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Abstract

Drug-induced QT prolongation leads to life-threatening cardiotoxicity, mostly through blockage of 

the human ether-a-go-go-related gene (hERG) encoded potassium ion (K+) channels. The hERG 

channel is one of the most important antitargets to be addressed in the early stage of drug 

discovery process, in order to avoid more costly failures in the development phase. Using a 

thallium flux assay, 4,323 molecules were screened for hERG channel inhibition in a quantitative 

high throughput screening (qHTS) format. Here, we present support vector classification (SVC) 

models of hERG channel inhibition with the averaged area under the receiver operator 

characteristics curve (AUC-ROC) of 0.93 for the tested compounds. Both Jackknifing and 

bootstrapping have been employed to rebalance the heavily biased training datasets, and the 

impact of these two under-sampling rebalance methods on the performance of the predictive 

models is discussed. Our results indicated that the rebalancing techniques did not enhance the 

predictive power of the resulting models; instead, adoption of optimal cutoffs could restore the 

desirable balance of sensitivity and specificity of the binary classifiers. In an external validation set 

of 66 drug molecules, the SVC model exhibited an AUC-ROC of 0.86, further demonstrating the 

utility of this modeling approach to predict hERG liabilities.
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Introduction

The human ether-à-go-go-related gene (hERG), a member of voltage-gated potassium ion 

(K+) channel (Kv), was first identified and cloned in 1994.[1] The name of hERG is 

frequently used to refer to the channel protein, whereas the official gene name of the hERG 

channel is KCNH2, and Kv11.1 refers to the fully assembled channels.[2] The hERG 

channels are mainly expressed in the heart and play a critical role in the electrical activity of 

the heart that coordinates the heart’s beating. Four hERG proteins can assemble to form a 

pore structure, facilitating diffusion of K+ across cell membrane to repolarize 
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cardiomyocytes. The tetrameric hERG channels are responsible for the rapid delayed 

rectifier current (IKr). Undesirable blockade of hERG K+ channels by drug molecules may 

cause acquired long QT syndrome (aLQTS), potentially leading to a particular type of 

arrhythmia, Torsades de pointe (Tdp), a severe life-threatening cardiac side effect. Since 

1999, several popular non-cardiovascular blockbuster drugs, including antihistamine drugs 

terfenadine and astemizole, serotonin agonist cisapride, and psychotropic agents Haloperidol 

and droperidol, have been withdrawn from the market due to cardiotoxicity associated with 

hERG channel inhibition.[3] The situation led to the publication of a guideline by the FDA 

on International Conference on Harmonization (ICH), recommending that drug candidates 

destine for human use be evaluated for potential hERG activity.[4] Consequently, early 

evaluation of the hERG activities of the drug molecules in the pipeline has been widely 

adopted by pharmaceutical companies, in order to weed out those compounds potentially 

interacting with the hERG channel as early as possible.

Experimental determination of blockage of hERG channel includes in vivo telemetry 

experiments on non-rodent animals and in vitro whole-cell patch-clamp electrophysiology.[5] 

Both in vivo and in vitro methods are expensive and time consuming, not suitable for 

evaluation of large quantity of compounds in the early stage of discovery phase. The 

situation calls for more efficient ways, such as in silico predictive models, to estimate 

hERG-related cardiotoxicity.

An X-ray crystallography structure of hERG has not been determined, so structural analysis 

for hERG is largely based on homology models and mutagenesis studies.[6] A comparison of 

structures of different potassium channels revealed a considerable conformational variation 

despite similar secondary structures and pore architecture,[7] which casted a shadow on 

homology modeling approaches. In addition, the hERG ion channel is predicted to be very 

flexible, since the transmembrane pore domain, with which the drugs presumably interact, is 

formed by non-covalent tetramerization of four units of hERG proteins. The flexibility and 

adaptability of the hERG ligand binding site is reflected by its capability of accommodating 

a wide spectrum of structurally diverse compounds.[8] Presumably, the future availability of 

the crystal structure of the hERG channel might create more questions than answers, 

resembling the case of CYP450 3A4.[9] Therefore, ligand-based hERG predictive models are 

expected to be more practical and reliable than structure-based approaches.

Pharmacophore models have been successful in capturing the chemical features shared by 

highly potent hERG inhibitors, such as MK-499 and astemizole (Figure 1), but it remains a 

challenge to characterize a few pharmacopheric features to identify weak hERG 

inhibitors.[10] Compounds with weak hERG activity at µM range should be flagged for their 

potential to trigger cardiotoxicity, especially when accidentally over-dosed.

Since the hERG K+ channel, unlike other ion channels, can interact with a broad spectrum of 

structurally diverse compounds,[11] quantitative structure-activity relationships (QSAR), 

which enable the decipher of detailed structural features shared by the hERG blockers, 

represent a suitable tool for prediction of hERG liability. Most of QSAR models published 

so far are either based on small training sets containing tens to hundreds of compounds,[12] 

or trained on larger data sets compiled from multiple sources, such as those from the 
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CHEMBL.[13] Since data quality and data integrity determine the performance of QSAR 

models, it is not recommended to compile datasets from different laboratories, especially for 

in vivo and in vitro data, such as the hERG activity data.[14] For example, large variations in 

hERG potencies have been reported for the same compound measured by using different cell 

lines.[15] In this study, we constructed QSAR models on the basis of a large set of 

compounds with their hERG activities measured in the same laboratory by following the 

same protocol.

Dataset

Patch clamp is the primary technique for in vitro measurement of hERG activity, however, it 

is resource demanding. One high-throughput alternative is to detect inhibition of the hERG 

channels by measuring flow of a surrogate ion, thallium, in a homogenous assay format.[16] 

The thallium flux assay was comprehensively validated for its capability of identifying small 

molecules with potential to block hERG and induce LQTS.[17] Using U2OS cells, 4,323 

small molecules were screened for hERG channel inhibition at concentrations ranging from 

10nM to 46uM in a quantitative high throughput screening (qHTS) format.[18] Curve fitting 

is based on a grid method, and curve classes are in turn assigned according to the type of 

concentration–response curves observed.[19] The collection is of great pharmaceutical 

interest, consisting of the marketed drugs, drugs that have reached clinical trials, and other 

bioactive molecules.[20] Compounds with curve class −1.1, −1.2, −2.1 or −2.2, and with > 

50% efficacy in an inhibition assay were defined as active, whereas compounds with class 4 

curves were defined as inactive.[19b] Compounds with other curve classes were considered 

inconclusive and excluded from the final dataset. The remaining compounds were processed 

through a Pipeline Pilot[21] protocol to remove salts, duplicates, and organometallic 

compounds. Sixty six compounds were plated as inter-plate replicate controls and measured 

3 times, and only 4 inconsistent categorizations were observed. Preprocess of the dataset 

resulted in a 3,024–compound non-redundant dataset, with 15.95% identified as hERG 

blockers (Figure 2).

The preprocessed data sets were randomly split into training (2/3) and test (1/3) sets by 

using two different methods: 1. the whole dataset was randomly split in a 2-to-1 ratio for ten 

times, resulting in the percentage of the hERG active compounds being 16.23 ± 0.53% for 

the ten training sets and 15.43 ± 1.06% for the test sets (CV_1 sets). 2. 2/3 of the compounds 

were randomly selected from both the hERG active and the hERG inactive collections 

separately to be combined into the new training sets, and the remaining compounds 

comprised the test sets. (CV_2 sets).

Molecular Descriptors

An optimized atom-type-based molecular descriptor system consisting of 221 atom types 

and 41 correction factors was employed to construct the QSAR models for hERG liabilities. 

The details of the molecular descriptors have been elaborated elsewhere.[14, 22] The same 

descriptors have been successfully applied in modeling various physicochemical and 

ADMET properties.[8, 22–23]
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Support vector classification (SVC)

SVC is an elegant machine learning algorithm that was originally developed to solve two-

class classification problems.[24] SVC has been proven to outperform other machine learning 

methods because of its outstanding generalization capability.[25]

The parameterization of the penalty for misclassification, C, and the non-linearity parameter 

in the kernel function of a Gaussian Radial Basis Function (RBF), γ, was accomplished on a 

grid-based search to minimize the mean standard error (MSE) of 5-fold cross-validation 

(CV) on the training data. LIB-SVM, a software implementation of SVM developed by 

Chang and Lin,[26] was recruited in this the study.

Results and Discussion

Predictive toxicology in drug discovery

As the most important anti-target in drug discovery, the hERG channels have received 

extraordinary attention, and many efforts have been made to understand and determine 

potential hERG-drug interactions.

For the last two decades, the gold standard for toxicity evaluation has been in vivo 
toxicology, where the compound is formulated and dosed against rodents or other 

animals.[27] The limitations of in vivo testing, including ethical issues in animal use, low 

throughput, high demands on time, cost, and other resources, large variation among 

individual animals, and poor extrapolability to humans, have created a strong demand for 

alternative strategies of toxicity assessment.[28] To advance the state of toxicity testing, the 

US Tox21 program has initiated a paradigm shift in toxicity testing of chemical compounds 

from traditional in vivo tests to less expensive and higher-throughput cell-based assays, in 

order to identify key pathways and proteins linked with toxicity end points.[29] The goal of 

the US Tox21 program is to accelerate the development of mechanism-based in vitro screens 

to better understand the mechanisms of toxicity and to reduce the use of low-throughput, 

high-cost traditional toxicity testing relied on animal models.[30] In recent years, the qHTS 

technique has achieved a favorable balance between the quality of the assay results and the 

quantity of the compounds being screened, which lays a solid foundation for computational 

toxicology.[29b]

Early and accurate in silico toxicity predictions are highly desirable to identify and reject 

potentially toxic drug candidates. So far, predictive toxicology is mostly based on either 

human knowledge, or target protein structures, or small molecule ligand structures. DEREK 

Nexus (formerly DEREK, Deductive Estimation of Risk from Existing Knowledge, http://

www.lhasalimited.org/products/derek-nexus.htm) is a widely used knowledge-based expert 

system for toxicity predictions.[31] Development of rules in DEREK is peer-reviewed, 

covering a broad spectrum of toxicological endpoints ranging from mutagenicity and 

carcinogenicity to skin sensitization. DEREK issues structural alerts on the basis of 

substructures. Even though structural alerts are routinely applied by medicinal chemists to 

flag functional groups in drug molecules that are frequently linked with toxicity, many of 

them have not been thoroughly validated with relevant data.[32] A retrospective analysis of 

structural alerts in the 68 drugs which were recalled or associated with a black-box-warning 
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and those in the 200 top-selling drugs of 2009 indicated that firing red flags using structural 

alerts might be over exaggerated.[33] About 80% of the 68 drugs contain at least one 

structural alert, but half of the 200 top-selling drugs, including Lipitor® and Plavix®, also 

carry one or more structural alerts.[33] Therefore, the easy-to-implement structural alerts are 

suitable for providing a pragmatic warning to potential idiosyncratic toxic risks of drug 

compounds, but should not be employed to eliminate compounds from the drug discovery 

pipelines.

Since the structure of the hERG has not been experimentally determined, homology models 

have been employed in structure-based approaches to predict the binding affinities of small 

molecules.[34] Structural flexibility of the tetrameric hERG channels and limited knowledge 

on the hERG-drug molecular recognition patterns restrict the usage of structure-based 

predictions of hERG liability. Therefore, QSAR and machine learning have become the 

mainstream in estimation of hERG activity.

Most of the QSAR models published so far are classification models.[10, 35] The training sets 

vary from tens to a few thousands of compounds, where large datasets are either compilation 

of literature data, such as ChEMBL,[13b, 36] or corporate datasets off the public domain.[8, 37] 

In this study, we presented a 3,024 non-redundant hERG dataset, consisting of the marketed 

drugs, drug candidates reaching the clinical trials, and other bioactive compounds. This 

dataset is not only the largest hERG data measured in the same laboratory by following the 

same protocols, but also of the greatest pharmaceutical interests due to its broad coverage of 

the drug molecules in clinical trials. Except for the limited coverage of phosphorus-

containing molecules (only one atom type of phosphorus was represented in the dataset), the 

compounds in this dataset assume a full coverage of 57 types of nitrogen and 7 type of 

hydrogen, 87 out of 88 types of carbon, 29 out of 31 types of oxygen, and 22 out of 24 types 

of Sulphur. Decomposing molecules to functional groups or atom types greatly expand the 

coverage of chemical space represented by limited number of organic compounds.

Impact of physicochemical properties on hERG activity

Figure 3 compares the distributions of hERG non-blockers and hERG blockers over three 

physicochemical properties, molecular weight (MW), polar surface area (PSA), and logP. 

PSA was calculated with Pipeline Pilot, and logP was computed by using a non-linear 

regression model developed in-house.[14]

Low MW molecules have a lower tendency to inhibit hERG channels than heavy ones 

(Figure 3a). Only 6 out of 627 compounds (0.97%) with MW less than 200 are found hERG 

active, whereas the hERG active rate increases to 6.18% and 14.14% for the compounds 

with a MW up to 300 and 400. The hERG active rate reaches its peak of 28.15% when the 

MW falls between 300 and 400. About half of the hERG blockers have a polar surface area 

(PSA) of 44.0 Å2 or less, while 78.91% of hERG non-blockers have a PSA larger than 44.0 

Å2. Most of (88.20%) the hERG active compounds are concentrated on a narrow range of 

logP values between 2.0 and 6.0 (Figure 3c). Only 37 out of 1556 compounds with the 

calculated logP value lower than 2.0 are hERG blockers. Interestingly, the distributions of 

MW, PSA, and logP for the hERG blockers heavily overlap with those of the well-absorbed 

drugs, from which the “rule of 5” was derived.[38] The observation implies that the ligand-
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binding sites of the hERG ion channels favor the drug-like molecules, and in turn explains 

why so many drug molecules encountered hERG-related cardiotoxicity.[3a]

Selection of training and test sets

Two methods have been applied to split the dataset into the training and test sets: CV_1 

method, where the whole dataset was randomly divided in 2:1 ratio, with the major portion 

training the model to predict the test set in the minor portion; and CV_2 method, where the 

hERG active and inactive data were separately split in 2:1 ratio in a random manner, 

followed by combining the majorities of hERG actives and inactives into the training set and 

the minorities to test set. Both CV_1 and CV_2 methods were repeated 10 times. The ratio 

of the hERG active compounds in the CV_1 experiment was averaged to 16.23 ± 0.53% for 

the ten training sets and 15.43 ± 1.06% for the test sets, only slightly deviating from the 

15.97% hERG active ratio in the original dataset. For large datasets, such as the hERG data 

in this study, random division provided reasonable separation reflecting the active ratio in 

the original dataset, even though the dataset is severely imbalanced. The averaged predictive 

performance of the CV_1 models is comparable to that of the CV_2 models, as measured by 

the area under the curve (AUC) of the receiver operating characteristic (ROC) curve (Figure 

4a). The AUC of ROC for the ten CV_1 models averaged 0.927 ± 0.008, which was very 

close to that of CV_2 models (0.928 ± 0.012). Similar conclusion can be drawn by 

comparing the averaged sensitivity and specificity values of CV_1 and CV_2 models (Figure 

4b). Therefore, random division of training and test sets of a large dataset is a simplified yet 

reasonable choice, as judged by predictive power of the resulting models.

Rebalancing the heavily skewed training data

The hERG dataset was severely imbalanced with majority of compounds being hERG 

inactive. Two commonly used rebalancing techniques are over-sampling and under-

sampling. Over-sampling, where the incidents in the minority class are randomly duplicated 

to reach a full balance against the majority class, has proved to produce little or no 

improvement on the predictive power of the model in many cases,[39] thence this study will 

focus on under-sampling technique.

Jackknifing and bootstrapping methods were employed in under-sampling strategy to 

rebalance the heavily skewed hERG training data, and the ensemble models, instead of 

individual models, were reported in both cases. In Jackknifing under-sampling, the majority 

class, hERG inactives, was randomly divided into six equal-sized subgroups, and each 

subgroup was combined with the entire minority class to generate six training sets. 

Averaging the predicted probabilities of the compounds in the test set being hERG active 

produced the final prediction. The ensemble Jackknifing under-sampling was repeated for 10 

times in this study. Figure 5 displays the ROC curves for the hERG predictions of the test set 

compounds using the six under-sampling classifiers in a single Jackknifing experiment, in 

comparison with the consensus ROC curve, shown in black thick curve. The consensus 

model outperformed the individual under-sampling models.

Judging from the AUC values, the Jackknifing under-sampling only slightly improved 

predictive power (Figure 4a). However, the specificity of the Jackknifing consensus models 
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increased from 64.2 ± 5.0% (CV_1) to 72.4 ± 4.3%, whereas the sensitivity decreased from 

97.5 ± 0.6% to 94.0 ± 1.1% (Figure 4b). Conventional binary classifiers based on balanced 

training sets assume a default cutoff of 0.5 to separate positives from negatives, such as the 

SVC module in the LIB-SVM package. However, classifiers trained by imbalanced data tend 

to strongly favor the majority classes and largely ignore the minority classes, when the 

default cutoff is applied. If the majority class is negative incidents, such as the hERG data in 

this study, the classifier will have greater tendency to misclassify true positives (i.e. to 

sacrifice the sensitivity), thus favor the specificity, which measures the proportion of true 

negatives being correctly retrieved. The poor sensitivity will definitely devalue such models, 

since the fundamental goal of the hERG models is to identify those potentially active 

blockers of the hERG channels, in order either to dial out the hERG activity or remove them 

from the drug discovery pipeline. In this sense, the Jackknifing under-sampling technique 

enhanced the applicability of the hERG models by improving the sensitivity.

The second under-sampling technique applied in this study was bootstrapping, where a 

random subset of majority members was selected to match the size of the minority class. 

Consensus models, BOOT10, BOOT20, …, BOOT50, were computed by using 10, 20, up to 

50 random subsets to construct the consensus models. Each bootstrapping experiment was 

repeated for 10 times. It became clear that the differences among the BOOT20, BOOT30, 

BOOT40, and BOOT50, were trivial (Figure 4), indicating that model enhancement will 

reach saturation along with increment of the number of subsets in bootstrapping.

The averaged AUC of the 10 BOOT10 models was slight lower than those of Jackknifing 

and other bootstrapping models, but equivalent to those of CV_1 and CV_2 models without 

rebalancing the training data (Figure 4a). The sensitivity of BOOT10 models was better than 

those of CV_1, CV_2, and the Jackknifing models (Figure 4b), though.

Figure 4b clearly demonstrates the tradeoff between sensitivities (hit rates or benefits) and 

specificities (false alarms or costs) among the different models. However, the values of 

(sensitivity + specificity)/2, also known as balanced accuracy, are less variable than the 

sensitivity or specificity alone, where the highest value is 0.847 for BOOT20 model and the 

lowest is 0.795 for CV_2 model. This kind of tradeoff between sensitivity and specificity is 

graphically revealed in a ROC curve (Figure 6), thus the AUC of a ROC curve is considered 

an appropriate “single number” evaluation of performance for a binary classifier, accounting 

for both sensitivity and specificity of the model.

The inserted graph in Figure 6 illustrates the changes of specificity of a binary classifier 

from 1 to 0 while sensitivity changing from 0 to 1, when the cutoff, the dashed line, moving 

from the left end to the right end. The optimal cutoff is defined as the one that maximizes the 

value of the balanced accuracy, or the point on a ROC curve that is the closest to the top-left 

corner (point of [0, 1]). To redo the predictions by using the optimal cutoffs, instead of the 

default cutoff of 0.5, the differences among all the models were ironed out – the sensitivities 

fall between 0.83 and 0.86 (Figure 7a), the specificities between 0.86 and 0.89 (Figure 7b). 

In other words, the poor sensitivity problem associated with the imbalanced training data can 

be overcome by simply replacing the default cutoff with the computed optimal cutoff, 

without applying any rebalancing techniques, for the hERG dataset in this study. The low 
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optimal cutoff values in CV_1 and CV_2 models (Figure 7a) are commonly observed in 

classifying heavily skewed datasets. It is also pragmatic to manipulate the cutoff value in 

order to achieve higher sensitivity, at a cost of loss of specificity, or vice versa.

Actually, the conclusion that rebalancing approaches will not enhance the predictive power 

for the hERG datasets can be easily reached by comparing the AUC values in Figure 4a. 

Therefore, AUC of a ROC curve provides a simple yet meaningful assessment to the model 

performance of a binary classifier, which is insensitive to changes in class distribution and 

error costs.[40]

On the contrary, another commonly used metrics in QSAR modeling, accuracy, is usually 

less favored in evaluating predictive power of classifiers associated with skewed training 

data. A worthless model which predicts all the compounds as hERG negative will attain a 

high accuracy of over 84%, since the whole major class, hERG negative, is assigned as TN, 

which contributes a dominant portion to accuracy.

where P and N represent the total positives and negatives in the dataset. Utilizing accuracy 

as the metrics to appraise binary classifiers, one would conclude that predictive powers 

decline consistently by using optimal cutoffs in the place of default ones (Figure 8), which is 

obviously incorrect in this case.

Interpretability achieved by using atom typing and SVC

The top five important features extracted from the training set of hERG model included N16 

(a positively charged nitrogen atom in a saturated ring, such as piperidine or piperazine), C3 

(an aromatic carbon atom with no substitution and adjacent to two aromatic carbon atoms), 

H2 (a hydrogen bonded to an aromatic carbon), M13 (a number of aromatic rings), and S5 

(sulfur in a ring bonded to two aromatic atoms). These features summarize the two key 

characters of the hERG blockers – an aromatic moiety and a positive charge center, which is 

in good agreement with commonly recognized pharmacophore models of hERG 

blockers.[3b] Compounds containing two N16 nitrogen atoms have a greater than 73% 

chance to block hERG channels, and the probability dropped sharply to 10% for compounds 

without an N16 atom (Figure 9a). Piperazine and piperidine are two moieties frequently 

used by medicinal chemists to manipulate molecular flexibility and hydrophobicity. 

However, both structure features have high potential to trigger undesirable hERG activity, 

unless the basicity of the ring nitrogen atoms is alleviated by introducing neighboring 

aromatic rings or carbonyl groups.

The more aromatic carbon atoms (C3) a molecule carries, the more likely it will inhibit 

hERG channels (Figure 9b). However, when a molecule has more than three aromatic rings, 

its chance to inhibit the hERG channels decreases by more than a half from the peak, when 

the compounds have three aromatic rings (Figure 9c). The phenomena might be explained 

by the fact that the hERG active site is not large enough to accommodate compounds with 
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four or more aromatic rings, or be associated with the poor permeability of the compounds 

with multiple aromatic rings.

Of the 33 S5-containing compounds in the training set, 32 compounds were found hERG 

active (Figure 9d). All the S5-containing compounds are close analogues of the 

antipsychotic drug Promazine (Figure 10a). These phenothiazine compounds share common 

pharmacophore features, consisting of two aromatic moieties and a positive charge center 

(Figure 10b). This is a typical pharmacophore for a hERG blocker. However, it is 

worthwhile to notice that the atom type S5 is correlated with the hERG activity by chance – 

all but one S5-containing compounds in the training set carry a positively charged amine 

(Figure 10a). Moricizine is a phenothiazine (Figure 10c), but the morpholine nitrogen is 

neutral at physiological pH; consequently, Moricizine is the only S5-containing compound 

that is hERG negative. Although the existence of S5 atoms and positively charged amines in 

most of the training molecules is a chance correlation, it will not hurt the performance of a 

model, unless many phenothiazines are found in the test set without positive charge centers 

in the molecules. The take-home lesson is that chance correlation is everywhere, and 

modeling algorithms can hardly overcome the problem of chance correlation, but increasing 

the size and more importantly, diversity of training sets can help to reduce the probability of 

chance correlation.

Validation of the hERG classifier

For validation purposes, the single-model hERG classifier was applied to predict the hERG 

liability of Keseru’s 66-drug dataset measured by the patch-clamp assay.[8, 41] Thirty-one 

drugs were tested by both in vitro patch-clamp assay and qHTS thallium flux assay, and 26 

drugs (~ 84%) yielded the same classification, when 30 µM, which was the highest IC50 

value observed for the hERG compounds in the thallium flux assay, was used as the 

threshold to separate hERG active from inactive drugs. Four out of five mismatched drugs 

had a pIC50 value between 4.0 and 5.0, which was about 0.5 log units away from the 

threshold. The results indicated that the thallium flux assay not only enabled high 

throughput capability, but also reasonably reproduced the in vitro hERG activities.

The SVC model trained by the 3,024-compound dataset was then employed to predict the 

hERG activities of the 66-drug validation set. Although the training and test sets were 

generated by using different assay technologies, the predictive power was superb with the 

AUC-ROC of 0.86. Eight drugs with pIC50 lower than or equal to 4.0 and twenty-seven 

drugs with pIC50 greater than 6.0 were all correctly classified (Table 2). Interestingly, the 

misclassified drugs, disopyramide, nitrendipine, dolasetron, sparfloxacin, MDL-74158, and 

epinastine, were also incorrectly predicted by a naive Bayes classifier trained with totally 

different compounds.[8]

The outstanding predictive performance of the hERG classification model provides drug 

discovery scientists with a powerful tool to identify potential hERG liability associate with 

the compounds in the pipeline.
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Conclusion

Drug induced LQTS has accounted for the withdrawal of several drugs from the market, 

making the hERG channel a major anti-target in drug discovery. Immediate knowledge of 

potential hERG liability of molecules in drug discovery pipeline will help scientists to make 

right decisions, thus the resources can be reallocated accordingly. In this study, highly 

predictive SVC models were constructed on the basis of 3,024 non-redundant drug 

molecules, by using customized atom-type-based molecular descriptors. Random division of 

training and test sets consistently provided reasonably representative separation and similar 

predictive performance in the 10 repeated experiments, even though the original dataset was 

severely imbalanced. AUC of a ROC curve offers a meaningful “single number” evaluation 

of performance for a binary classifier, accounting for both sensitivity and specificity of the 

model. For a reasonably large and diverse training set with minimal experimental errors, 

such as the hERG dataset in this study, neither Jackknifing nor bootstrapping rebalancing 

techniques seem to significantly enhance the predictive power of the classification models. 

Instead, adopting the optimal cutoffs can restore the decent balance of sensitivity and 

specificity. The structural features exerting the largest influences on the hERG activity were 

recognized by the correlation matrix computed from the kernel matrix in SVC, in turn 

providing valuable guidance for medicinal chemists in their attempts to dial out the hERG 

liability.

Although created by using different assay technologies, the predictive model based on 

3,024-compound training set demonstrated outstanding performance on estimating the 

hERG liabilities of a 66-drug external validation set, with the AUC-ROC of 0.86.

Last but not the least, it should be pointed out that blockage of the hERG channel is a 

necessary, instead of a sufficient, condition for acquired QT interval prolongation and drug-

induced TdP. In other words, hERG activity and QT interval prolongation might not result in 

the development of TdP, since the drug molecules, such as verapamil,[42] might interact with 

other ion channels to resume the depolarization-repolarization interplay.[43] Therefore the 

QSAR models should not be applied to predict drug-induced TdP or life-threatening 

cardiotoxicity.
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Figure 1. 
A three-feature pharmacophore model for the hERG blockers, MK499 (colored in cyan) and 

astemizole (colored in green). The crystal structure of astemizole was retrieved from the 

Cambridge Structural Database (CSD), to which the structure of MK499 was superposed by 

using Flexible Alignment in the MOE. The three consensus pharmacopheric features are one 

positive charge center (POS, colored in purple), and two aromatic centers (ARO, colored in 

orange).
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Figure 2. 
The flowchart to elucidate the data preparation, training and test sets selection, and model 

construction using two different under-sampling consensus approaches. The cleansed hERG 

dataset contains 3,024 non-redundant drug-like molecules with 15.97% hERG positive 

compounds. The dataset was randomly split into a training set, consisting of two thirds of 

the total compounds, and a test set, with the remaining one third compounds. All the 

experiments are repeated ten times.
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Figure 3. 
Comparison of the distributions of hERG non-blockers (green bars) and blockers (red bars) 

against (a) molecular weight, (b) polar surface area, and (c) logP.
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Figure 4. 
(a) The averaged area under the curve (AUC) of the 10 receiver operating characteristic 

(ROC) curves, and (b) the averaged sensitivity and specificity (semi-transparent boxed bars) 

values for the models using different methods to select training and test sets (CV_1 and 

CV_2) and the models built with different rebalancing techniques (Jackknifing and 

bootstrapping). The error bars in (a) indicate the standard deviation (SD) of the AUC values 

of the ten SVC models.
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Figure 5. 
The ROC curves of the six under-sampling hERG classifiers (colored curves) and the ROC 

curve of the consensus model (black thick curve) from a single Jackknifing experiment.
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Figure 6. 
A schematic representation of ROC curves with different separation power. TP, true positive; 

TN, true negative; FP, false positive; FN, false negative. Sensitivity = TP/(TP + FN); 

specificity = TN/(TN + FP).
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Figure 7. 
A comparison of (a) sensitivities and (b) specificities of different models before and after 

(semi-transparent boxed columns) applying the optimal cutoffs to the predicted probabilities. 

The averaged optimal cutoff values and their standard deviations are labeled in the 

corresponding bars in the sensitivity plot.
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Figure 8. 
A comparison of accuracy of different models before and after (semi-transparent boxed 

columns) applying the optimal cutoffs to the predicted probabilities.
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Figure 9. 
The increasing trends of percentages of hERG positive compounds in accordance with the 

count of (a) N16 atoms, (b) C3 atoms, (c) aromatic rings, and (d) S5 atoms.
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Figure 10. 
(a) The 2D structures of the representative S5-containing phenothiazines; (b) A three-feature 

pharmacophore model for Promazine; (c) The structure of neutral phenothiazine, 

Moricizine.
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