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Summary

Beside its key diagnostic value, the humoral immune response is thought

to play a protective role in hantavirus pulmonary syndrome. However, lit-

tle is known about the cell source of these antibodies during ongoing

human infection. Herein we characterized B-cell subsets circulating in

Andes-virus-infected patients. A notable potent plasmablast (PB) response

that increased 100-fold over the baseline levels was observed around

1 week after the onset of symptoms. These PB present a

CD3neg CD19low CD20neg CD38hi CD27hi CD138+/� IgA+/� surface phe-

notype together with the presence of cytoplasmic functional immuno-

globulins. They are large lymphocytes (lymphoblasts) morphologically

coincident with the ‘immunoblast-like’ cells that have been previously

described during blood cytology examinations of hantavirus-infected

patients. Immunoreactivity analysis of white blood cell lysates suggests

that some circulating PB are virus-specific but we also observed a signifi-

cant increase of reactivity against virus-unrelated antigens, which suggests

a possible bystander effect by polyclonal B-cell activation. The presence of

this large and transient PB response raises the question as to whether

these cells might have a protective or pathological role during the ongoing

hantavirus pulmonary syndrome and suggest their practical application as

a diagnostic/prognostic biomarker.

Keywords: Andes virus; B cell; hantavirus pulmonary syndrome;

plasmablast; polyclonal activation.

Introduction

Hantavirus are enveloped three-segmented negative-sense

RNA viruses, grouped in the only genus of the Bunyaviri-

dae family that is transmitted without intermediate vec-

tors. These worldwide-distributed viruses are harboured

in nature by multiple mammal species belonging to the

families Talpidae, Soricidae, Chiroptera and Muridae.1

However, pathogenic hantaviruses are only known to be

associated with rodent reservoirs.2 In America, Sigmodon-

tinae rodents are responsible for hantavirus transmission

to human, causing an acute life-threatening disease: han-

tavirus pulmonary syndrome (HPS). This syndrome is

characterized by pulmonary oedema due to capillary leak-

age, without evident destruction of the lung endothelial

monolayer,3 which can be followed by cardiogenic shock.

In southern South America, Andes virus (ANDV) is the

major causative agent of HPS and is considered one of

Abbreviations: ANDV+ patients, Andes virus-infected patients; ANDV, Andes virus; ARS, acute respiratory/febrile symptomatic
subjects; cy-Igs, intracytoplasmic immunoglobulins; HPS, hantavirus pulmonary syndrome; HS 7 dpv, healthy subjects 7 days
post vaccination; HS, healthy subject; LLA, leucocyte lysate antibodies; NP, nucleoprotein; PB, plasmablast; rNP-biot, recombi-
nant NP biotinylated; TB, tuberculosis patients; WBC, white blood cells
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the most lethal human pathogens, showing a high fatality

rate, as high as 40% in Argentina and 32% in Chile.4,5

The lack of vaccines and approved specific therapies, and

the ability of this particular hantavirus to be transmitted

between humans has led to their classification as a Biode-

fence Category A pathogen as a potential agent of biolog-

ical warfare.6

As hantavirus infections normally induce an early

humoral response in humans, laboratory confirmation of

HPS is generally based on positive serological test results

and, consequently, very few cases need to be confirmed

by the detection of viral RNA or evidence of viral antigen

in tissue.4,7–12 The immunoprotective role of such a

humoral response has been verified in animal models and

correlated with good prognostics in human infec-

tions.4,11,13 In previous studies from our group, we

showed that ANDV-specific IgM antibodies can be

detected as soon as the first day after the onset of symp-

toms.10,11 In contrast, in other acute viral diseases such as

Ebola, Influenza and those caused by Flavivirus, the

development of a humoral immune response occurs with

several days of delay.14–16 Higher titres of anti-nucleopro-

tein (anti-NP) specific IgGs during the acute phase of dis-

ease were strongly associated with survival of ANDV-

infected patients (ANDV+ patients).11 In the same study,

we observed that serum IgG-specific responses remain at

high levels for at least 200 days. Subsequent studies rein-

force these notions by finding long-lasting serological

memory in survivors.17,18 However, in spite of the clinical

application of specific antibodies as diagnostic and prog-

nostic tools, the B-cell response in hantavirus-infected

patients has not been previously characterized.

In the steady state, circulating human B cells are

mainly composed of naive and memory cells, and their

relative proportions vary along ontogeny.19,20 Very low

numbers of antibody-producing plasma cells can be

found in the peripheral blood of healthy subjects. These

cells are CD20-negative and express high levels of CD38,

and recent studies indicate that they are mainly of muco-

sal origin.21 After immunization with subunit or attenu-

ated vaccines, newly generated plasma cells appear in the

circulation.22,23 These cells are generally termed plas-

mablasts (PB) because they are not fully differentiated

plasma cells.20 Most PB are generated in germinal centres

and induced to circulate for a short period of time until

they reach a niche in bone marrow, spleen, mucosa-asso-

ciated lymphoid tissues or lymph nodes.20–24 Similarly,

during the acute phase of several human viral infections,

circulating PB that secrete virus-specific antibodies have

been observed.15,16,25,26 In line with this, morphologically

defined ‘immunoblasts’ of unknown cellular lineage and

uncharacterized antigen-specificity are frequently detected

in blood smears from patients with HPS.27,28

Therefore, in the present study we sought to determine

the phenotype and frequency of blood B-cell subsets in

ANDV+ patients from Argentina. We demonstrate for the

first time that a massive PB response takes place during a

human primary infection with a member of the Bun-

yaviridae family, showing differential features with respect

to PB responses evoked after vaccination or other natural

infections.15,16,25,26

Materials and methods

Study patients and healthy donors

The procedures for sampling and analysis of HPS-sus-

pected cases were approved by the Ethics Committee

from Instituto Nacional de Gen�etica M�edica from ANLIS.

For healthy donors, vaccinated volunteers and Mycobac-

terium tuberculosis-infected patients, the approval was

received from the Academia Nacional de Medicina,

Hemocentro Buenos Aires and the F.C. Mu~niz Hospital

Ethic Committees, respectively. Written informed consent

was obtained from all patients and volunteers before anal-

ysis. The enrolment process included patients suspected

of having HPS during the period December 2013 to April

2015. Suspected HPS cases from Buenos Aires province

were submitted for diagnosis confirmation to the Han-

tavirus National Reference Laboratory (Laboratorio

Nacional de Referencia para Hantavirus, Instituto Nacio-

nal de Enfermedades Infecciosas, ANLIS-’Dr. C. G. Mal-

br�an’). Suspected HPS cases from Hospital San Vicente

de Paul (Or�an, Salta province), were submitted to Labo-

ratorio de Enfermedades Tropicales, where samples were

stabilized and stored at 4° until sent to the Laboratorio

Nacional de Referencia para Hantavirus for laboratory

confirmation. The clinical HPS case definition included

acute febrile illness (> 38�5°) together with any sign of

respiratory compromise developed within the first 72 hr

after hospitalization. Standardized information was

required by means of the clinical/epidemiological HPS

form, elaborated by the National Ministry of Health from

Argentina. Cases of HPS were laboratory confirmed

according to previously described criteria.4 The HPS cases

were categorized in terms of severity grades based on the

following classification: Grade I for patients with prodro-

mal symptoms without respiratory involvement; Grade II

for patients with mild to moderate respiratory compro-

mise without haemodynamic compromise; Grade III for

patients with severe respiratory insufficiency with haemo-

dynamic compromise; Grade IV for patients with severe

respiratory insufficiency with refractory-to-treatment

haemodynamic compromise, with a final fatal outcome.

Patient groups were named as follows: acute confirmed

HPS cases infected with Andes virus as ANDV+ (n = 17)

and convalescent HPS cases at discharge as ANDV+ conv

(n = 5). Clinically suspected patients that were discarded

as HPS cases were named ARS (acute respiratory/febrile

symptomatic subjects, n = 15). As controls, healthy
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subjects (HS; n = 24; mean age 32 years, range 18–
51 years) and healthy subjects that received the seasonal

influenza vaccination (Viraflu�, Sinergium Biotech, Bue-

nos Aires, Argentina) 1 week before blood sampling (HS

7 dpv: healthy subjects 7 days post-vaccination; n = 16;

mean age 35 years, range 23–46 years) were recruited at

the IMEX-CONICET and the Hemocentro Buenos Aires.

For experiments described in Fig. 6, a group of patients

with pulmonary tuberculosis (TB; n = 10; mean age

31 years, range 19–43 years) were enrolled and diagnosed

at the Mu~niz Hospital, as previously described.29

Sample processing

Fresh anti-coagulated blood samples from suspected HPS

cases (ANDV+, ANDV+ conv and ARS groups) were split

into aliquots for laboratory confirmation4 and for white

blood cell (WBC) analysis. Serum samples were stored at

�20° and blood samples for RNA extraction were stored at

�80° until their analysis. For WBC analysis from all of the

study groups (including HS, HS 7 dpv and TB) the blood

was stabilized with Transfix reagent (Cytomark, Bucking-

ham, UK) no later than 6 hr post-extraction, following the

manufacturer’s procedures, and stored at 4° until being pro-
cessed. Immediately before WBC analysis, erythrocytes were

lysed with Cl2NH4-based lysing solution (Orthoimmune,

Raritan, NJ, USA).

Serology

Serum samples from suspected cases of HPS were tested by

ELISA for the presence of specific IgM (l-capture tech-

nique) and IgG antibodies against ANDV recombinant NP

(rNP). The rNP was obtained as previously described.10

Viral load and genotyping

RNA was extracted from 200 ll of EDTA-anticoagulated
blood using Trizol (Invitrogen, Carlsbad, CA, USA) and

purified with the RNaid� Kit following the manufacturer’s

recommendations (MP Biomedicals, Santa Ana, CA, USA).

Quantitative RT-PCR of ANDV RNA was performed using

a MyiQ single-colour RT-PCR detection system (BioRad,

Hercules, CA, USA). The primers and the probe were

selected to amplify the conserved region of the S-segment of

all ANDV genotypes.30 Primers and probe for RNAseP RNA

were included as internal control and run simultaneously

for each sample.31 Genetic characterization was done by

amplification of S- and/or M-segment partial fragments fol-

lowed by nucleotide sequencing, as previously described.11

B-cell subset isolation

B lymphocytes/lymphoblasts were first enriched by

immunomagnetic depletion of CD2+ CD14+ CD16+ WBC

with goat anti-mouse beads (Dynabeads�, Invitrogen).29

Then, CD19+ CD38high (PB) and/or CD19+ CD38low/neg (B

cells) subsets were FACS-sorted using a FACS AriaTM II cell

sorter system (BD, Franklin Lakes, NJ, USA).

Microscopy

Cytospin preparations of WBC or sorted B-cell subsets

were performed by centrifugation for 5 min at 300 g.

May–Gr€unwald Giemsa (Merck, Kenilworth, NJ, USA)

staining was analysed at 10009 magnification with immer-

sion oil. For fluorescence microscopy, cells were fixed and

permeabilized with a cytofix/cytoperm kit (BD Biosciences,

San Jose, CA, USA) and blocked with 2% BSA-PBS. Cells

were then stained with FITC-conjugated anti-human Igj/k
(Cytognos, Salamanca, Spain) and counterstained with

Evan’s Blue, and/or Topro (Molecular Probes, Eugene, OR,

USA). Alternatively, the presence of intracellular anti-NP

immunoglobulins in PB was detected by incubating cells

with recombinant biotinylated NP (rNP-biot) followed by

staining with Cy3-conjugated streptavidin (BioLegend, San

Diego, CA, USA), FITC-conjugated phalloidin and Topro

(Molecular Probes).32 Observations were performed with

an inverted confocal microscope (Olympus) at 6009 mag-

nification with immersion oil. Quantifications were per-

formed with FIJI software.33

Flow cytometry

The WBC were surface-stained with allophycocyanin-, FITC-,

phycoerythrin-, Peridinin chlorophyll protein-Cy5.5- and

Peridinin chlorophyll protein-Vio700-conjugated antibod-

ies purchased from BD Pharmingen (anti-IgD, CD19,

CD27, CD38, CD3), BioLegend (CD27, CD20), Cytognos

(anti-Igj, Igk, CD3, CD138) and Miltenyi Biotec (CD19;

Bergisch Gladbach, Germany). The PB were defined as

CD19+ CD27high CD38high cells gated on an extended lym-

phocyte gate to include blasting (FSChigh) cells. For intra-

cellular protein detection, surface-stained WBC were

treated with the Transcription Factor Staining Buffer Set

(e-Bioscience, San Diego, CA, USA) for Ki67 or the BD

Cytofix/CytopermTM solution (BD Biosciences) for intra-

cellular immunoglobulins following the manufacturers’

protocols. When evaluating the presence of intracellular

anti-NP antibodies in the patient’s PB,32 indirect staining

was performed by first incubating permeabilized cells with

rNP-biot and, after washing, cells were incubated with phy-

coerythrin-Cy5-streptavidin (BioLegend). Data acquisition

was carried out using FACScan or FACScalibur flow

cytometers both equipped with CELLQUEST software (Bec-

ton Dickinson, Franklin Lakes, NJ, USA). Flow cytometry

data were analysed using the FCS EXPRESS program (DeNovo

Software, Glendale, CA, USA). Absolute cell counts nor-

malized to blood volume were calculated using the

CountBright� bead system (Molecular Probes, Invitrogen).
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Leucocyte lysate antibody assay

To determine the relative quantity and specificity of intra-

cellular antibodies, leucocyte lysates (LL) were obtained

from all study groups (ANDV+, ANDV+ conv, ARS, TB, HS

and HS 7 dpv) by incubating a pellet of WBC (initially pre-

sent in 0�5 ml of Transfix treated blood) with 0�1 ml of

PBS, 0�5% IGEPAL� and 0�5% TritonTM X-100 (Sigma, St

Louis, MO, USA) for 1 hr at 4°. Nuclei and cell debris were

pelleted out with a 10-min centrifugation at 4° and 1000 g.

Clarified supernatants (LL) were then stored frozen at �20°
until ELISA tests were performed. High-bind 96-well

microplates (Nuncsort) were coated overnight at 4° with

0�1 ml of CO3-buffer dissolved rNP (5 lg/ml), human

serum albumin-conjugated glycoprotein peptides (10 lg/
ml, epitopes G1, G2 and G3), purified goat anti-human IgA

(10 lg/ml, Kallestad Diagnostic, Chaska, MN, USA), nuclei

isolated from human peripheral blood mononuclear cells

(protein content 10 lg/ml),34 tetanus toxoid (5 lg/ml,

Invesbio, Vicente L�opez, Buenos Aires, Argentina), Viraflu�

trivalent influenza vaccine (5 lg/ml, Sinergium Biotech)

and Mycobacterium tuberculosis purified protein derivative

(PPD) (10 lg/ml, ANLIS, Ciudad Aut�onoma de Buenos

Aires, Argentina). Plates were then blocked with PBS with

1% BSA and incubated overnight with the LL. After wash-

ing, plates were incubated with either rabbit horseradish

peroxidase-conjugated anti-human IgM/A/G polyvalent

antibody (Sigma) or goat biotinylated anti-IgA (Kallestad),

followed by incubation with horseradish peroxidase-conju-

gated streptavidin (e-Bioscience). Development was done

with 3,30,5,50-Tetramethylbenzidine substrate (Sigma) and

read at 450–570 nm using an Asys UVM340 microplate

reader (Biochrom, Cambourne, SC, UK).

Statistical analysis

Data were compiled and/or mathematically transformed

using EXCEL (Office package, Microsoft�, Redmond, WA,

USA). Statistical analysis was performed with PRISM 5

(GraphPad Prism, San Diego, CA, USA). Every data set

was subjected to a D’Agostino–Pearson normality test

before statistical comparison. When both data series to be

compared or correlated followed a normal distribution, a

two-tailed Student0s t-test or Pearson correlation test was

applied, respectively. For non-parametric comparison of

unpaired data sets, a Mann–Whitney U-test or Kruskal–
Wallis H-test with Dunn’s post hoc test was applied and

for paired data sets a Wilcoxon test was used. A Spear-

man’s test was applied for non-parametric correlation

analysis. For comparison of proportions, a Fisher’s exact

test or chi-squared test with Yate’s correction was

applied. P-values < 0�05 were considered significant. For

non-linear regression analysis, pre-established curve-fit-

ting models compiled in PRISM 5 software were chosen

based on maximum R2 values. Throughout the

manuscript, the mean plus two standard deviations (SD)

of the control group data set are the default method for

threshold definition. However, if we considered that this

criterion was not stringent enough for a given case (i.e.

the data set was without normal distribution or had too

few data points), the top value of the control group

defined the cut-off limit.

Results

HPS case confirmation, epidemiological data and
genetic characterization of the virus

In the present study, samples from 32 consecutive sus-

pected cases of HPS submitted to our laboratory between

December 2013 and April 2015 were analysed. Seventeen

patients were laboratory confirmed as acute HPS cases

(ANDV+) (Table 1). The remaining 15 patients with acute

febrile/respiratory symptoms that were seronegative (ARS)

were included as a control group (see Supplementary

material, Table S1). Additional acute or convalescent sam-

ples were obtained from some members of the former

group. Genetic characterization of the virus showed that

all HPS cases were infected with an ANDV genotype.

AND-South genotype was identified in two patients: one

of them had a history of recent travel to the Andean Patag-

onian region and the second was a child whose father had

been previously confirmed as an HPS case in the Patago-

nian region (case P015). This was the only paediatric case

in the study group and was also the only suspected case to

be caused by inter-human transmission. In all other cases

the genotype matched with those previously characterized

for each region.4,10–12,17 The clinical presentation was vari-

able among patients with HPS, requiring hospitalization in

all cases: only two cases were classified as Grade I, ten cases

as Grade II and five as Grade III. There were no cases from

the Grade IV category (Table 1).

Virus load was uniform in most cases, showing no sig-

nificant difference between patients throughout the sam-

pling period (Table 1 and Fig. 3a). ANDV-NP-specific

antibody response was mainly early and strong, showing

high titres even in the first days after the onset of symp-

toms. Comparison of ANDV-specific IgM titres between

males and females showed significantly higher titres in

samples from female patients in the acute stages of infec-

tion (see Supplementary material, Fig. S1). However,

ANDV-specific IgG responses did not show statistical

association with any demographic or clinical feature.

Reduction of naive B-cell levels with a concomitant
increase of CD19+ CD27+ IgDneg cells in HPS

To make a wide characterization of blood B-cell subsets

circulating in ANDV+ patients, we performed

immunophenotyping based on CD27/IgD expression
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among CD19+ CD3neg gated lymphocytes/lymphoblasts.29

The percentages of naive B cells – defined by surface IgD

expression and lack of CD27 – were strongly reduced in

ANDV+ patients when compared with HS or with ARS

patients (Fig. 1a,b). Notably, when five ANDV+ patients

were re-tested during or after remission of symptoms

(ANDV+ conv), we observed a significant restoration of

the % of IgD+ CD27neg B cells, suggesting a normaliza-

tion trend. Concomitantly with the reduction of naive B

cells, we observed that the % of IgDneg CD27+ sub-

set – which includes PB and memory B cells that had

undergone isotype switching – were strongly augmented

in ANDV+ patients compared with HS or with ARS.

When ANDV+ patients were re-tested (i.e. ANDV+ conv)

we observed a significant reduction of this subset, sug-

gesting again a trend returning to basal levels (Fig. 1a,b).

The remaining minor peripheral B-cell subsets (i.e.

IgD+ CD27+, unswitched memory B cells, and

IgDneg CD27neg) were altered in all three patient groups

with respect to HS. Unswitched memory B cells were

reduced and IgDneg CD27neg B cells were augmented in

ANDV+ patients, ANDV+ conv and ARS patients with

respect to HS.

Massive PB response in HPS

Peripheral CD19+ cells exhibiting the IgDneg CD27+ phe-

notype is a complex subset composed by switched mem-

ory B cells and circulating PB.19,20 Therefore, we then

tried to identify which was the expanded subpopulation.

We did not observe significant differences in percentages

(%) of switched memory B cells when comparing ANDV+

Table 1. Demographic and laboratory features of patients with confirmed hantavirus pulmonary syndrome (ANDV+)

ID No Sex Age

Geographic

origin

Days since

onset of

symptoms WBC/mm3

Anti ANDV-NP

specific

2DCt value

ANDV

genotype

Disease

severity gradeIgM titer IgG titer

P001 M 20 BA-SMM 11 11 200 6400 25 600 0�570 AND-BsAs III

P001(c) 22 10 500 6400 25 600 0�637
P002 M 42 BA-LP 11 26 300 409 600 25 600 0�559 AND-BsAs II

P003 M 23 BA-G 6 13 100 409 600 6400 0�763 AND-BsAs II

P003(c) 27 11 200 409 600 25 600 0�293
P004 F 58 BA-BJ 10 22 100 409 600 6400 0�209 AND-Lec III

P004(c) 41 9450 102 400 25 600 0�197
P009 F 24 BA-M 13 25 050 6 553 600 25 600 0�247 AND-Plata II

P012 F 26 RN/CH1 8 85 850 1 638 400 6400 0�104 AND-South II

P014 M 48 BA-Q 9 49 600 102 400 6400 0�046 AND-BsAs II

P015 M 2 RN-B 7 3700 1 638 400 25 600 0�004 AND-South III

P017 M 37 BA-Lo 4 26 350 1600 100 ND AND-BsAs II

P017(a2) 7 18 000 6400 400 0�250
P017(a3) 9 16 100 25 600 400 0�578
P020 M 32 BA-La 5 8500 102 400 6400 0�768 AND-Plata III

P024 M 36 ST-Or 14 18 900 102 400 102 400 0�075 AND-Oran II

P027 M 22 ST-Or 12 21 550 102 400 10 2400 0�115 AND-Oran II

P033 M 50 BA-Lo2 11 28 000 25 600 6400 0�090 AND-BsAs II

P033(c) 23 27 000 25 600 25 600 0�098
P038 M 49 ST-Or 4 2700 102 400 1600 1�223 AND-Oran I

P038(c) 8 9450 ND ND 0�240
P040 M 17 ST-Or 3 16 050 102 400 6400 0�001 ND I

P042 M 27 BA 11 9850 25 600 6400 0�096 AND-BsAs III

P043 M 49 ST-Or 1 13 550 6400 1 0�193 AND-Oran II

BA, Buenos Aires province; SMM, San Miguel del Monte city; LP, La Plata city; G, Glew city; M, Merlo city; BJ, Benito Juarez city; Q, Quilmes

city; Lo, Lobos city; La, Lamadrid; ST, Salta province; Or, Or�an city; RN, R�ıo Negro province; B, Bariloche city; CH, Chubut province. (c): con-

valescent sample at discharge from hospital, (a2): second acute sample, (a3) third acute sample. ANDV genotypes: BsAs, Buenos Aires; Lec,

Lechiguanas; ND, not determined.

Patients with hantavirus pulmonary syndrome were classified in terms of disease severity as follows: Grade I, patients with prodromal symptoms

without respiratory involvement; Grade II, patients with mild to moderate respiratory compromise without haemodynamic compromise; Grade

III, patients with severe respiratory insufficiency with haemodynamic compromise.
1Patient with residence in BsAs province but with history of travel to endemic areas of RN and CH provinces.
2Patient with possible double exposure risk in BsAs province: Lobos and Pilar localities. WBC/mm3: white blood cells per microlitre of blood as

determined by FACS.
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Figure 1. Elevated plasmablast (PB) levels in Andes virus (ANDV) -infected patients. (a, b) White blood cells from patients and healthy subjects

(HS) were stained for CD19, CD27 and IgD and measured by flow cytometry (FACS). (a) Representative FACS analysis of a HS and an ANDV+

patient [P003 and P003(c)]. Sampling dates after the onset of symptoms are indicated [6 days post onset of symptoms (6 dps) and 27 dps]. (b)

Comparison of naive (IgD+ CD27�), switched memory or plasmablast (IgD� CD27+), unswitched memory (IgD+/CD27+) and double-negative

(IgD� CD27�) B-cell populations between HS, ANDV+ patients, ANDV+ conv and Acute Respiratory/febrile Symptomatic (ARS) patients. (c, d)

CD27 and CD38 co-staining on gated CD19+ cells. Dot plots shown are gated on lymphocytes/lymphoblasts. (c) Representative analysis of the

PB (CD19+ CD27hi CD38hi) frequency in an HS and an ANDV+ patient [P001 and P001(c)]. Upper graphs: analysis of CD27 and CD38 expres-

sion in a healthy subject before immunization (0 dpv) and 7 days post vaccination (7 dpv). Lower graphs: analysis of CD27 and CD38 in an

ANDV+ patient: 11 (11 dps) and 22 days post onset of symptoms (22 dps). (d) Comparison of percentage of PB among the CD19+ cell popula-

tion in HS, HS 7 dpv, ANDV+, ANDV+ conv and ARS. (e) Immunophenotyping of one representative ANDV+ patient of five studied. FACS

plots show forward scatter (FCS), side scatter (SCC) and fluorescence intensity of different cell markers (from left to right) in isotype-stained

lymphocytes/lymphoblasts (dotted lines), gated B cells (grey-filled histogram) and PB (red filled histogram). (f) Comparison of absolute number

of PB per microlitre of blood (PB/mm3) in HS, HS 7 dpv, ANDV+, ANDV+ conv and ARS. *P < 0�05; **P < 0�005; ***P < 0�0005 (Mann–

Whitney U-test). #P < 0�07 (Wilcoxon). Median values are indicated by a horizontal red line. The normality range threshold (shaded grey area)

was set above the HS top value. The highlighted red dot represents a 2-year-old ANDV+ patient who had inter-human transmission and behaves

as an outlier (P015). [Colour figure can be viewed at wileyonlinelibrary.com]
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patients with HS, ARS and ANDV+ conv (see Supplemen-

tary material, Fig. S2a). On the other hand, the % of PB,

defined as CD27hi CD38hi among CD19+ CD3neg cells,

was strongly increased in ANDV+ patients [median (in-

terquartile range) = 23% (7–42%)] compared with HS

and ARS (Fig. 1c,d). Interestingly, the level of PB in

ANDV+ conv tended to drop to normal levels, indicating

a transient nature of such PB expansion. B-cell differenti-

ation to antibody-producing cells is a stepwise process

that involves changes of surface molecule expression levels

together with blast-differentiation and proliferation.20,24

Therefore, by a more detailed phenotypic analysis we

confirmed that CD19+ CD27hi CD38hi gated cells were

indeed PB exhibiting increased levels of Ki67 (P < 0�005,
n = 5) and CD138 (P < 0�0001; n = 17), lower levels of

CD45 (P < 0�05; n = 5), practically null levels of CD20

(P < 0�0005; n = 8) and higher forward scatter

(P < 0�0001; n = 17) and side scatter (P < 0�0005;
n = 17) compared with B cells, defined as

CD19+ CD27low/neg CD38low/neg cells (Fig. 1e and data

not shown). Additionally, a morphometric study of

FACS-sorted CD19low CD38hi cells indicated that they

were larger and had a lower nuclear to cytoplasm ratio

than sorted CD19hi CD38neg B cells (Fig. 2).

Given that patients with HPS usually exhibit leucocyto-

sis, mainly due to immature neutrophils,27 we also deter-

mined the absolute number of PB per blood volume unit,

confirming that it was also significantly augmented in

ANDV+ patients [median (interquartile range) = 135

(57–349) PB/mm3] compared with HS [3 (1–5) PB/

mm3], ARS patients [25 (6–78) PB/mm3] and ANDV+

conv [27 (8–44) PB/mm3] (Fig. 1f). Interestingly, the

absolute number of PB/mm3 in ANDV+ conv samples

remained significantly above the HS levels. Similarly,

switched memory B cells/mm3 were significantly

augmented with respect to HS in all three patient groups

(see Supplementary material, Fig. S2b).

Given that vaccine-evoked immune responses are

accompanied by rapid PB responses that peak 1 week

after immunization in adult subjects,22,35 we decided to

compare such secondary responses with the primary PB

response observed in ANDV+ patients. When we analysed

influenza-vaccinated healthy volunteers 7 days after vacci-

nation (HS 7 dpv; n = 16), we observed that % of circu-

lating PB [median (interquartile range) = 5 (4–8) %] and

absolute PB numbers [6 (4–13) PB/mm3] were signifi-

cantly lower than those in ANDV+ patients (Fig. 1c, d

and f). These results indicate that ANDV infection is cap-

able of inducing a primary PB response even stronger

than the memory-evoked PB response boosted by the

influenza vaccine.

PB blood levels peak at the acute phase of HPS

During the acute phase of several viral human infections,

reactive PB are released into the bloodstream.15,23,26

Therefore, we correlated PB levels with patient data to

look for clinically relevant associations. A peak in PB

response was observed around a week after the onset of

symptoms (Fig. 3a, upper graph), just before anti-NP IgG

peaked and reached stable serum levels. On the other

hand, no association of PB/mm3 levels with gender, dis-

ease severity grade, geographic distribution or infecting

strain and no statistically significant correlations with age,

viraemia, or anti-NP IgG or IgM titres could be demon-

strated herein (see Supplementary material, Fig. S3).

Given that a myriad of confounders (i.e. missing data,

heterogeneous population, non-systematic sampling etc.)

may have introduced noise to our data, we decided to

restrict the analysis to a subset of ANDV+ patients that
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accomplished the following criteria: (i) had one sample

taken during the acute phase and another taken at dis-

charge; (ii) did not have any missing data (Table 1). In

this subset of ANDV+ patients we verified a strong nega-

tive correlation of PB/mm3 levels with days after the

onset of symptoms (r = �0�97; P < 0�005) and a weaker

but statistically significant negative correlation of PB/mm3

levels with anti-NP IgG (r = �0. 7; P < 0�05) (Fig. 3b).

On the other hand, we did not observe any correlation

with IgM or viraemia.

Increased proportion and number of IgA+ PB in HPS

Given that alveolar microvascular endothelial cells are the

main cellular target of New World hantaviruses,2 we

tested if PB elicited in ANDV+ patients carried BALT-

associated cell surface markers. As expected for a poly-

clonal immune reaction, we did not observe differences

in j/k surface immunoglobulin light-chain usage when

comparing peripheral B cells with PB (Fig. 4a and data

not shown). In contrast, when we compared the surface

IgA expression we observed that % of IgA+ PB was

increased with respect to % of IgA+ B cells in ANDV+

patients (Fig. 4a,b). Furthermore, when HS, HS 7 dpv

and ARS patients were compared with ANDV+ patients

for IgA expression, both IgA+ B cells and IgA+ PB pro-

portions (Fig. 4b) and absolute numbers (Fig. 4c) were

strongly increased in the latter patient group. As observed

for total PB in ANDV+ patients (Fig. 3a), a blood IgA+

PB peak was also observed around 1 week after the onset

of symptoms (Fig. 4c). Interestingly, the levels of IgA+ PB

remained above normal levels in ANDV+ conv samples as

well. Finally, we compared the cytoplasmic IgA content of

leucocyte lysates (LLA cy-IgA) from HS 7 dpv and

ANDV+ patients by ELISA and confirmed that the latter

group had higher amounts of LLA cy-IgA (Fig. 4d).

Immunoreactivity of cytoplasmic antibodies contained
in PB from patients with HPS

Because of biosafety and logistical reasons, blood samples

from suspected patients with HPS needed to be fixed
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tein titre [IgM anti-nucleoprotein (NP) as

inverse serum dilution, middle upper graph],

IgG anti-NP titre (as inverse serum dilution,
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graph) as a function of days post onset of

symptoms (dps). The red lines are the non-lin-

ear functions that best fit to the given data set.

Repeated samples from a given patient are

connected by dotted lines. Grey shaded areas

represent incubation period. The horizontal

dotted line in the upper graph was set at the

normal threshold as indicated in Fig. 1(f). The

horizontal dotted lines in the rest of the graphs

indicate median values. The highlighted red

dot represents a 2-year-old ANDV+ patient

who had inter-human transmission (P015). (b)

Correlation analysis of PB/mm3 with days post

onset of symptoms, anti-NP IgM, anti-NP IgG

and viraemia in a selected subset of ANDV+

patients from whom samples were taken dur-

ing acute (white dots) and convalescent (blue

dots) phases of disease (i.e. P001, P003, P004

and P033). The P038 patient was excluded

from this analysis given that IgM and IgG data

were not available. Spearman correlation r fac-

tor and P-values are indicated. Grey shaded

areas indicate normal threshold value as in

Fig. 1f. [Colour figure can be viewed at

wileyonlinelibrary.com]
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after collection, before analysis could be performed. This

hampered the possibility of the characterization of PB

effector response by standard ex vivo functional assays,

such as ELISPOT and neutralization assays.15,16,20–26

Therefore, instead, we analysed by confocal microscopy

the intracytoplasmic immunoglobulin content of sorted

PB or B cells obtained from Transfix�-treated samples.

We observed that detectable amounts of intracytoplasmic

immunoglobulins are present in practically all sorted PB

but not in most sorted B cells from the same ANDV+

sample (Fig. 5a). A similar result was obtained in samples

from HS 7 dpv (see Supplementary material, Fig. S4).

Next, we analysed the antigen specificity of intracytoplas-

mic immunoglobulins contained in sorted PB by means

of rNP-biot.32 We observed a small subset of PB-bound

rNP-biot, indicating that intracytoplasmic immunoglobu-

lins are able to recognize NP as their specific antigen

(Fig. 5b). This result was further confirmed in at least

four out of seven samples tested using a similar FACS-

based assay which allows analysis of a larger number of

PB (Fig. 5c).

Given that Transfix�-treated samples preserved the

immunoreactivity of intracytoplasmic immunoglobulins

in PB, as shown in Fig. 5, we designed and validated the

LLA assay (see Supplementary material, Fig. S5) for test-

ing the antigen-specificity of antibodies present in the

cytoplasmic fraction of white blood cell lysates (leucocyte

lysate antibodies: LLA).
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When using ARS samples as the negative control for

setting the threshold, we observed that 69�23% of ANDV+

samples tested showed detectable levels of anti-NP LLA of

IgA/IgM/IgG isotypes (Fig. 6a, left graph). Furthermore,

IgA anti-NP LLA were detected in 90�9% of ANDV+ sam-

ples tested, perhaps because the threshold for this particu-

lar isotype was lower, enhancing the test sensitivity

(Fig. 6a, right graph). Next, we analysed the presence of

IgA/IgM/IgG LLA specific for three immuno-informatic

predicted linear B-cell epitopes coded by glycoproteins

Gn (epitopes G1 and G3) and Gc (epitope G2) (see Sup-

plementary material, Fig. S6). We observed that 5 of the

12 tested ANDV+ samples (41�67% P = 0�0373, Fisher’s
exact test) exhibited immunoreactivity against at least one

epitope (Fig. 6b). Altogether these results indicate that

circulating antibody-producing cells (i.e. PB and plasma

cell) are able to bind virus-related antigens in most

ANDV+ samples.

The presence of increased levels of serum antibodies

against nuclear antigens (antinuclear antibodies) and

dsDNA in patients infected with European hantavirus

strains indicates that B-cell responses against virus-unre-

lated antigens took place during Old World hantavirus

infection.36 Hence, to address possible similar bystander

responses for New World hantaviruses, we performed an

LLA-assay against a variety of antigens related with

autoimmune responses (nuclear auto-antigens and plate-

let auto-antigens], vaccine responses [tetanus toxoid,

Influenza neuraminidase/haemagglutinin and Mycobac-

terium tuberculosis culture-derived protein extract] and

bacterial infections (lipopolysaccharides). By establishing

HS samples as the negative control for setting the cut-off

values, we observed that 46�67% of ANDV+ samples

tested showed up-normal levels of LLA against human

nuclear auto-antigens (Fig. 6c, left graph). This propor-

tion was significantly higher than the one observed for

HS 7 dpv. Anti-tetanus toxoid LLA were detected in 75%

of ANDV+ samples, a percentage strongly superior to that

observed for any other patient group (Fig. 6c, left centre

graph). Unexpectedly, we observed that all ANDV+
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samples tested were positive for anti-neuraminidase/hae-

magglutinin LLA, showing even greater reactivity than the

one exhibited by the HS 7 dpv group, which systemati-

cally received a boost immunization against those anti-

gens 1 week before the blood sampling (Fig. 6c, right

centre graph). Similarly, anti-PPD LLA were detected in a

larger proportion of ANDV+ samples than in patients

with active pulmonary tuberculosis that are supposedly

under chronic exposition to those antigens (Fig. 6c, right

graph). Finally, we also observed that 50% of ANDV+

samples tested showed immunoreactivity against

lipopolysaccharide and that one out of nine ANDV+ sam-

ples tested showed immunoreactivity against human pla-

telets (see Supplementary material, Fig. S7). Altogether

these results indicate that in ANDV+ patients, circulating

antibody-producing cells are able to recognize ANDV

unrelated antigens.

Discussion

In an effort oriented to learn more about the immuno-

pathogenic origin of HPS, in the present study we per-

formed a phenotypic characterization of B-cell subsets in

patients with acute HPS from endemic areas of Argentina:

south, central and northwest. Remarkably, HPS is associ-

ated with a case fatality rate as high as 40% [4,5]. The

cohort of patients with HPS analysed in this study

includes patients with mild to severe symptoms, all of
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Figure 6. Plasmablasts (PB) from Andes virus-positive (ANDV+) patients are reactive towards virus-specific and non-specific antigens. (a, b)

Cytoplasmic fraction of white blood cell (WBC) lysates (LLA) from healthy subjects (HS), HS 7 days post vaccination (dpv), ANDV+, Acute Res-

piratory/febrile Symptomatic subjects (ARS) and tuberculosis patients (TB) were tested by ELISA for immunoreactivity towards different ANDV

antigens. (a) Anti-nucleoprotein (NP) antibodies from LLA were tested in HS, HS 7 dpv, ANDV+, ARS and TB. Background signal, measured

through the non-specific binding to the inverted NP (invNP) was subtracted to each data point. Positivity threshold was set above the maximum

value (left graph) or mean � 2SD (right graph) of ARS data set. (b) Presence of the anti-glycoproteins antibodies (total IgA/M/G) reactive

towards computationally predicted linear B-cell epitopes (G1, G2 and G3) was tested in LLA from ANDV+ and ARS patients. Background signal,

measured through the non-specific binding to the carrier protein (HSA) was subtracted to each data point. (c) LLA from HS, HS 7 dpv, ANDV+,

ARS and TB were tested for reactivity towards virus non-specific antigens: nuclear auto-antigens (NAA), tetanus toxoid (TT), Viraflu� influenza

trivalent vaccine neuraminidase and haemagglutinin (Neu/HA) proteins and Mycobacterium tuberculosis culture filtrate protein extract (PPD).

OD, optical density. *P < 0�05; **P < 0�005; ***P < 0�0005 (Fisher’s exact test). [Colour figure can be viewed at wileyonlinelibrary.com]
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them having been admitted to an intensive care unit.

However, all patients survived, with no fatal cases

included in this study. In this sense, this constituted a

biased subpopulation of patients with HPS. Nonetheless,

we believe that the obtained results justify this communi-

cation as a starting attempt given the difficulty in obtain-

ing samples from patients with HPS due to the low

incidence of the disease and the scattered geographical

distribution of cases throughout the country.

We observed a massive PB response that peaked

around 1 week after the onset of symptoms. Such magni-

tude and kinetics resemble what has been commonly

observed during secondary immune responses (i.e. vac-

cine boost immunization or natural re-infections) but it

is an atypical feature for most known primary infections.

Interestingly, two other aggressive life-threatening viral

infections (Dengue and Ebola) also produce a comparable

strong PB response after primary infection.15,26,37 One

interesting case in our patient cohort was the sample

from patient P015, which behaved as an outlier, closely

resembling HS samples. It is important to note that this

sample presented two special features that could poten-

tially affect B-cell responsiveness. First, P015 was a paedi-

atric patient (2 years old), suggesting that the observed

PB response may be related to immune system onto-

geny,19,20 perhaps reinforcing our hypothesis that during

acute ANDV infection the PB response is mediated in

part by polyclonal activation of memory B cells. Second,

it was a human-to-human transmission case with low vir-

aemia together with high serum anti-NP IgG titre and a

short time after the onset of symptoms (Table 1 and

Fig. 3a).

The majority of the patients with HPS analysed in this

study had moderate to severe symptoms, suggesting a

possible role of PB in the development or resolution of

the disease. Nonetheless, to further understand the mean-

ing of PB in the pathogenesis of the disease it will be nec-

essary to study larger patient cohorts and include patients

from the Grade IV group, which have fatal outcomes.

Clinical guidelines for hantavirus infection diagnosis

frequently mention the finding of ‘immunoblast’ cells in

blood cytology examinations as a useful parameter in dif-

ferential diagnosis. However, no information is provided

regarding their cellular lineage.27,28 In our study we

showed using microscopy that PB that were shown to be

elevated in patients with HPS coincided morphologically

with those reactive blasts (Fig. 2). This, as such, consti-

tutes a relevant finding for the hantavirus diagnostic field.

As another interesting feature, we observed high pro-

portions of IgA+ cells among circulating PB and B cells in

patients with HPS, which is strongly suggestive of ongo-

ing mucosal-associated humoral responses.21,38 This par-

ticular result should be addressed in detail in future

studies given the fact that New World hantaviruses exhi-

bit a preferred lung tissue tropism.3

Another intriguing finding was the complex pattern of

immunoreactivity observed in leucocyte lysates, which are

composed of ANDV-specific and non-specific antibodies.

This observation is clearly different from the mainly

specific PB response seen in anti-influenza-vaccinated

subjects. These results suggest that a polyclonal activation

of B cells could be taking place in acute ANDV+ patients

as a product of a bystander effect.

A similar phenomenon has been described in patients

shortly after HIV-1 infection39 and in hospitalized acute

cases of Ebola.26 In vitro experiments clearly demon-

strated that the signalling through pattern recognition

receptors combined with certain cytokines are sufficient

to induce polyclonal activation of human memory B cells

and subsequent differentiation into antibody-secreting

cells.40,41 In this sense, genomic viral ssRNA, that may act

as a Toll-like receptor 7/8 ligand, and B-cell-activating

cytokines, such as interleukin-6, interleukin-10, vascular

endothelial growth factor and B-cell-activating factor have

been shown to be elevated in patients with HPS.31,42

Another possible explanation is that B cells could consti-

tute alternative target cells for ANDV infection, leading

to their polyclonal activation, as has recently been

demonstrated for Dengue virus.43 In support of this idea,

early studies show that lymphocyte subsets contain New

World3 and Old World44 hantavirus antigens. Further-

more, recent clinical data demonstrate an increased risk

for B-cell lymphoma development in people who have

recovered from Puumala virus infections (ref. 45 and J.

Klingstr€om, personal communication). Nonetheless, fur-

ther demonstration of PB specificity through ELISPOT

assays with fresh blood samples should be performed in

the future to strongly support the proposed idea of a

bystander activation of B cells.

The identification of PB as reactive circulating immuno-

blasts (Fig. 2) together with virus antigen specificity

(Figs 5 and 6) strongly suggest their practical application

as a source for obtaining fully human monoclonal anti-

body with therapeutic potential as previously done for

other viruses.16,35,46,47 Furthermore, in endemic areas

where the immunological memory against NP antigen may

pose a higher false-positive rate to conventional serological

tests,48,49 PB-based diagnostic tests (i.e. ELISPOT, LLA-

assay, FACS) could be useful alternative tools to differenti-

ate ongoing infections from recovered cases. In a broader

context, the LLA-assay described herein provides an easy

method to monitor the B-cell effector response to Biode-

fense Category A viral infections (i.e. Ebola, severe acute

respiratory syndrome , Lassa, ANDV and Argentine haem-

orrhagic fever viruses) that otherwise require Biosafety

level 3 or 4 facilities for live cell-based functional assays.

As a final remark, we have described for the first time

an elevated PB response in patients with HPS, which has

only been reported in a few other acute viral infections,

and with a magnitude that exceeds the normal PB
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response observed in a secondary exposition to the same

antigen (influenza-vaccinated patients). It would be of

great interest for the hantavirus field to study this

response in patients with hantavirus Haemorrhagic Fever

with Renal Syndrome to test if a similar response is

mounted in these patients and to evaluate the possible

role and relevance of PB in the pathogenesis and outcome

of the disease.
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