studies have suggested that a representation of evidence accumulation may be 

monitored noninvasively through extracranial electroencephalogram (EEG). During certain 

perceptual decisions, extracranial voltage potentials can be analyzed to extract an evolving 

signal that demonstrates dynamics consistent with evidence accumulation (Kelly & 

O'Connell, 2013; O'Connell, Dockree, & Kelly, 2012). The lateralized readiness potential, an 

event-related potential associated with motor preparation, also exhibits dynamics similar to 

accumulation to a threshold (De Jong, Coles, Logan, & Gratton, 1990; Gratton, Coles, 

Sirevaag, Eriksen, & Donchin, 1988; Schurger, Sitt, & Dehaene, 2012). Our conclusions 

regarding the relationship between model and neural dynamics should apply equally to these 

higher-level representations of the decision process. The major limitation of larger-scale 

representations of evidence accumulation is that they will reflect the combined activity of 

cortical areas not directly involved in evidence accumulation as well as aggregating over 

neurons representing distinct choices. It is not clear how these additional signals might 

distort the resulting dynamics.

An essential goal for future research is to understand how the representation of evidence in 

individual neurons scales up to larger populations of neurons within and across multiple 

areas. Going from individual neurons to larger populations raises important questions about 

how evidence accumulation is coordinated over neurons and how these different neurons 

reach a consensus to terminate the decision process. Spiking neural network models have 

demonstrated how large pools of neurons with recurrent and competitive dynamics could 

implement the evidence accumulation process proposed by these models (Furman & Wang, 

2008; Wang, 2002), but the complexity of these models can make it difficult to contrast 

competing hypotheses about neuronal cooperation and decision termination. To address this 

problem, Zandbelt et al. (2014) used simulations to explore how large ensembles of 

redundant accumulators (multiple accumulators representing a single choice) could produce 

both RT distributions and neural dynamics consistent with single-unit recordings. They 

found that a very broad range of mechanisms by which the accumulators coordinate and 

terminate their response could produce RTs and neural responses consistent with observed 

behavioral and neural data. On the one hand, these results indicate that redundant stochastic 

accumulators represent a very robust method to produce realistic RT distributions and 

single-unit activity. On the other hand, these results suggest that single-unit recordings and 

behavior alone are not adequate to identify the precise mechanisms by which large networks 

of accumulators coordinate and terminate upon a choice.

Distinguishing alternative mechanisms for evidence accumulation in large populations 

requires simultaneous recordings from many individual neurons during ongoing decision 

making. Exciting new technological advances in multielectrode arrays have made it more 

common to record simultaneously from tens to hundreds of neurons in awake behaving 

animals (Churchland, Yu, Sahani, & Shenoy, 2007). Thus far, these techniques have 

primarily been applied to the study of motor control (e.g., Churchland et al., 2012) and 

neural prosthetics (e.g., Sadtler et al., 2014), but are just starting to be applied in awake 

behaving animals during more complex decision-making tasks (Cohen & Maunsell, 2009; 

Kiani et al., 2014). In one notable example, Kiani et al. (2014) trained a linear classifier to 

decode animal's choices from a large population of ~90 neurons recorded simultaneously 

from dorsolateral prefrontal cortex while animals performed a motion direction 
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discrimination task. The accuracy of the classifier gradually increased throughout the trial at 

a rate that depended on the strength of sensory evidence, consistent with a population-wide 

representation of evidence accumulation. The population activity revealed “changes of 

mind” in which the accumulated evidence flipped from favoring one choice to another, 

consistent with predictions of an existing behavioral model (Resulaj et al., 2009). As more 

large-scale data sets become available, these approaches can be further extended to constrain 

potential sources of behavioral variability at the level of individual trials.

Conclusions

Neural dynamics have proven to be a powerful tool to evaluate alternative hypotheses about 

decision making mechanisms, but the connections between model parameters and neural 

dynamics often go untested. We systematically varied model parameter values and applied 

established neurophysiological measures to model dynamics to test for selective influences 

of model parameters on expected neural dynamics. In some cases, model parameters could 

be successfully inferred from model dynamics, but in other cases measures of dynamics 

alone could provide a misleading picture about the underlying sources of behavioral 

variability. Altogether, we argue for a modeling approach in which both behavioral and 

neural data are jointly considered, and model dynamics are directly compared to neural 

dynamics.
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Highlights

• Neural analyses are used to quantify changes in accumulator model dynamics.

• Accumulator model dynamics distinguish models that behavior alone cannot.

• However, analysis of dynamics alone cannot pinpoint underlying model 

parameters.

• Joint consideration of behavior and neural dynamics provides maximal 

constraint.
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Figure 1. 
Expected relationships between accumulator model parameters, model dynamics, and neural 

dynamics. A: Illustration of accumulator model parameters. Four primary parameters 

determine the decision-making mechanisms: encoding time (te) defines the time for 

perceptual processing preceding evidence accumulation, drift rate (v) defines the mean rate 

of accumulation, starting point (z) determines the initial state, threshold (a) defines the level 

of evidence that must be reached before a response is initiated, and motor response time (tm) 

defines the time to execute a response. Four corresponding stochastic parameters (s with 
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subscript) define the across-trial variability for each parameter (see General Simulation 

Methods). In these simulations, motor time was always assumed to be zero. B: Example 

model dynamics for five simulated trials using identical parameters. During encoding time, 

the model activity is fixed at the starting point. Following encoding time, evidence is 

sampled from a distribution with mean v and standard deviation s (within-trial noise, inset) 

and accumulated over time. Response times (RTs, arrows) are the sum of encoding time, the 

time needed for accumulated evidence to reach threshold (i.e., decision time). Due to within-

trial noise, even the same set of parameters produces variability in both RT and the evidence 

accumulation trajectory. C: Example simulated single-unit activity and measures of neural 

dynamics. Top panels show that neural activity on individual trials given by the spike 

discharge times (black dots) aligned on stimulus onset (left) or RT (right; red circles). 

Individual spike trains are highly noisy, but the average firing rate over trials reveals 

underlying structure in the dynamics (grey lines, bottom). Four measures of neural dynamics 

are commonly applied to make inferences about model parameters. The onset is 

hypothesized to correspond to the encoding time, the growth rate is hypothesized to 

correspond to the drift rate, the baseline is hypothesized to correspond to the starting point, 

and the activity at RT is hypothesized to correspond to the threshold. Dashed black lines 

illustrate the computation of growth rate based on the slope of the line connecting the 

activity at onset to activity at RT. Neural spike times were simulated according to a time 

inhomogenous Poisson process with a rate parameter determined by simulated accumulator 

model dynamics.
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Figure 2. 
Inferring sources of within-condition variability from model dynamics. Each panel shows 

the average model trajectories divided by RT for different sets of parameters. For each row, 

one stochastic parameter was set to a positive value, and the remaining stochastic parameters 

were set to zero (row 1 – encoding time, sTe = 0.3; row 2 – drift rate, sV = 0.02; row 3 – 

starting point, sZ = 0.05; row 4 - threshold, sA = 0.04). Model trajectories shown in the left 

column included no within-trial noise (s = 0, “Noiseless”) and model trajectories shown in 

the right column included conventional levels of within-trial noise (s = 0.1, “Noisy”). For all 

panels, primary parameters were fixed at the following values: Ter = 0.3, V = 0.1, Z = 0.029, 

A = 0.08. Following standard neurophysiological approaches, model trajectories for each set 

of parameters were grouped by RT and averaged in bins of size 20 (see General Simulation 

Methods). Fast, medium, and slow refers to the average trajectory for the RT bins at the 25th, 

50th, and 75th percentile, respectively. Dashed lines indicate the model threshold for each RT 
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group. Arrows, when shown, highlight the time when the threshold is crossed for each RT 

group.
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Figure 3. 
Correlations between accumulator model parameters and measures of model dynamics for 

example model simulations without noise (A, Noiseless) and with convention levels of noise 

(B, Noisy). For each column, one stochastic parameter was set to a positive value, and the 

remaining stochastic parameters were set to zero. Parameter values were identical to the 

simulations shown in Figure 2. Each row shows one measure of model dynamics (onset 

time, growth rate, baseline, activity at RT) applied to the average trajectories of individual 

RT bins as a function of the average RT that bin. When evidence accumulation is noiseless, 
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each stochastic parameters produces correlations between RT and a single measure of neural 

dynamics (a one-to-one mapping). When evidence accumulation is noisy, multiple measures 

of neural dynamics correlate with RT for each stochastic parameter (a many-to-one 

mapping).
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Figure 4. 
Average correlations between measures of model dynamics and RT. When evidence is 

noiseless (black), correlations between RT and measures of model dynamics (onset, growth 

rate, baseline, and activity at RT) indicate a single source of within-condition variability 

(stochastic parameters, x-axis). When evidence is noisy (red), correlations between RT and 

measured onset and growth rate are observed regardless of stochastic parameters. For a 

given set of simulations, one stochastic parameter (x-axis) and all primary parameters were 

randomly sampled from a range of values (see Simulation Methods); the other stochastic 

parameters were set to zero. The sampled parameter values were used to generate 5000 

simulated trials. The simulated trials were divided into RT bins of size 20, and the Pearson 

correlation coefficient was computed between each measure of model dynamics and the 

mean of each RT bin (see Figure 3). This process was repeated 2500 times for each 

stochastic parameter and each value of within-trial noise. Panels show the mean and 

standard deviation of the resulting correlations.
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Figure 5. 
Example single-trial trajectories and probability distribution of accumulated evidence 

conditional on RT. Grouping noisy model trajectories by RT produces delays in the 

measured onset. All stochastic parameters were set to zero and within-trial noise was set to 

0.1. (A-C) Example single-trial trajectories (colored lines) and average (black line) for 

simulated trials that resulted in fast (A, 0 - 0.2 s), medium (B, 0.3 – 0.4 s), or slow (0.4 – 0.5 

s) RTs. (D-F) Probability distribution for accumulated evidence conditional on RTs 

terminating with the specified fast, medium, and slow ranges. Individual trajectories and 

probabilities were smoothed with a Gaussian filter for illustration purposes only; no other 

analysis or figure used smoothed trajectories.
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Figure 6. 
Correlations between RT and measured onset depend on the signal-to-noise ratio (SNR, v/s). 

Primary parameters were randomly sampled from a range of values and the level of within-

trial noise was chosen to systematically vary the SNR. Stochastic parameters were fixed at 

zero. For each parameter set, the correlation between RT and measures of model dynamics 

were computed as in Figure 4.
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Figure 7. 
Different assumptions about post-response activity can strongly influence average model 

dynamics. (A-C) Four illustrations of potential post-response dynamics on single trials. (A, 

red) Evidence accumulation continues after the threshold is reached, (B, blue) evidence 

decays back to starting point, (C, black) evidence remains at the threshold levels, and (D, 

green) evidence is clipped when the threshold is reached. (E) Average dynamics over 5000 

simulated trials for the same set of model parameters, but assuming different forms of post-

response dynamics. Parameter values are identical to those used for Figure 2. Colors indicate 

post-response dynamics illustrated in A-D. The green line in which activity on individual 

trials is clipped at RT becomes noisier as time progresses because fewer trials contribute to 

the average.
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Figure 8. 
Across-condition variation of drift rate can produce variation in measured onset. (A-C) 

Simulated model dynamics for three values of drift rate divided into fast RTs (A, 25th 

percentile), medium RTs (B, 50th percentile), and slow RTs (C, 75th percentile). For slow 

RTs, the onset appears to increase with drift rate, although the encoding time parameter was 

unchanged. (D) Each measure of model dynamics was computed for individual RT bins of 

size 20, and the resulting measures were averaged over all RT bins for a given set of 

parameters. The average onset decreases with drift rate due to changes in the SNR.
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Figure 9. 
Averaging model trajectories for the 30th to 50th percentile of the RT distribution produces 

qualitative changes in dynamics that match model parameters. For each set of simulations 

one primary parameter was varied (rows) while the rest were held constant. All stochastic 

parameters were fixed at zero and within-trial noise was set to 0.1.
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Figure 10. 
Measures of model dynamics can track changes in primary parameters when model 

trajectories are averaged for the 30th to 50th percentile of the RT distributions. Primary 

parameters were randomly sampled from a range of values (see Simulation Methods), 

stochastic parameters were fixed at zero, and within-trial noise was fixed at 0.1. Panels show 

the mean and standard deviation for each measure of model dynamics (rows) grouped into 

deciles by primary parameter values (columns). Each measure of model dynamics captures 

variation in one primary parameter when only a restricted range of RTs is averaged. Note 

that it was possible for our inclusion criteria to induce spurious correlations between 

parameters and measure of model dynamics; for example, because the starting point must be 

lower than the threshold, increasing the threshold could produce increased baseline simply 

because the possible range of starting points increased. To eliminate these spurious 

correlations, we used a limited range of parameter values for starting point and threshold.
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Figure 11. 
Illustration of different approaches to relating cognitive models, behavior, and neural 

dynamics. We assume that the behavior and neural dynamics were observed simultaneously 

in the context of some task, and neural dynamics may be analyzed in relation to task events 

or observed behavior. Arrow 1: Traditional neurophysiological approaches relate neural 

dynamics directly to behavior (e.g., how do neural responses change under task conditions in 

which choices are more or less accurate?). Arrow 2: Traditional cognitive modeling infers 

model parameters based on fits to behavior (e.g., how do model parameters change when 

fitted to behavioral from conditions associated with higher or lower accuracy?). Arrow 3: 

One approach to model-based cognitive neuroscience relates model parameters directly to 

observed neural dynamics (e.g., how do BOLD responses in a particular brain region 

correlate with model parameters fitted to behavior?). Arrow 4: An alternative approach to 

model-based cognitive neuroscience involves a direct comparisons between model dynamics 

and neural dynamics (e.g., how well does the model replicate both behavioral and neural 

dynamics across different conditions?).
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