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Abstract

Development is generally regarded as a unidirectional process that results in the acquisition of 

specialized cell fates. During this process, cellular identity is precisely defined by signaling cues 

that tailor the chromatin landscape for cell-specific gene expression programs. Once established, 

these pathways and cell states are typically resistant to disruption. However, loss of cell identity 

occurs during tumor initiation and upon injury response. Moreover, terminally differentiated cells 

can be experimentally provoked to become pluripotent. Chromatin reorganization is key to the 

establishment of new gene expression signatures and thus new cell identity. Here we explore an 

emerging concept that lysine acetyltransferase enzymes drive cellular plasticity in the context of 

somatic cell reprogramming and tumorigenesis.

Graphical Abstract

The role of KAT enzymes in embryonic development, pluripotency induction and tumorigenesis is 

depicted.
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Introduction

Cell fate is established by signaling pathways that drive requisite gene expression programs. 

Central to modulation of these pathways are reversible protein post-translational 

modifications (PTMs) that permit dynamic cellular regulation and flexibility in response to 

signaling cues and stimuli. To date, over two hundred different PTMs have been identified 

that influence countless aspects of signaling regulation1. Importantly, PTMs also play a 

prominent role in altering chromatin structure and function.

Chromatin is composed of repeating nucleosome units of approximately 146bp of DNA 

wrapped around a histone core octamer, containing two copies of each histone protein H2A, 

H2B, H3 and H42. Numerous PTMs occur on histones, including acetylation, 

phosphorylation, methylation, ubiquitylation, sumoylation, glycosylation, citrullination, 

ADP-ribosylation, and other types of acylations3; 4; 5; 6; 7. Collectively, these modifications 

translate cellular signals within the nucleus, functioning to negotiate chromatin accessibility 

as well as recruitment of additional proteins and enzymatic complexes for different 

biological processes8. Hence, histone modifications greatly impact folding of the 3D 

genome and play fundamental roles in establishing appropriate gene expression networks 

that dictate cell fate throughout development.

Lysine acetylation was first detected on histones over fifty years ago and has long been 

associated with gene activation9; 10. Reversible acetylation is balanced by the activities of 

lysine acetyltransferases (KATs), which are writer enzymes that catalyze acetyl group 

transfer from acetyl coenzyme A (acetyl-CoA) to the epsilon amino side chain of lysine 

resides, and histone deacetylases (HDACs), which are eraser enzymes that remove these 

marks. In this manner, specific lysines are acetylated within the globular domains of histones 

H3 and H4, as well as within the unstructured amino-terminal tails of H2A, H2B, H3 and 

H411; 12 (Figure 1). Acetylation of histones neutralizes the positive charge on lysine residues 

and relieves inter- and intra-nucleosomal interactions to create a less compact chromatin 
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environment that promotes transcriptional activation13; 14; 15; 16; 17, as well as DNA repair, 

replication, and native centromere assembly18; 19; 20. Furthermore, acetylated residues 

cooperate with other PTMs to boost these pathways and block other lysine modifications, 

including methylation and ubiquitylation, which can elicit opposite regulatory outcomes21. 

Accordingly, depletion of individual KATs also vastly alters the pattern of other local 

histone modifications22.

Beyond physically altering chromatin structure, deposition of acetyl-moieties on histones 

additionally creates docking sites for bromodomain23, YEATS (named from the family 

members Yaf9, ENL, AF9, Taf14 and Sas5) domain24, and select PHD (Plant 

homeodomain) finger containing reader proteins25; 26; 27. These domains are present within 

many transcription-related proteins and chromatin modifying enzymes, including KATs28, 

and they act as adapter motifs that link acetylated histones to other regulatory factors and 

complexes. Therefore, histone acetylation is fundamental to promoting chromatin 

accessibility for the transcriptional machinery.

Reversible lysine acetylation also occurs on non-histone proteins, outside of chromatin. In 

mammals, over 8000 acetyl-lysine sites are present on proteins that reside primarily in 

nuclear, cytoplasmic and mitochondrial subcellular compartments29; 30; 31; 32, and many of 

these modification sites are conserved across different species, implying their 

significance33; 34. Protein acetylation imparts a variety of functional outcomes, ranging from 

altering enzymatic activity and protein-protein interactions to influencing nucleic acid 

binding, protein stability and subcellular localization35. This includes auto-acetylation of a 

number of KATs, which promotes catalytic activity and/or substrate binding36; 37; 38; 39; 40. 

Acetylated sites also crosstalk with other PTMs in non-histone proteins. For example, 

acetylation blocks lysine ubiquitylation and ensuing degradation of proteins such as the p53 

transcription factor41 and the Smad7 negative regulator from the transforming growth factor 

beta (TGFβ) pathway42. Furthermore, many key mitochondrial proteins are subject to 

acetylation, including enzymes involved in glycolysis, gluconeogenesis, the tricarboxylic 

acid (TCA) cycle, the urea cycle, fatty acid metabolism and glycogen metabolism43. 

Although the contribution of KATs to mitochondrial protein acetylation remains unclear, as 

high acetyl-CoA levels within this organelle may drive non-enzymatic acetylation for the 

bulk of acetylation events, acetyl lysine deposition is tightly linked to cellular metabolism on 

multiple levels. For instance, acetyl-CoA supply across the cell is restricted by acetylation-

mediated inactivation of both cytosolic Acetyl-CoA synthetase 1 (AceCS1) and 

mitochondrial Acetyl-CoA synthetase 2 (AceCS2) enzymes44; 45. Interconnection of 

acetylation states and carbon source utilization are particularly important in stem cells, as 

the glycolytic state of embryonic stem cells (ESCs) supports acetyl-CoA production to 

promote histone acetylation and maintain stemness46. In contrast, differentiating ESCs 

experience a rapid drop in glycolysis that leads to a reduction in both acetyl-CoA and 

histone acetylation.

Clearly lysine acetylation events on both histone and non-histone proteins control numerous 

biological processes. Thus, it is not surprising that multiple KATs and HDACs are required 

for embryonic viability and are de-regulated in cancer. These enzymes play important roles 

in delineating cell-specific gene expression pathways and therefore function as key 
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determinants of cell fate. Recent work indicates that specific KATs also promote cellular 

plasticity by creating a more open chromatin configuration amenable to activation of new 

gene expression networks and act as powerful drivers of chromatin reorganization during 

nuclear reprogramming processes, such as somatic cell reprogramming, trans-differentiation 

and oncogenesis. Here, we focus specifically on the multi-faceted ability of KATs to direct 

embryonic development, confer cellular plasticity, and contribute to nuclear reprogramming.

Lysine acetyltransferase (KAT) families in development

KAT enzymes are functionally diverse and commonly exist within large multi-subunit 

complexes that collectively facilitate specific acetylation events. The human genome 

encodes 17 KATs47, that are traditionally divided into two classes depending on their 

subcellular localization. A-type KATs reside in the nuclear compartment and accordingly 

facilitate changes in chromatin compaction and transcription, while B-type KATs are present 

in cytosol and acetylate newly synthesized histone H3 and H4 subunits prior to de novo 

nucleosome assembly48; 49. However, this classification is likely far too simplistic, as 

additional KATs have recently been uncovered in mitochondria50; 51, golgi apparatus52 and 

endoplasmic reticulum53. Based on sequence and structural similarities in the catalytic 

domain, KATs are more appropriately grouped into five major families: GNAT (Gcn5-

related N-acetyltransferase), CBP/p300 (CREB-binding protein / E1A-associated protein of 

300 kDa), MYST (Moz, Ybf2/Sas3, Sas2, Tip60), nuclear receptor co-activators, and basal 

transcription factors11. Many KATs play fundamental roles throughout development and 

more specifically within ESCs, which have the unique ability to both self-renew and 

differentiate into all cell types of the three primary germ layers. Comparatively, ESCs 

generally display higher histone acetylation levels, enhanced chromatin accessibility and 

transcriptional hyperactivity than their differentiated counterparts54, implying that histone 

acetylation is an important driver of cellular plasticity. In the following section, the different 

KAT families and representative members that coordinate protein acetylation in the context 

of embryonic development are discussed (Table 1) (Figure 2).

GNAT Superfamily

The GNAT superfamily is evolutionarily conserved from bacteria to mammals. This family 

is composed of A-type (Kat2a/Gcn5, Kat2b/Pcaf, Kat9/Elp3) and B-type KATs (Kat1/Hat1), 

as well as KATs that reside in other subcellular compartments (Gcn5l1, Atat1, Hat4, Nat8 

and Nat8b). Altogether, these KATs control a variety of cellular process, such as 

transcriptional activation55; 56, transcript elongation57, histone deposition48, DNA 

repair52; 58; 59 and microtubule stability60. GNAT family members characteristically contain 

three to four common motifs in the catalytic core61, including a highly conserved Arg/Gln-

X-X-Gly-X-Gly/Ala sequence that recognizes and binds acetyl-CoA62. Moreover, Kat2a/

Gcn5 and Kat2b/Pcaf contain a carboxy-terminal bromodomain that associates with 

acetylated lysine residues23.

Gcn5 and Pcaf

Kat2a, hereafter referred to as Gcn5 (general control non-repressible 5), was the first 

transcription-related KAT identified in eukaryotes and is arguably the best-studied member 
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of the GNAT family. Originally discovered in yeast as a transcriptional co-activator63, the 

Gcn5 ortholog in Tetrahymena thermophila (p55) was later discovered to have 

acetyltransferease activity17; 55. Together, these observations established a molecular link 

between histone acetylation and the regulation of gene expression, and also provided a 

foundation for the discovery of additional KATs, including the closely related family 

member Kat2b, which will henceforth be discussed by its initial name Pcaf (p300/CBP-

associated factor)64.

Recombinant Gcn5 and Pcaf preferentially acetylate specific sites in free histones (e.g. 

lysine 14 in histone H3 (H3K14) for Gcn5), but fail to effectively acetylate nucleosomes in 

vitro, indicating that neither KAT is independently sufficient to modify chromatin64; 65; 66. 

In vivo, Gcn5 or Pcaf reside within two major native multi-subunit complexes, SAGA (Spt-

Ada-Gcn5 acetyltransferase)66; 67 and ATAC (ADA Two-A containing)68; 69. Incorporation 

into these complexes enhances KAT activity and has long been suggested to expand lysine 

target specificity70 as well as the functionality of Gcn5 and Pcaf. However, recent work 

indicates that while the SAGA and ATAC increase catalytic efficiency of human Gcn5, by 

approximately 10- and 6-fold respectively, the specificity of Gcn5-mediated acetylation on 

histone octamers does not change when Gcn5 is alone or integrated into these complexes71. 

H3K14 still remains the primary acetylation site in vitro, while H3K9, H3K23, H3K27, 

H3K36, H4K5 and H4K8 residues are acetylated to a lesser extent by Gcn571. Beyond 

promoting catalytic activity, the SAGA and ATAC complexes regulate different functions 

due to their structural modularity. The SAGA complex contains four functional units that 

elegantly control transcriptional activation, telomere maintenance72, mRNA export73 and 

DNA repair74. One module consists of the acetyltransferase unit (Gcn5, Ada2b, Ada3, 

Sgf29) that harbors KAT activity and facilitates SAGA recruitment to H3K4me2/3 sites via 

the tandem Tudor domains of Sgf2975; 76 and/or to acetyl lysine residues through the 

bromodomain of Gcn577. A second enzymatic module, called the deubiquitination (DUB) 

module (Usp22, Atxn7, Atxn7L3 and Eny2) promotes H2BK120 deubiquitination during 

transcription78. The Spt module (Trrap, Spt3, Spt20, Staf42, Staf65γ) mediates interactions 

with TBP (TATA-binding protein)79 and various transcription factors, including Myc and 

E2f180; 81. The Taf (TBP-associated factor) module (Taf5l, Taf6l, Taf9, Taf10, Taf12) further 

connects SAGA to the general transcription machinery82.

In comparison to the SAGA complex, ATAC similarly contains a slightly modified KAT 

module (Gcn5, Ada2a, Ada3, Sgf29), but lacks many of the general transcription factors 

present in SAGA. Furthermore, ATAC houses a second KAT activity, which is mediated by 

Atac2, and contains Yeats2, which is a reader of both acetyl-lysine and crotonyl-lysine 

modifications 83; 84. The different subunit compositions of SAGA and ATAC reflect their 

disparate functions, as SAGA primarily associates with gene promoters, while ATAC is 

found at both promoters and tissue-specific enhancers85. The SAGA and ATAC complexes 

also respond to different stimuli and activate distinct subsets of inducible genes86; 87. 

Additionally, SAGA has been described as a general transcriptional co-activator complex88, 

although it is clearly recruited to specific gene promoters in ESCs89. SAGA and ATAC as 

well control distinct biological processes via non-histone acetylation, such as ATAC-specific 

acetylation of Cyclin A, which promotes mitotic progression90.
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In agreement with the wide functionality of both the SAGA and ATAC complexes, Gcn5 is 

required for normal embryonic development in mice91; 92. Gcn5 null (Gcn5−/−) mice fail to 

progress beyond 10.5 days of embryonic development (E10.5), largely due to increased 

apoptosis in mesoderm lineages91. Furthermore, Gcn5hat/hat mice lacking catalytically active 

Gcn5 die by E16.5 and display both cranial neural tube closure defects and exencephaly93. 

The delay in lethality of these mice compared to Gcn5 null counterparts indicates that Gcn5 

regulates embryogenesis through KAT-dependent as well as KAT-independent mechanisms. 

Gcn5 also mediates later stages of development, including neural stem cell (NSC) 

proliferation94 and normal skeletal patterning95, but is not required to maintain self-renewal 

or pluripotency of mouse embryonic stem cells (mESCs)89; 96. Gcn5 specifically co-

activates Myc and E2f1 gene expression networks in mESCs, although loss of Gcn5 does not 

affect self-renewal or pluripotency, possibly due to redundancy with Pcaf or other KATs89. 

Contrary to Gcn5, Pcaf null mice develop normally91; 92. However, homozygous double null 

(Gcn5−/−;Pcaf−/−) embryos are severely developmentally delayed and die by E7.591, 

implying that Pcaf and Gcn5 share redundant functions during early embryogenesis. 

Compatible with this hypothesis, Gcn5 expression is increased in certain Pcaf−/− tissues that 

normally express Pcaf, such as liver and lung92, partially explaining why Pcaf null mice 

develop normally. Additionally, Pcaf and Gcn5 act redundantly to regulate H3K9 acetylation 

(H3K9ac) in mouse embryonic fibroblasts (MEFs)97 and control mouse adipocyte 

differentiation98. Nevertheless, Gcn5 does not universally compensate for Pcaf, as loss of 

Pcaf alone also produces notable phenotypes, including defective neurite outgrowth 

following spinal cord injury99. Interestingly, components of the SAGA and ATAC complex 

have also been linked to development. Trrap, the accessory subunit within SAGA and also 

the TIP60 complex that facilitates transcription factor interactions, is essential for early 

embryonic development and ESC self-renewal100; 101; 102, while Atac2 is required for 

embryo viability103.

Hat1

Kat1, more commonly referred to as Hat1, is a cytoplasmic KAT enzyme that acetylates 

newly synthesized free histones during chromatin assembly48. Together, Hat1 and histone 

binding protein RbAp46 form the HAT-B complex104. Following new histone synthesis, 

HAT-B associates with sNasp (somatic Nuclear autoantigenic sperm protein)-bound H3-H4 

dimers to acetylate H4K5 and H4K12105. These modified histones are then transported to 

the nucleus for de novo chromatin assembly and subsequently deacetylated during 

chromatin maturation106. In addition to functioning within the cytosol, Hat1 is also present 

in the nuclear compartment107. While the nuclear function of Hat1 is still poorly understood, 

studies performed in yeast suggest that Hat1 functions as part of the NuB4 (Nuclear type B 

HAT specific for H4) complex, containing Hat1, RbAp46, sNasp and H3-H4, dimers to 

control histone deposition and/or DNA repair-based chromatin reassembly108. Interestingly, 

the Hat4 GNAT family member also regulates many of these processes, but instead 

acetylates free histone H4 on K20, K79 and K91 residues52.

Hat1 plays an essential role during embryonic development, as Hat1−/− mice die at birth or 

shortly after birth from lung maturation defects resulting from cellular hyperproliferation109. 

These mice are smaller in size than their wild-type counterparts and display craniofacial 
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abnormalities, likely due to enhanced bone growth and reduced cartilage production109. In 

addition, Hat1−/− mouse embryonic fibroblasts are strikingly sensitive to DNA damaging 

agents, and exhibit high genome instability109.

CBP/p300 Family

The CBP/p300 family is composed of these two homologous enzymes110, also known as 

Kat3a and Kat3b, respectively47. Both contain a well-conserved acetyltransferase 

domain111, and a number of protein interaction domains that facilitate binding with over 400 

proteins and promote many non-histone acetylation events112. Given their high sequence and 

structural similarity, CBP and p300 generally function in an analogous manner, yet still 

modulate distinct processes. Both proteins act as transcriptional co-activators, incapable of 

directly binding DNA and are hence recruited via interactions with sequence-specific 

transcription factors113; 114; 115. In vitro, recombinant CBP and p300 readily acetylate each 

of the four core histones in nucleosomes without the assistance of accessory factors110; 116, 

and they appear to preferentially acetylate H3K18 and H3K27 residues in vivo97. CBP and 

p300 also contribute to H3K56ac, a modification that is elevated in both embryonic stem 

cells and multiple forms of cancer117; 118. Furthermore, CBP and p300 dually function as 

crotonyltransferase enzymes that deposit crotonyl moieties on histones to activate 

transcription119. At the genomic level, CBP and p300 binding is enriched at both promoters 

and enhancers120; 121. However, CBP/p300 and H3K27ac most notably mark active 

enhancers during early development that drive transcription programs associated with cell 

and tissue specification122; 123; 124. Similarly, p300 has also been linked to super-enhancers 

in mESCs125, defined as enlarged enhancer regions densely co-bound by the Mediator 

transcriptional co-activator complex and pluripotency regulators Oct4, Sox2 and Nanog126.

CBP and p300 are largely co-expressed during mouse embryogenesis and therefore share 

certain developmental functions. Both are required for normal embryonic 

development127; 128; 129. Knockout of p300 (p300−/−) in mice leads to embryonic lethality 

between E9 and E11.5, and is accompanied by defects in cell proliferation, heart 

development and neural tube closure127. Similarly, CBP−/− mice die between E9.5 and 

E10.5 of embryonic development with severe neurulation defects, and display abnormalities 

in hematopoietic differentiation. Interestingly, a subset of p300 heterozygous (p300+/−) mice 

are also embryonic lethal and compound heterozygote (CBP+/−;p300+/−) mice die in utero 

with open neural tubes, suggesting the combined level of CBP and p300 expression is 

important for normal development127. Beyond this, CBP heterozygous mice exhibit skeletal 

defects, consistent with CBP mutations observed in patients with the haploinsufficiency 

disorder, Rubinstein-Taybi syndrome130. In mESCs, loss of p300 leads to premature 

differentiation131, while combined knockdown of CBP and p300 further enhance this 

differentiation defect and abrogate normal self-renewal capacity132. In line with these 

observations, binding of CBP and p300 in mESCs overlaps with the pluripotency master 

regulators Oct4, Sox2 and particularly Nanog132; 133. Moreover, direct binding of CBP/p300 

to Nanog establishes long-range chromatin interactions necessary for mESC maintenance.

Interestingly, both Gcn5 and Pcaf interact with p300 and CBP. These two KAT families 

share both distinct and overlapping functions during development, as illustrated by the 
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finding that about 25% of embryos that carry one null allele of both Gcn5 and p300 die, 

even though embryos that are heterozygous for either null allele alone are viable134.

MYST Family

The MYST family has five mammalian members: Tip60 (Kat5/Htatip), Mof (Kat8/Myst1), 

Moz (Kat6a/Myst3), Morf (Kat6b/Myst4), and Hbo1 (Kat7/Myst2). Each member contains a 

well-conserved MYST domain that includes a C2HC zinc finger as well as an acetyl-CoA 

binding motif homologous to that found in GNAT family members135. Furthermore, 

individual members harbor specialized domains that bind modified histones, including PHD 

and chromodomains136. Similar to the GNAT family, the MYST KATs also function in 

macro- molecular complexes and regulate a wide variety of biological and developmental 

processes.

Tip60

In mammals, the transcriptional co-regulator Tip60 (HIV Tat-interacting protein of 60 kDa) 

assembles into the multi-subunit TIP60 complex. This complex contains at least 16 proteins 

and has two enzymatic platforms, including Tip60 acetyltransferase activity that drives H2A 

and H4 acetylation, and p400 ATP-dependent chromatin remodeling activity that deposits 

the H2A.Z histone variant into chromatin137. Functionally, the TIP60 complex primarily 

associates with active promoters, via binding to proximal promoter R-loops and various 

transcription factors, including Myc, E2f1, and β-catenin102; 138; 139; 140; 141; 142. As well, 

TIP60 acetyltransferse activity functions in homologous recombination (HR)-based repair of 

DNA double strand breaks (DSB)137; 143. In agreement with these observations, multiple 

members of the TIP60 complex are vital regulators of normal embryogenesis and/or ESC 

regulation in mice. In developing mice, inactivation of either the TIP60 complex genes, 

Tip60 (Tip60−/−), Trrap (Trrap−/−) or Dmap1 (Dmap1−/−) leads to early peri-implantation 

lethality101; 144; 145. The severe phenotype of the Trrap−/− embryos likely reflects disruption 

of TIP60 and SAGA complexes. Individual knockdown in the expression levels of seven 

TIP60 members (Tip60, Trrap, p400, Dmap1, Ruvbl1, Ruvbl2 and Yeats4) also abrogates 

normal mESC identity102. Furthermore, the TIP60 complex regulates the Myc mESC 

network142; 146 and maintains the primed state of developmental genes in mESCs102.

Mof

Mof (males absent on the first) was originally identified in Drosophlia as a regulator of 

dosage compensation, leading to H4K16ac and hyperactivation of the single male X 

chromosome147. However, it is still unclear whether Mof manages similar dosage 

compensation effects in mammals. In humans, Mof assembles into two primary KAT 

complexes: the highly conserved MSL (male-specific lethal) multi-protein complex that 

specifically acetylates H4K16148, and the nine subunit NSL (non-specific lethal) complex 

that targets H4K5, K8 and K16 acetylation149. In vivo, Mof is required for mouse embryonic 

development beyond the blastocyst stage150. Mof−/− mice die at E4.5, display increased 

chromatin compaction and a striking loss of H4K16ac preceding apoptosis150. Accordingly, 

Mof is also needed to maintain pluripotency and self-renewal of mESCs151. Loss of Mof 
drives massive transcriptional changes, including down-regulation of the pluripotency genes 

Hirsch et al. Page 8

J Mol Biol. Author manuscript; available in PMC 2018 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encoding Oct4, Sox2 and Nanog and up-regulation of lineage specific genes151. The MSL 

complex is largely responsible for maintaining H4K16ac levels in mESCs and primarily 

localizes within gene bodies of ESC-specific targets, whereas NSL associates with promoter 

regions of housekeeping genes152. However, Mof occupancy has also been linked to active 

enhancers153; 154. Moreover, the MSL complex protects mESC identity, as it directly 

enhances Tsix transcription to ensure X chromosome activation154.

Moz, Morf and Hbo1

The MYST acetyltransferases, Moz (monocytic leukemia zinc-finger protein) and Morf 

(MOZ-related factor) have similar structural organization and independently form MOZ/

MORF tetrameric complexes, containing Ing5 (inhibitor of growth 5), Eaf6 (homolog yeast 

of Esa1-associated factor 6), and either Brpf1/2/or 3 (bromodomain-and PHD finger-

containing protein) paralogs155. Likewise, the HBO1 complex includes the Hbo1 

acetyltransferase, Ing4/5, Eaf6 and either Brpf1/2/3 or Jade1/2/3 (gene for apoptosis and 

differentiation in epithelia)155; 156. Both MOZ and MORF complexes primarily acetylate 

H3K14 and function as co-activators for Runx and p53 transcription factors155, while the 

Brpf-containing HBO1 complex targets H3K14/ K23 acetylation, and the Jade-containing 

HBO1 complex mediates H4K5/K8/K12 acetylation157.

Although, each of these KATs participates within similar multi-subunit complexes, they 

exhibit very different developmental roles as reflected by different phenotypes of the null 

mice. Mice lacking Moz (Moz−/−) die around E15 due to defective hematopoietic stem cell 

(HSC) development and maintenance158; 159. This fate is partially dependent on Moz KAT 

activity, as mice expressing catalytically inactive Moz (Kat−/− Moz) survive until birth, yet 

die sooner than their wild-type counterparts and generally display reduced body weight as 

well as decreased spleen and thymus size, corresponding to impaired HSC proliferation160. 

In comparison, a 90% reduction in Morf expression, within Morf gene trap mice (Morf gt/gt), 

results in low birth weight, craniofacial abnormalities, and defective brain development161, 

as well as reduced adult neural stem cell production162. Hbo1 null mice die at E10.5, due to 

increased apoptosis in mesenchymal tissues and display near complete loss in H3K14ac163.

Nuclear Reprogramming

Throughout development, pluripotent cells differentiate in a spatial and temporal manner to 

adopt stable somatic cell identities. Once established, specified cells are typically resistant to 

changes in cell fate. However, in rare contexts, such as during tumor initiation, gene 

networks are rewired resulting in cell identity changes164. Furthermore, cell specification is 

readily reversed and/or altered using experimental techniques, such as transcription factor 

directed somatic cell reprogramming165 and transdifferentiation166. Simply put, the switch 

in cell fate that occurs when a committed cell is triggered to dedifferentiate or to adopt a new 

cell identity, based on transcriptional changes, is referred to as nuclear 

reprogramming167; 168; 169; 170. Predictably, massive reorganization and resetting of the 

original chromatin landscape is key to nuclear reprogramming, and both histone acetylation 

changes and KATs have been implicated as potential drivers of these processes. Next, we 

specifically discuss the ability of histone acetylation and KATs to modulate chromatin 

Hirsch et al. Page 9

J Mol Biol. Author manuscript; available in PMC 2018 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plasticity in different nuclear reprogramming contexts including somatic cell reprogramming 

and tumor initiation.

Somatic cell reprogramming

In 2006, Takahashi and Yamanaka reported that ectopic expression of the stem cell-related 

transcription factors Oct4, Sox2 Klf4 and Myc (OSKM) was capable of reversing mature 

somatic cells back to a pluripotent state165. This process, known as somatic cell 

reprogramming, results in the generation of induced pluripotent stem cells (iPSCs), that 

closely resemble ESCs 171; 172; 173. Reprogramming thus offers unparalleled potential to 

create undifferentiated patient-specific cells for regenerative medicine applications, disease 

modeling and drug discovery.

Mechanistically, somatic cells undergo reprogramming through three phases termed 

initiation, maturation and stabilization174; 175 (Figure 3). The initiation phase is triggered by 

the induction of OSKM and is characterized by increased cellular proliferation and a 

requisite mesenchymal-to-epithelial transition (MET) driven by bone morphogenetic protein 

(BMP) signaling, which results in loss of the somatic cell profile (Snai1/2, Zeb1/2) and gain 

of epithelial-associated expression (Cdh1, Epcam, Ocln)174; 176; 177. Furthermore, additional 

transcriptional changes affect cytoskeletal organization, RNA processing and metabolism178. 

In comparison, the maturation phase is linked to activation of the first set of pluripotent 

genes (endogenous Oct4, Nanog, Esrrb), whereas the stabilization phase coincides with 

acquisition of a self-sustaining pluripotency network that is independent of ectopic OSKM 

transgene expression, marked by the full complement of pluripotent genes (endogenous 

Sox2, Dppa4, Pecam) and reactivation of the somatically silenced X 

chromosome174; 179; 180; 181. Wnt signaling is also necessary for late reprogramming 

events182. Moreover, changes in cellular metabolism are tightly linked to reprogramming, as 

dedifferentiating somatic cells suppress oxidative phosphorylation and acquire enhanced 

glycolytic potential to ramp up acetate supply, as seen in mESCs183.

Throughout the reprogramming process, alterations in gene expression are coupled to 

reorganization of the chromatin landscape and DNA methylation patterns184. During the 

initiation phase, chromatin compaction is reduced due to a loss of repressive H3K27me3 and 

deposition of active H3K4me2 and H3K4me3 marks178; 185; 186; 187. Bivalent domains 

harboring both H3K27me3 and H3K4me3 are gradually established to poise developmental 

genes178. Furthermore, suppressive H3K9me3 modifications are erased and DNA 

demethylation occurs at pluripotency genes, such as Nanog178; 188. Beyond these 

differences, acetylation of nearly all H3 and H4 lysine residues are elevated in iPS cells 

compared to MEFs188; 189. Furthermore, high H3K9ac levels augment reprogramming190 

and the expression levels of distinct KATs increase as somatic cells dedifferentiate89; 189, 

implying that histone acetylation is important for attaining pluripotency. Indeed, HDAC 

inhibitors enhance reprogramming efficiency191; 192; 193, however, the mechanistic details of 

this enhancement remain unclear, as valproic acid promotes reprogramming in the absence 

of Myc193, while butyrate drives initiation events in a Myc-dependent manner in mice192, 

and only partially compensates for Myc loss during human reprogramming191. Nonetheless, 

these observations are particularly intriguing given that Myc facilitates recruitment of KAT 
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co-activator complexes (SAGA and TIP60)80; 81; 138, and that Myc is required to maintain 

histone acetylation and gene activation in neural progenitor cells194.

Accordingly, multiple components of the SAGA complex act as essential regulators of 

reprogramming, including Gcn5, Trrap, Sgf29 and Taf1289. Early in reprogramming, Myc 

directly up-regulates both Gcn5 and Sgf29 expression to facilitate a positive feedforward 

mechanism, whereby Myc subsequently interacts with Gcn5 to co-activate gene 

expression89. During this time, Myc plays fundamental roles in accessing open chromatin 

within promoter regions to drive early gene activation, suppressing the fibroblast expression 

signature, and boosting OSK engagement at enhancers 186; 195. Although, Myc has been 

proposed to work as a general amplifier of transcription, based on its role in cancer196; 197, 

Gcn5 is not a universal Myc co-activator during early reprogramming. Instead, Gcn5 

cooperates with Myc at specific target genes, including a subset of genes that encode RNA 

processing factors linked to alternative splicing.89 Similar to transcription and epigenetic 

changes that occur as somatic cells become pluripotent, alternative splicing networks are 

also altered198. Interestingly, elevated expression of the RNA processing factors, mediated 

by Myc and Gcn5, corresponds with downstream changes in alternative splicing patterns 

linked to reprogramming and pluripotency89; 198; 199. Furthermore, these splicing events are 

compromised by depletion of Gcn5, Trrap, Sgf29 and Taf12 subunits of the SAGA 

complex89. Thus, Myc and the SAGA complex establish a key alternative splicing pathway 

by promoting expression of RNA processing factors within the initiation phase of 

reprogramming. Since this discovery, Myc-mediated alternative splicing has also been 

implicated in tumorigenesis, but the role of Gcn5 in this context remains unclear200; 201.

The impact of KATs on the maturation and the stabilization phases of reprogramming has 

yet to be systematically investigated, but Mof appears to be important for progression 

through these phases. As mentioned above, Mof is needed to ensure proper chromatin 

organization and mESC-specific expression patterns through acetylation of H4K16151. 

Ectopic Mof expression also improves OSKM-mediated reprogramming of human 

fibroblasts, while knockdown of Mof abrogates the process202. Interestingly, both Mof 
mRNA and protein levels increase throughout reprogramming and peak in iPSCs, in a 

manner similar to the Nanog maturation marker202. Notably, this spike in Mof expression 

also correlates with global enhancement in H4K16ac, a modification linked to chromatin 

decompaction203. During the maturation phase, Mof directly binds both the Oct4 and Nanog 
promoters to deposit H4K16ac and promote Wdr5-mediated H3K4me3202. Thus, Mof plays 

a fundamental role in establishing the pluripotency network of iPSCs. However, the role of 

Mof in reprogramming may extend beyond these observations. Given that the MSL complex 

controls X chromosome activation in mESCs154, and the necessity for X chromosome 

reactivation during iPSC generation181, it will be of interest to see if Mof also directs 

reactivation of the X chromosome during reprogramming.

It is also likely that additional KATs are necessary for iPSC generation. In particular, 

members of the CBP/p300 family may function late in reprogramming. Recently, Tex10 was 

identified as a Sox2-interacting protein that recruits p300 to deposit H3K27ac at super-

enhancers in order to maintain self-renewal and pluripotency of mESCs125. During 

reprogramming, Tex10 expression levels are elevated with similar kinetics to that of the late 
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reprogramming marker, endogenous Sox2. Also, Tex10 is required for both mouse and 

human reprogramming125, suggesting that p300 also contributes to defining active super-

enhancers within iPSCs. Based on their roles in mESCs, CBP and p300 may facilitate long-

range chromatin interactions in iPSCs132. Moreover, CBP/p300 may either positively or 

negatively effect reprogramming based on selective interactions with distinct transcription 

factors. For instance, Wnt signaling drives late-stage iPSC formation182, and CBP is a well-

known transcriptional co-activator of β-catenin182, implying that CBP modulates Wnt 

signaling in this context. In agreement, reprogramming performed in the presence of 

conditioned Wnt3a media enhances reprogramming efficiency, but is completely abrogated 

upon treatment with ICG-001, an inhibitor that specifically blocks CBP binding to β-

catentin204; 205. Therefore, CBP and β-catenin appear to facilitate reprogramming, yet the 

underlying mechanism remains to be explored.

Tip60 may also be important for reprogramming, given that seven TIP60 complex 

components, including Tip60 itself, are required to maintain mESC identity102 and Myc 

interacts with the TIP60 complex in mESCs146. However, it is currently unknown if TIP60 

regulates conversion of somatic cells to iPSCs. Furthermore, the expression of other MYST 

family members, including Hat1, Morf and Hbo1, is elevated in iPSCs (unpublished 

observation)189. Of these, Morf has also been implicated in neural stem cell (NSC) 

maintenance162; 206, while Hat1 is highly expressed in mESCs, NSCs, and hematopoietic 

stem cells (HSCs)207; 208; 209, further suggesting a role for these enzymes in promoting 

cellular plasticity during reprogramming.

Tumor Initiation and progression

Pluripotent cells and tumor initiating cells share many common features, including acquired 

self-renewal capacity, restricted differentiation, enhanced proliferation and glycolytic energy 

preference210. Cancer cells also establish ESC-like gene expression patterns211, and loss of 

tumor suppressor function promotes somatic cell reprogramming212; 213; 214; 215; 216. 

Furthermore, the OSKM reprogramming factors each play roles in 

tumorigenesis217; 218; 219; 220; 221, suggesting that common epigenetic and transcription 

pathways drive pluripotent properties during reprogramming and tumor development. 

Accordingly, several KATs have been linked to tumorigenesis. Here we discuss the impact 

of select KATs on cancer development and progression (Figure 4).

Myc is a commonly amplified proto-oncogene that promotes cell growth in human 

cancers221 and self-renewal in ESCs211. Thus, precise Myc regulation is crucial for normal 

cellular behavior. In cancer, Myc has been implicated as both a general amplifier of active 

genes, as well as a gene-specific transcriptional regulator196; 197; 222. As noted above, both 

TIP60 and Gcn5/SAGA act as co-activator complexes for Myc in mESCs. Tip60 interacts 

with Myc at approximately 50% of target genes102; 142; 146, and Gcn5-bound loci strongly 

associate with sites bound by Myc, E2f1 and H3K9/14ac89. N-Myc and Gcn5 also regulate 

common transcription programs in NSCs94. Therefore, given these precedents, it seems 

likely that TIP60 and/or SAGA may similarly contribute to the activation of Myc 

transcriptional networks in cancer146. Gcn5, Pcaf, and Tip60 also directly acetylate Myc to 

increase protein stability 223, implying that these enzymes facilitate Myc-driven 
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tumorigenesis on multiple levels. Moreover, recent work indicates that Myc actively 

promotes these mechanisms, as Myc up-regulates Gcn5 expression in NSCs194, 

reprogramming cells89 and human colon cancer224. Beyond these observations, Gcn5 is 

overexpressed in a variety of carcinomas including advanced stage gastric cancer225, colon 

cancer224, and non-small cell lung cancer (NSCLC), where Gcn5 specifically promotes cell 

growth by functioning as an E2f1 co-activator at Cyclin D1, Cyclin E1 and E2f1 genes226.

Like Gcn5, Pcaf functions as a co-activator in tumor maintenance. For example, in 

medulloblastoma and glioblastoma cells, Pcaf interacts with Gli1 to promote hyperactive 

Hedgehog-Gli1 signaling and high cellular proliferation227. Notably, Pcaf mediates many of 

its oncogenic functions via acetylation of non-histone targets including Ezh2228, Akt1229, 

Acly (ATP-citrate lyase)230, and β-catenin231. Pcaf-mediated acetylation of Ezh2, Acly and 

β-catenin leads to improved protein stability and tumor-promoting characteristics in 

lung228; 230 and colon cancer224, respectively. Additionally, the GNAT family member, Hat1, 

has also been reported to promote cell growth in esophageal squamous cell carcinomas228.

CBP/p300 and Moz/Morf KATs undergo recurrent chromosomal translocations in acute 

myeloid leukemia (AML), resulting in MOZ-CBP, MOZ-p300, and MORF-CBP fusion 

proteins232. These KATs also rearrange with other genes, such as MLL (mixed lineage 

leukemia) to generate MLL-CBP and MLL-p300 fusion proteins that retain the 

bromodomain and KAT domain. MLL-CBP models of therapy-related myeloproliferative 

disease in mice demonstrate that MLL-CBP not only promotes proliferation but also alters 

gene expression patterns233. Furthermore, MOZ fuses with the nuclear receptor co-activator, 

TIF2 (transcription intermediary factor 2), to drive the conversion of committed myeloid 

progenitors into self-renewing leukemic stem cells that promote AML in mice234; 235. 

Chromosomal translocations also occur between MOZ and LEUTX (leucine twenty 

homeobox) genes in therapy-related AML236, and MORF fuses with KANSL1 in 

retroperitoneal leiomyoma237. While a detailed functional understanding of many of these 

fusion proteins is lacking, it is predicted that translocations involving KATs have multiple 

potential effects on tumor development, including altered co-factor recruitment and 

enzymatic activity, resulting in KAT mistargeting and changes in the acetylation landscape 

of histone and non-histone proteins. For example, the MOZ-TIF2 fusion protein contains 

both the MYST domain of MOZ and the CBP interaction domain (CID) of TIF2. However, 

the KAT domain of MOZ is not required, but rather the C2HC nucleosome recognition 

domain of MOZ and the CID of TIF2 are essential for transformation, suggesting that CBP 

constitutively co-activates MOZ target genes235.

Numerous reports indicate KATs also function in the progression of solid tumors. In 

particular, p300 overexpression correlates with poor patient prognosis in prostate cancer, 

hepatocellular carcinoma and nasopharyngeal carcinoma, while increased cytoplasmic CBP 

and p300 levels are linked to melanoma progression and tumor size112. Given that CBP and 

p300 interact with a multitude of proteins, it is predicted that overexpression of these KATs 

impacts their protein binding selectivity. Hence, oncogenes may exploit this phenomenon to 

reorganize chromatin, and direct tumorigenic pathways. Moz and Morf have also recently 

been found in a pan-cancer analysis as being recurrently amplified across 11 cancer 

types221. Furthermore, Moz is required to drive Eµ-Myc lymphoma in mice238, implying its 
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involvement in tumor initiation. Hbo1 expression is elevated in testicular, ovarian, bladder, 

stomach / esophageal as well as breast carcinomas239; 240, and Hbo1 expression often anti-

correlates with ERα (estrogen receptor α) levels due to Hbo1 KAT-specific destabilization 

of ERα in human breast tumors241. Moreover, Mof is commonly overexpressed in 

NSCLC242; 243, where Mof both acetylates Nrf2 (nuclear factor erythroid-2-related factor 2) 

to promote nuclear retention and downstream transcription of Nrf2 target genes242, as well 

as drives S-phase progression by directly activating Skp2 (S-phase kinase-associated protein 

2) transcription243.

Conclusions

It is clear that KATs play a central role in ESC maintenance and development. 

Comparatively, these enzymes differ in substrate specificity and complex formation, and 

hence control a variety of biological processes. Interestingly, these enzymes are also 

important regulators of reversing the more rigid states of differentiated cells, during both 

somatic cell reprogramming and tumor development. Distinct KATs directly control the 

expression of ESC-specific genes, which are commonly elevated in cancer. They acetylate 

non-histone proteins to drive pluripotency and tumorigenesis. Furthermore, KATs act as co-

activators for multiple transcription factors, such as Myc, to drive changes in chromatin 

organization and ultimately cell state. Understanding these mechanisms offers new potential 

for anti-neoplastic interventions. For instance, cancer cells often become addicted to high 

levels of Myc, implying they may also be addicted to KAT activity. Given that KAT 

complexes harbor druggable domains, such as the KAT domain and bromodomain, targeting 

these complexes presents a novel therapeutic approach.

Based on the fact that KATs effectively promote cell plasticity, it is also conceivable that 

these enzymes mediate directed transdifferentiaiton pathways. Furthermore, KATs, may act 

in normal tissue homeostasis and injury response networks, where dedifferentiation drives 

mammalian progenitor cell production within the intestine, skin, lung and nervous 

system164. In the future, it will be interesting to see if KATs function in these pathways, and 

whether distinct KATs can be exploited to improve cellular transdifferentiaiton and tissue 

regeneration.
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Research Highlights

1. KATs play major roles in ESC maintenance and normal embryonic 

development

2. KATs coordinate chromatin reorganization during reprogramming and tumor 

development

3. Gcn5 and Myc activate an alternative splicing network essential for 

reprogramming

4. Mof mediates activation of the first wave of pluripotency genes during 

reprogramming

5. Multiple KATs are misregulated in various forms of cancer
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Figure 1. 
Cellular lysine acetylation. Representative lysine acetylation events are displayed in the 

nucleus, cytoplasm, and mitochondria. Within the nucleus, KATs are recruited by 

transcription factors (TFs) to chromatin, where they acetylate surrounding histones and 

function to reduce chromatin compaction. Following acetylation, bromodomain-containing 

proteins (BRD) may interact with acetylated histones to further promote gene activation. In 

the cytoplasm, it is shown that KATs acetylate non-histone proteins. KAT-mediated non-

histone acetylation further occurs in the nucleus and mitochondria. As an example, lysine 

acetylation of the Acetyl-CoA synthetase 2 enzyme (AceCS2) blocks acetyl-CoA production 

in mitochondria. Pink circle: acetylation.
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Figure 2. 
The involvement of KATs in development. A timeline of mouse development is shown 

highlighting the points of embryonic lethality in different KAT null mouse lines. ICM: inner 

cell mass, Epi: Epiblast, ExE: extra-embryonic ectoderm, EM: embryonic mesoderm, ExM: 

extra-embryonic mesoderm.
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Figure 3. 
Somatic cell reprogramming. The key transcriptional (top) and epigenetic events (bottom) 

are detailed across the initiation, maturation and stabilization phases of reprogramming. The 

involvement of Gcn5 and Mof is highlighted. MEF: mouse embryonic fibroblast, iPS: 

induced pluripotent stem cells, MET: mesenchymal-to-epithelial transition, OSKM: Oct4, 

Sox2, Klf4, Myc.
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Figure 4. 
The impact of KATs on tumorigenesis. Representative themes and examples of KAT 

involvement in tumor development are highlighted. Top. Functioning as co-activators, KATs 

promote transcriptional up-regulation of oncogene targets. Here, Myc recruits KAT co-

activator complexes including SAGA (shown) and TIP60 (not shown) that drive histone 

acetylation and subsequent gene activation. Middle. KAT fusion proteins result in 

mistargeting of KAT activity. Here, the MOZ:TIF2 fusion protein triggers CBP recruitment 

and gene activation of Moz target genes. Bottom. KATs mediate non-histone acetylation. 

Here, Mof acetylates Nrf2 resulting in nuclear retention and activation of Nrf2 gene targets. 

Pink circle: acetylation.
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