Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(8):3009–3013. doi: 10.1073/pnas.87.8.3009

Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.

A S Harris 1, J S Morrow 1
PMCID: PMC53823  PMID: 2326262

Abstract

The calcium-dependent proteolysis of fodrin has been implicated in the regulation of secretion, neutrophil and platelet activation, and long-term potentiation in neurons. In vitro studies indicate that calcium-dependent protease I (calpain I) cleaves fodrin in the middle of the alpha subunit and in the COOH-terminal third of the beta subunit. Cleavage at the beta site requires calmodulin, which binds with high affinity to a single site in the alpha subunit. In vitro binding assays, nondenaturing gel electrophoresis, and velocity sedimentation identify a linkage between calcium-dependent protease I proteolysis of fodrin and the ability of calmodulin to regulate the self-association of fodrin and its interaction with actin. Three functional states appear to exist: (i) intact fodrin, which constitutively forms tetramers and binds F-actin; (ii) alpha-cleaved fodrin, which loses its ability to self-associate and bind F-actin in the presence of calmodulin; and (iii) alpha,beta-cleaved fodrin, a form that is incompetent to establish tetramers or bind actin. Because actin binding and fodrin self-association occur at opposite ends of the molecule, whereas calmodulin binds at its center, these results indicate that long-range interactions exist within fodrin. They also offer an example of how two calcium-dependent regulatory processes may act synergistically to reversibly regulate a linkage between the membrane and the cytoskeleton.

Full text

PDF
3009

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen C. M., Langley R. C., Jr Functional characterization of human erythrocyte spectrin alpha and beta chains: association with actin and erythrocyte protein 4.1. Biochemistry. 1984 Sep 11;23(19):4488–4495. doi: 10.1021/bi00314a039. [DOI] [PubMed] [Google Scholar]
  2. Cohen C. M., Tyler J. M., Branton D. Spectrin-actin associations studied by electron microscopy of shadowed preparations. Cell. 1980 Oct;21(3):875–883. doi: 10.1016/0092-8674(80)90451-1. [DOI] [PubMed] [Google Scholar]
  3. Coleman T. R., Fishkind D. J., Mooseker M. S., Morrow J. S. Contributions of the beta-subunit to spectrin structure and function. Cell Motil Cytoskeleton. 1989;12(4):248–263. doi: 10.1002/cm.970120406. [DOI] [PubMed] [Google Scholar]
  4. Coleman T. R., Harris A. S., Mische S. M., Mooseker M. S., Morrow J. S. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J Cell Biol. 1987 Mar;104(3):519–526. doi: 10.1083/jcb.104.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croall D. E., DeMartino G. N. Comparison of two calcium-dependent proteinases from bovine heart. Biochim Biophys Acta. 1984 Aug 14;788(3):348–355. doi: 10.1016/0167-4838(84)90048-7. [DOI] [PubMed] [Google Scholar]
  6. Davison M. D., Baron M. D., Critchley D. R., Wootton J. C. Structural analysis of homologous repeated domains in alpha-actinin and spectrin. Int J Biol Macromol. 1989 Apr;11(2):81–90. doi: 10.1016/0141-8130(89)90047-0. [DOI] [PubMed] [Google Scholar]
  7. Fox J. E., Reynolds C. C., Morrow J. S., Phillips D. R. Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood. 1987 Feb;69(2):537–545. [PubMed] [Google Scholar]
  8. Harris A. S., Croall D. E., Morrow J. S. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I. J Biol Chem. 1989 Oct 15;264(29):17401–17408. [PubMed] [Google Scholar]
  9. Harris A. S., Croall D. E., Morrow J. S. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J Biol Chem. 1988 Oct 25;263(30):15754–15761. [PubMed] [Google Scholar]
  10. Harris A. S., Morrow J. S. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J Neurosci. 1988 Jul;8(7):2640–2651. doi: 10.1523/JNEUROSCI.08-07-02640.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirokawa N., Sobue K., Kanda K., Harada A., Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol. 1989 Jan;108(1):111–126. doi: 10.1083/jcb.108.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jesaitis A. J., Bokoch G. M., Tolley J. O., Allen R. A. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins. J Cell Biol. 1988 Sep;107(3):921–928. doi: 10.1083/jcb.107.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Leto T. L., Pleasic S., Forget B. G., Benz E. J., Jr, Marchesi V. T. Characterization of the calmodulin-binding site of nonerythroid alpha-spectrin. Recombinant protein and model peptide studies. J Biol Chem. 1989 Apr 5;264(10):5826–5830. [PubMed] [Google Scholar]
  16. Lynch G., Baudry M. The biochemistry of memory: a new and specific hypothesis. Science. 1984 Jun 8;224(4653):1057–1063. doi: 10.1126/science.6144182. [DOI] [PubMed] [Google Scholar]
  17. Malenka R. C., Kauer J. A., Perkel D. J., Mauk M. D., Kelly P. T., Nicoll R. A., Waxham M. N. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 1989 Aug 17;340(6234):554–557. doi: 10.1038/340554a0. [DOI] [PubMed] [Google Scholar]
  18. Mercier F., Reggio H., Devilliers G., Bataille D., Mangeat P. Membrane-cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon stimulation of gastric acid secretion. J Cell Biol. 1989 Feb;108(2):441–453. doi: 10.1083/jcb.108.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrow J. S., Haigh W. B., Jr Erythrocyte membrane proteins: detection of spectrin oligomers by gel electrophoresis. Methods Enzymol. 1983;96:298–304. doi: 10.1016/s0076-6879(83)96027-5. [DOI] [PubMed] [Google Scholar]
  20. Morrow J. S., Marchesi V. T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. doi: 10.1083/jcb.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrow J. S., Speicher D. W., Knowles W. J., Hsu C. J., Marchesi V. T. Identification of functional domains of human erythrocyte spectrin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6592–6596. doi: 10.1073/pnas.77.11.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perrin D., Langley O. K., Aunis D. Anti-alpha-fodrin inhibits secretion from permeabilized chromaffin cells. Nature. 1987 Apr 2;326(6112):498–501. doi: 10.1038/326498a0. [DOI] [PubMed] [Google Scholar]
  23. Seubert P., Baudry M., Dudek S., Lynch G. Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse. 1987;1(1):20–24. doi: 10.1002/syn.890010105. [DOI] [PubMed] [Google Scholar]
  24. Siman R., Noszek J. C., Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci. 1989 May;9(5):1579–1590. doi: 10.1523/JNEUROSCI.09-05-01579.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  26. Tyler J. M., Reinhardt B. N., Branton D. Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. J Biol Chem. 1980 Jul 25;255(14):7034–7039. [PubMed] [Google Scholar]
  27. Wasenius V. M., Saraste M., Salvén P., Erämaa M., Holm L., Lehto V. P. Primary structure of the brain alpha-spectrin. J Cell Biol. 1989 Jan;108(1):79–93. doi: 10.1083/jcb.108.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES