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Electronic and optical properties of 
topological semimetal Cd3As2
Adriano Mosca Conte1,2,*, Olivia Pulci2,3,* & Friedhelm Bechstedt4,*

Using ab initio density functional theory the band structure and the dielectric function of a bct Cd3As2 
crystal are calculated. We find a Dirac semimetal with two Dirac nodes k± near the Γ point on the 
tetragonal axis. The bands near the Fermi level exhibit a linear behavior. The resulting Dirac cones are 
anisotropic and the electron-hole symmetry is destroyed along the tetragonal axis. Along this axis the 
symmetry-protected band linearity only exists in a small energy interval. The Dirac cones seemingly 
found by ARPES in a wider energy range are interpreted in terms of pseudo-linear bands. The behavior 
as 3D graphene-like material is traced back to As p orbital pointing to Cd vacancies, in directions which 
vary throughout the unit cell. Because of the Dirac nodes the dielectric functions (imaginary part) show 
a plateau for vanishing frequencies whose finite value is proportional to the Sommerfeld fine structure 
constant but varies with the light polarization. The consequences of the anisotropy of the Dirac cones 
are highlighted for the polarization dependence of the infrared optical conductivity.

Topology–dependent electronic properties of solids are subject of considerable current interest1,2. In particular, 
the appearance of ultrarelativistic particles in Dirac cones opens access to novel physics in topological matter. 
Topological insulators (TIs) are a new class of such materials3,4. Their surfaces or interfaces as well as edges exhibit 
topologically protected two-dimensional (2D) or one-dimensional linear bands in their fundamental gap as first 
demonstrated for heterojunctions of the band-gap-inverted HgTe zinc-blende crystals5,6. Another exotic material 
class is built by topological semimetals, in particular Weyl semimetals (WSMs)1,2 sometimes, in the 
three-dimensional (3D) case with higher symmetry, called 3D Dirac semimetals7. Unlike two-dimensional (2D) 
TIs, which represent a quantum spin Hall phase described by a single topological invariant Z2, a 3D TI is charac-
terized by four invariants8. A WSM is characterized by the monopole-antimonopole separations in momentum 
space2. A WSM is a new topological state of 3D quantum matter with Weyl nodes at the Fermi level in the bulk 
and Fermi arcs on the surface9. Around Weyl nodes the low-energy physics is given as 3D two-component Weyl 
fermions10. To get a WSM, either time-reversal (T) or inversion (I) symmetry should be broken. In the case of 
both T and I symmetries, one expects a 3D Dirac semimetal described as four-component Dirac spinors11 with 
linear dispersion, which can be considered as two distinct Weyl fermions with opposite chirality. The band touch-
ing point is the Dirac point but sometimes still called Weyl point. The presence of Fermi arcs on a surface between 
two corresponding Weyl points whithin the WSM (or even a Dirac semimetal)9 has been recently predicted the-
oretically12,13 and confirmed experimentally by means of angle-resolved photoemission spectroscopy (ARPES) for 
the compounds Na3Bi and Cd3As2

14–16. The ultra-high carrier mobility measured for Cd3As2
17 supports the exist-

ence of linear bands and massless Dirac or Weyl fermions. High-quality needle-like or large chunky Cd3As2 
crystals can be grown using excess Cd17. Indeed, the existence of stable Cd3As2 solids has been known for 
years18,19. Of particular interest were their semimetallic character and high electron mobility20. The electronic 
structure of Cd3As2 has been calculated13 for the primitive tetragonal (pt) polymorph with space group P42/nmc 
D( )h4

15  and 40 atoms in the primitive unit cell, which should appear at intermediate temperatures (475 °C)18. 
Calculations have been performed also for the non-centrosymmetric, as well as body-centered tetragonal (bct) 
structure with I41/cd C( )v4

12  space group and 80 atoms in the unit cell, proposed for temperatures below 475 °C19. 
The basic geometry is given as an anti-fluorite arrangement of the atoms with one fourth Cd site vacancy (see 
Fig. 1). With the corresponding 10-atom building block the pt and bct structures can be constructed. The pt struc-
ture with lattice constants a =​ 8.95 Å and c =​ 12.65 Å has As atoms in an fcc array and six Cd ones in fluorite-like 
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positions in a 10-atom subsystem. The bct phase has a larger unit cell with a =​ 12.67 Å and c =​ 25.48 Å21 in which 
the empty cube Cd vertices are ordered in 3D rather than in a 2D array.

A very recent X-ray reinvestigation of the bct polymorph21 found a centrosymmetric rather than a 
non-centrosymmetric symmetry with a distorted superstructure of the antifluorite type with lattice constants 
a =​ 12.633 Å and c =​ 25.427 Å and space group I41/acd D( )h4

20 . These findings are important for the topological 
character of Cd3As2. The presence or absence of inversion symmetry has implications on its band structure. In the 
non-centrosymmetric case the spin degeneracy of the bands in the vicinity of a Weyl point is lifted and Cd3As2 is 
an example for a Weyl semimetal13. With inversion symmetry the compound represents a 3D Dirac semimetal 
with no spin splitting. This makes Cd3As2 a 3D electronic analogue of graphene21. This relationship has however 
not been proven by an orbital analysis. The appearance of linear bands is claimed to be found in the ARPES meas-
urements14–16. Other electronic structure studies, e.g. indirect ones by means of optical spectroscopies, became 
available just recently22,23.

In this paper we study the influence of the stacking of basic units of Cd3As2 on the electronic structure and 
optical properties at vanishing frequencies. We investigate the analogy of a Dirac semimetal to graphene. For 
that purpose, we relate the 3D Dirac cones to the topological 3D arrangements of As p orbitals with varying 
orientation. We distinguish between the Dirac electrons near the Fermi energy and Kane electrons away from 
it by about 1 eV. The influence of the character as topological semimetal on the optical properties, especially the 
optical absorption, is a special topic of the paper. In particular, the influence of linear bands near Dirac points on 
the frequency dependence of the optical conductivity is discussed. The anisotropy of the Dirac cones governs its 
polarization dependence.

Results
Cd3As2 building block: simple cubic substructure.  Several basic properties of Cd3As2 polymorphs 
can be understood within a simplified crystal structure. An fcc sublattice of As atoms with a lattice constant a0 
describes the unit cells (see Fig. 1) of such a model crystal. Each As atom is surrounded by 6 Cd atoms at the cor-
ners of a cube with an edge a0/2. Two Cd vacancies appear diagonally opposite each other in one face of the small 
cube. As illustrated in Fig. 1, a distorted anti-fluorite structure with two formula units Cd3As2 and two missing 
cations appear in a cube of edge length a0. The relaxed Cd positions are described elsewhere21. The resulting lat-
tice constant of the cube is a0 =​ 6.46 Å. It indicates that the bct crystals with space groups I41/cd or I41/acd may 
be described by non-primitive tetragonal unit cells consisting of 2 ×​ 2 ×​ 4 =​ 16 cubes with 160 atoms and hence 
by primitive bct cells with 80 atoms. We study one cube, that is, one building block of the true bct stucture. The 
studied model crystal with a simple cubic Bravais lattice is a metal, as can be seen in the band structure in Figs 2 
and 3. The bands are plotted versus high-symmetry lines in a simple cubic BZ (see ref. 24) because of the sc trans-
lational symmetry. The crystal symmetry is however lower. Due to the Cd vacancies the crystal possesses a low 
symmetry with a point group only with a rotation by 180 degrees around the rotational axis (−​1, 0, 1). The overall 
band structure in Fig. 2 is rather similar to those of a fluorite crystal, such as CaF2, or anti-fluorite one, such as 
Na2O. However, there are distinct features in the details.

Despite the overlap around Γ​, the bands in Fig. 2 can be arranged in four groups. The conduction bands have a 
strong Cd5s character in their low-energy parts, as shown in Fig. 3. They are followed by the upper valence bands 
with strong As4p character. Below (around −​8 eV) one finds Cd4d-derived as well as As4s-dominated bands.

The orbital character of the band states near the Fermi level has been obtained by a Löwdin charge population 
analysis25 in Fig. 3. In this energy region around Γ​ the importance of the SOI is clearly visible. Together with the 
scalar-relativistic effects it tends to bring the Cd s atomic level below the As p one leading to a band inversion 

Figure 1.  Basic geometry of Cd3As2 represented by a 10-atom cube which is a building block for the 80-
atom bct structure. It is made of an fcc sublattice of As atoms (green) each surrounded by 6 Cd atoms (purple) 
disposed at cube vertexes as in an anti-fluorite arrangement but with two Cd vacancies at diagonal corner points 
of one face of the cube.
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between As4p and Cd5s-derived bands at Γ​. The situation is similar to the band inversion in the case of the 
zero-gap semiconductor HgTe crystallizing in zinc-blende geometry26. The fourfold degenerate and, hence, the 
upper spin-orbit-split As p level pins the Fermi level. However, the lower symmetry of the Cd3As2 model crystal 
enforces its metallicity. The Cd5s-derived, low-lying parabolic band crossed by the Fermi energy describes a 
metal. The band inversion due to the scalar relativistic effects already gives a hint for the non-trivial topological 
character of Cd3As2 similar to the cases of the HgTe and α-Sn26. Another interesting effect of the SOI is the spin 
splitting of the p-like bands away from Γ​ in agreement with the fact that the studied system is without inversion 
symmetry. The band structure in Fig. 3 also shows the absence of linear bands crossing near the Fermi level and, 
hence, the absence of 3D Dirac cones. This fact already shines light on a possible character of a Weyl or Dirac 
semimetal in the bct geometries with 80-atom unit cells.

The consequences of the band structure with SOI on optical spectra are illustrated in Fig. 4. The imaginary 
part of the interband dielectric function (eq. (8) in Method part) in Fig. 4a clearly illustrates the influence of the 
band structure. At photon energies of ħω ~ 2.6 eV there is a peak mainly due to dipole-allowed optical transitions 
at the BZ boundary near M points (see Fig. 2). For ω →​ 0 the imaginary parts show the typical behavior for 
interband transitions with vanishing gap, while the real parts in Fig. 4b diverge in agreement with the metallic 
character of the artificial material.

Body Centered Tetragonal Cd3As2 crystal.  The starting atomic positions in a real bct Cd3As2 crystal 
have been determined from those in the artificial sc crystal with cubes of edge length a0 as building blocks. In 
such a cube four As atoms occupy corner and mid-face positions (0, 0, 0) (0, 1/2, 1/2) (1/2, 0, 1/2) and (1/2, 1/2, 0) 
of the fcc sublattices. The six Cd atoms surround the As atom in position (0, 0, 0) and sit at the corners of a small 
cube with edge length a0/2, thereby letting two positions empty to simulate the vacancies. The fcc sublattice of As 
atoms is then used to build up a non-primitive tetragonal lattice with Bravais vectors (2, 0, 0), (0, 2, 0) and (0, 0, 4) 
in units of a0. The other Cd atom coordinates are instead found by fixing the center of symmetry in the center of 
the tetragonal cell and applying the symmetry operations of the I41/acd space group to each of the six Cd atoms 
surrounding the As atom in (0, 0, 0) position. In this way, all the As atoms are surrounded by six Cd-atom cubes 
with an arrangement of the vacancies that helix inside the bct unit cell as displayed in Fig. 3 of ref. 21. We test this 
structure applying symmetry operations of the I41/acd space group (see ref. 27). The resulting structure is indeed 
centrosymmetric. Finally, the tetragonal crystal with 160 atoms in the non-primitive unit cell is reduced to a bct 
crystal with 80 atoms in the atomic basis and Bravais lattice vectors (200) (020) and (112) in units of a0. In a final 
optimization step the atomic positions are allowed to relax until the DFT total energy reaches a minimum. The 
resulting tetragonal lattice constants amount to c =​ 25.84 Å and a =​ 12.93 Å close to the experimental values21.

Figure 2.  Electronic band structure of the 10-atom substructure of Cd3As2 with SOI in a wide energy range. 
The Fermi energy is used as energy zero.

Figure 3.  Electronic band structure of the 10-atom substructure of Cd3As2 with (black) and without 
(dashed red) SOI. The orbital character of the corresponding Bloch states is reported.
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The Cd3As2 band structure calculated with SOI for the relaxed geometry is plotted in Fig. 5 versus 
high-symmetry lines in the bct BZ. No spin splitting of the bands is visible because of the presence of inversion 
symmetry. The absolute positions of the band energies, the band dispersions, and the band splittings on the BZ 
boundary along XP and PN are very similar to those calculated by means of the experimentally determined cen-
trosymmetric geometry and an all-electron DFT approach21. All bands are at least twofold degenerate. However, 
also the non-centrosymmetric bct crystal and a different DFT approach based on projector-augmented waves give 
very similar results13, because of the rather small spin splittings.

Most interesting is the behavior of the band structure near the Fermi energy EF and the BZ center Γ​ in Fig. 6. 
Far away from Γ​ there are no allowed band states in the low-energy region. Despite the band folding effect due to 
the larger unit cell, the bands around Γ​ in Fig. 6 show seemingly some similarities to those in Fig. 3. There are As 
p bands crossing the Fermi level. However there are also differences: the Cd s-derived band crossing the Fermi 
level in the small cube here disappeared. As more clearly visible in Fig. 7 for an extremely small energy interval, 
around Γ​ a small gap of about 0.02 eV is opened. However, along the Γ​Z line (and consequently along the oppo-
site Γ​Z line) twofold degenerate linear bands cross at = ±± kk (0, 0, )0 , thereby forming two fourfold-degenerate 
Dirac points at the Fermi level. Therefore the centrosymmetric bct Cd3As2 forms a topological Dirac semimetal 
with two Dirac points on the tetragonal axis in a distance ±​k0 from Γ​. Similar to graphene, ideal bct Cd3As2 may 
be also identified as a multivalley zero-gap semiconductor. In the non-centrosymmetric case13,15 small band split-
tings occur and hence Weyl points arise. Around Γ​ and EF the band structures in Figs 6 and 7 are in agreement 
with symmetry considerations28. The inverted band structure, already found for the building blocks consisting of 
two formula units Cd3As2, cannot open up an energy gap due to the C4 rotational symmetry around the tetragonal 
axis. It protects two 3D Dirac cones touching at two special points k± along the Γ​Z line13. Actually, the linearity of 
the bands at the Dirac points holds just in a very small energy range, as shown in Fig. 6. Therefore, Dirac fermions 
only appear for excitation energies much lower as claimed discussing ARPES measurements (see discussion 
below).

The symmetry protection of the vanishing gap at the Dirac nodes even in the presence of SOI is illustrated in 
Fig. 7 for bands along the tetragonal axis. This figure enlights the SOI influence. Whereas higher-lying conduction 
bands and lower-lying valence bands are generally shifted toward higher energies, the bands forming the Dirac 
cones are hardly influenced along the Γ​Z direction. The Dirac points are protected by the crystal symmetry (see 
also arguments in ref. 28). However, also the gap at Γ​ between the energetically adjacent conduction and valence 

Figure 4.  Imaginary (a) and real (b) part of the dielectric function of the 10-atom substructure of Cd3As2. The 
components xx, yy, and zz are indicated by red, green, and blue lines, respectively. The Cartesian coordinates are 
identified with the cubic axes.
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bands is also only less shrinked by SOI. The relatively small influence of SOI is in agreement with the above results 
on the artificial sc Cd3As2 crystal.

The details of the empty (+​) and filled (−​) band around a Weyl or Dirac point can be described by the hyber-
bolic dispersion formula (for a node on the positive Γ​Z line)

ε θ θ= ± + − + − −+ − + −
⊥

⊥ − +
⊥
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where k‖ lies in the xy plane and k⊥ is along the tetragonal axis z. The corresponding linear fits around k⊥ =​ k0 and 
k‖ =​ 0 for a small energy interval are depicted in Fig. 8a,b. The three values of the Fermi velocity, resulting in units 
of 105 m/s are = .v 0 73F , = .+

⊥v 2 2F , and = .−
⊥v 0 29F , indicate the symmetry of the Dirac cones in the xy-plane but 

the considerable asymmetry along the tetragonal z axis. The positions of the two Dirac nodes in k space are given 
by k0 =​ 0.0481 2π/a =​ 0.099 Å−1 using the optimized lattice constant a =​ 12.93 Å. From the insets of Fig. 8 it is 

Figure 5.  Electronic band structure of the bct Cd3As2 superstructure with SOI. (a) bct BZ with indication of 
high-symmetry lines and dots. (b) Bands versus high-symmetry lines. The Fermi energy is used as energy zero.

Figure 6.  Zoom of the band structure of bct Cd3As2 near one Dirac point on the tetragonal axis ΓZ with 
SOI. 
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Figure 7.  (a) Electronic band structures of bct Cd3As2 along the Γ​Z line with (solid black lines) and without 
SOI (dashed blue lines) (b) Zoom for significantly reduced energies.

Figure 8.  Empty and occupied bands (crosses) around the Dirac point = . π
+ ( )k 0, 0, 0 0481

a
2  at Γ​Z versus 

wavevector k‖ in the xy-plane (a) and ⊥k  along the z coordinate (b). The linear fits together with the resulting 
three Fermi velocities = .v 0 73F , = .+

⊥v 2 2F , and = . ×−
⊥v 0 29 10 m/sF

5  to characterize the Dirac cones (1). The 
insets display the stronger band dispersion around Dirac node if larger energy and wavevector intervals are 
studied.
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clear that the linearity of the bands at the Fermi level holds just for an extremely small range of energies and just 
very near the Dirac points.

The computed values differ significantly from the values k0 =​ 0.032 Å−1 and vF =​ 3 ×​ 105 m/s derived for iso-
tropic Dirac cones13 or k0 =​ 0.12 Å−1, = . − . ×v 7 6 8 8 10 m/sF

5 , and = . ×+
⊥v 2 3 10 m/sF

5 29. Optical measure-
ments22 indicate energy-dependent average Fermi velocities which range from 1.2 ×​ 105 to 3 ×​ 105 m/s somewhat 
larger than our computed values. The comparison with ARPES data15,16,29 is difficult because of the different sur-
face orientations, the study of relatively large energy intervals, where the linear bands presented in Fig. 8 change 
their dispersion into a pseudolinear behavior (see inset), and the necessary refolding of measured bands around 
the center of the surface BZ to bands around the Dirac points with finite k0 value. Therefore, the Fermi velocities 
derived from ARPES are hardly compatible with the ones derived from Fig. 8. This especially holds for the meas-
urement of occupied linear bands up to 5 eV below the Fermi level29. Correspondingly, the experimentally derived 
values of 10 ×​ 105 m/s perpendicular to the surface normal and 3.3 ×​ 105 m/s along the normal of the cleavage face 
are larger than our theoretical ones. The deviations are larger than the 15–20% quasiparticle increases expected 
from graphene and other honeycomb sheet materials30,31. This is illustrated by the insets in Fig. 8. Away from the 
Dirac points, the band dispersion and, hence, in the linear approximation, the Fermi energies are larger than the 
fit values for small energies and wave vectors. According to our findings in Figs 6, 7 and 8, symmetry-protected 
asymmetric Dirac cones only appear at small electron and hole energies, in contrast to ARPES studies14–16 but in 
line with results of scanning tunneling spectroscopy (STS)32. The pseudo-linearity observed in ARPES for higher 
energies may be interpreted in terms of the standard Kane model for semiconductors (see ref. 33), here however 
for a zero-gap semiconductor23. Especially for surfaces not perpendicular to the tetragonal axis, we expect indi-
cations for the band asymmetry when approaching one Dirac node from its left or right side along the Γ​Z direc-
tion in future high-resolution ARPES measurements for extremely low electron energies. The interpretation of 
the current ARPES studies14–16, in which the observed conical feature extending over a wide energy range was 
identified as symmetry protected Dirac particles, is questionable.

The existence of 3D cones at Dirac nodes k± has been confirmed by other calculations13 and ARPES meas-
urements15,16,29. The orbital character of the band states forming Dirac cones above and below the Fermi energy 
near the Dirac node k± at the Γ​Z line is illustrated in Fig. 9. By means of the orbital projection technique we 
find that all these states around the Dirac nodes possess an As p character. The topological character of the bct 
Dirac semimetal therefore gives rise to a completely different orbital character of the bands crossing near the Γ​ 
point in comparison to that of the artificial sc Cd3As2 crystal. Instead of Cd s here only As p states do contribute. 
Which p orbital contribute depends, however, on the direction of the k vector. This is demonstrated by their wave 
function squares plotted also in Fig. 9. They indeed indicate the dominance of As p states, mainly those pointed 
toward Cd vacancies. In contrast to the in-plane honeycomb arrangement of perpendicular C pz orbitals in 2D 
graphene, in the topological Dirac semimetal Cd3As2 more or less all As atoms contribute. We trace this fact back 
to the appearance of Cd vacancies in all directions due to their helix arrangements. The orientation of the As p 
orbitals depends on the k value and on the energy above or below the Fermi energy. Along Γ​Z the HOMO and 
HOMO −​ 1 states mainly possess pz character, while px/y orbitals form the LUMO and LUMO +​ 1 states.

Optical spectra.  The optical spectra of bct Cd3As2, which result from the band structure in Fig. 5, are plotted in 
Fig. 10. More precisely, the real and imaginary parts of the dielectric function are displayed for light polarization 

Figure 9.  Atomic and orbital character of electronic states near a Dirac point. The corresponding 
eigenvalues are indicated in the band structure inset by the same numeral.
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parallel and perpendicular to the tetragonal axis. Above ~2 eV they show more or less the same lineshape as the 
corresponding spectrum for the artificial sc Cd3As2 presented in Fig. 4. The pronounced absorption peak near 
ħω =​ 2.6 eV in Fig. 10a still appears with almost the same intensity. However, the spectra for small photon ener-
gies ħω <​ 1.5 eV are totally different. The spectral weights are redistributed to guarantee the oscillator strength 
sum rule. An additional pronounced peak appears at ħω ≈​ 1.2 eV, whereas the imaginary parts approach a small 
positive value for ω →​ 0. Both observations are consequences of the modified band structure in Fig. 5. The addi-
tional peak is due to van Hove singularities in the joint density of states at the lowest optical transition energies 
near Z and N points. The low-energy behavior is instead dominated by the non-conical 3D Dirac cones. In con-
trast to the linear-energy variation of the joint density of states for Dirac cones in 2D graphene-like systems28,34, 
in the 3D case linear bands give rise to a quadratic energy behavior of the joint density of states. Together with 
finite optical transition matrix elements in Table 1 and the ω−2 prefactor in expression (8) in the Methods section, 
finite imaginary parts ε ωIm ( )jj  arise in the limit ω →​ 0.

In order to discuss more quantitatively the low-frequency behavior we first study the optical matrix elements, 
although only pseudo wave functions are available. Most important is that the momentum matrix elements at the 
Dirac nodes k =​ k± are finite in Table 1, despite the vanishing optical transition energy. In the case of 2D graphene 
we have learnt34 that the matrix element squares averaged over the degenerate states (k ≈​ k±)

Figure 10.  Real (a) and imaginary (b) part of the dielectric function for the bct phase. Inset: low energy limit 
for the imaginary part of the dielectric functions, calculated with a more dense k-point grid.

v c j = x j = y j = z

HOMO LUMO 5.263 3.224 4.396

HOMO LUMO +​ 1 7.275 9.314 6.68

HOMO −​ 1 LUMO 7.275 9.314 6.668

HOMO −​ 1 LUMO +​ 1 5.263 3.224 4.396

Tot Σ 25.077 25.077 22.145

Table 1.   Optical matrix elements |〈 | | 〉|c p vk kj
2 at a Dirac node k = k± with a vanishing transition energy 

ε ε− = 0c vk k, ,  in atomic units 10−2 (ħ/aB)2. Two energetically degenerate valence (conduction) bands 
v =​ HOMO, HOMO −​ 1 (c =​ LUMO, LUMO +​ 1) are studied. The sums of all transitions are listed, too.
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can be directly related to the Fermi velocity. With the values in Table 1 formula (2) leads to vFx/y =​ 0.78 ×​ 105 m/s 
and vFz =​ 0.73 ×​ 105 m/s. These values are of the order of magnitude of the geometric means of the Fermi velocities 
derived from Fig. 8, = . ×v 0 73 10 m/sF

5  and = . ×⊥v 0 83 10 m/sF
5 . Their deviations in the case of the asym-

metric 3D cones are not only a consequence of the use of pseudo wave functions, but also express the higher 
complexity of the ‘3D graphene’ with a varying orientation of the As p orbitals forming the linear bands (see 
Fig. 9).

The matrix elements (2) and the energy bands (1) allow the direct calculation of ε ω( )jj  (see (8) in Methods 
section) in the limit ω →​ 0, where only two degenerate conduction (LUMO) and two degenerate valence (HOMO) 
states near the two Dirac points k± contribute. Approximately the direction dependence of the momentum matrix 
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are applied. In the limit of isotropic Dirac cones and electron-hole symmetry = = = = =+
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expression (4) agrees with literature findings22 (apart from a factor 2).
With the values = = . ×v v 1 24 10 m/sFx Fy

5  and = . ×v 1 42 10 m/sFz
5  resulting from eq. 4 with the fit values 

in Fig. 8 one obtains the values ε ω ε ω→ = → = .Im ( 0) Im ( 0) 5 89xx yy  and ε ω → = .Im ( 0) 5 14zz . These val-
ues are in rough agreement with the results of the ab initio calculations performed using eq. 8 and displayed in 
Fig. 10. The ab initio values ε ω ε ω→ = → = .Im ( 0) Im ( 0) 7 0xx yy  and ε ω → = .Im ( 0) 6 23zz  are however 
somewhat larger indicating smaller effective Fermi velocities, in agreement with the above discussion of linear 
and pseudolinear bands. The differences between the imaginary parts at zero frequency, characterizing the aniso-
tropy of the crystal, 0.75 (analytic formula (3)) and 0.80 (ab initio calculations) are however close to each other. 
The small deviation is mainly due to the neglect of the k dispersion of the momentum matrix elements (2) away 
from the Dirac points.

Experimentally the optical reflectivity of [001] and [112]-oriented n-doped Cd3As2 crystals has been studied 
in a wide frequency range ħω =​ 0.006–2.8 eV22,23. Using the Kramers-Kronig relation also the real part of the 
optical conductivity (in cgs units)

σ ω ω
π
ε ω=Re Im( )

4
( ) (5)jj jj

has been derived. It is isotropic within the (001) plane in agreement with the tetragonal symmetry. Because of 
relation (5) with (3) we predict for undoped samples

σ ω
π
αω ω

= = .
c

v
e
h v

Re ( ) 1
12 6 (6)

jj
Fj Fj

2

The right-hand side of (6) is by a factor 2 smaller than the derivation in ref. 22 but agrees (apart from ħ2 as a 
misprint) with theoretical studies for systems with electron-hole symmetry and isotropic Dirac cones35. The 
reciprocal von Klitzing constant = . Ωh e k/ 25 8132  leads to the conductivity in SI units. The linear frequency 
dependence in (6) also appears in Fig. 11 for small frequencies ħω <​ 0.4 eV independent of the polarization direc-
tion. The absolute conductivity values reasonably agree with the measurements22,23. The slope coefficient

ω
σ ω

α
π

= =S d
d

c
v

Re ( )
12 (7)

jj jj
Fj

with values Sxx =​ Syy =​ 0.52 ×​ 10−10 Ω−1 m−1 s and Szz =​ 0.45 ×​ 10−10 Ω−1 m−1 s computed with the effective Fermi 
velocities vFj  using eq.  4 agree with the ab initio calculations = = . × Ω− − −S S m s0 64 10xx yy

10 1 1  and 
Szz =​ 0.60 ×​ 10−10 Ω−1 m−1 s shown in Fig. 11. The lower slope parameter along the tetragonal axis is in qualitative 
agreement with recent optical measurements23. Most interesting is the linear behavior of the conductivities in the 
wide energy interval 0–0.3 eV. This is due to the pseudolinearity of the bands above and below the Dirac points, 
as discussed above. For very small frequencies (0.0–0.01 eV) a linearity with a different slope is expected, due to 
the linear bands at the Dirac points (see Fig. 8). To make it visible, one has to sample the BZ around the k± with a 
more dense k-point grid. Moreover, the spectrum, in this low energy range, is modified by the Drude term in a 
real sample. The measured curve for Reσxx(ω) shows an almost linear behavior in the energy range ħω =​ 0.16–
0.74 eV22 with a slope parameter of about Sxx =​ 0.70 ×​ 10−10 Ω−1 m−1 s, which is not too far from our computed 
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value 0.64 ×​ 10−10 Ω−1 m−1 s. For small frequencies the experimental spectrum shows several peaks. The 
power-law fit of the spectra in a wider energy range shows some deviations. The non-linear frequency depend-
ence can be traced back to the sublinear k dispersion of the bands away from the Dirac nodes35.

A word of caution is needed, comparing calculated optical spectra with measured ones in the far-infrared 
region ħω smaller or equal 30 meV. In this spectral region our prediction of a linearly varying frequency depend-
ence of the optical conductivity is modified by two effects: (i) Polar optical lattice vibrations will contribute to the 
optical absorption (see Fig. 1b in ref. 23). (ii) At finite (e.g. room) temperature the occupation of the Dirac cones 
near the Fermi energy will be slightly modified according to the Fermi function. The resulting free electrons and 
holes will give rise to Drude terms, which are hardly visible because of their small plasma frequencies. Both effects 
may slightly influence the limit ω →​ 0 and hence the slope parameter of the conductivity. Nevertheless,we can 
state that, despite of the strong anisotropy of the Dirac cones being visible in Fig. 7, the optical conductivity, as an 
integral quantity, exhibits linear frequency slopes. Those are certaintly dominated by non-conical Dirac fermions. 
On the other hand, in the higher frequency limit the slopes may be influenced by almost massless Kane-like fer-
mions (see discussion in refs 23 and 36). However, the bands in Figs 5 and 7 clearly indicate that the interpretation 
in terms of massless Kane-like fermions is too simple. The complexity of the band structures around the Dirac 
points and Γ​, in particular in the conduction band region along Γ​Z, suggests that for photon energies ħω around 
0.5 eV or larger optical transitions, in which no or only one Dirac cone is involved, play a role. The optical spectra 
ask for a more careful interpretation beyond Dirac fermions or even massless Kane-like fermions.

For intermediate energies the fine structure of the energy loss spectra in Fig. 12 is due to the details of the band 
structure. However, the high-energy behavior of the loss functions is also influenced by collective plasmonic excita-
tions of the valence electron with approximate plasma frequencies ω π= e n m(4 / )p

2 1/2 and corresponding valence 
electron densities n. According to the band structure in Fig. 2 the valence electrons can be grouped into such due to 
As p, s and Cd d electrons. Since only the valence s and p electrons can be nearly treated as free electrons in the for-
mula for the plasma frequency, two peaks in the loss spectrum near 10.6 eV (only p electrons) and 13.5 eV (s and p 
electrons) can be explained. Because of the stronger binding, the write effective mass  of the Cd d electrons is larger 
than the free-electron mass. Consequently two other structures near 12.5 and 15.1 eV may be related to collective 

Figure 11.  Real part of the optical conductivity for the bct phase. (a) Black: xx and yy component, (b) red: zz 
component. The slope parameters Sjj characterizing the constant imaginary parts of the dielectric tensor are also 
given.
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excitations where the d electrons partially contribute. The pronounced peak around ħω =​ 20 eV can be explained by 
contributions from the lowest As s and Cd5d bands into higher-lying conduction bands with p character.

Summary and Conclusions
We have studied the most important electronic and optical properties of bct Cd3As2 crystals with 80 atoms in the 
unit cell by means of the ab initio density functional theory for calculations of the total energy and the electronic 
structure. The Kohn-Sham eigenvalues and eigenfunctions including the spin-orbit interaction have been used 
to predict band structures and the independent components of the frequency-dependent dielectric tensor. The 
results have been compared with recent ARPES and optical reflectivity measurements.

We have demonstrated that important electronic properties are already present in an artificial crystal con-
sisting of 10-atom cubes. This holds especially for the tendency of an inverted band structure near the Γ​ point. 
However, the topology of the arrangement of the vacancies plays the most important role for the occurrence of 
Dirac points. In the inversion-symmetric bct geometry with large unit cells Cd3As2 appears as a Dirac semimetal 
with two Dirac nodes k± at the tetragonal axis near the Γ​ point. The Fermi energy is pinned at the Dirac nodes, 
so that the Fermi surface only consists of two separate points. Therefore, bct Cd3As2 may be also interpreted as 
a multi-valley zero-gap semiconductor as graphene. For small energy variations we indeed found linear bands 
near k±, which however show a violation of the electron-hole symmetry and a strong asymmetry of the resulting 
Dirac cones in contrast to 2D graphene. The characteristic three Fermi velocities are of the order of magnitude 
(but smaller) as derived from ARPES experiments. The linear bands are formed by As p orbitals with varying 
orientation, underlining the interpretation of bct Cd3As2 as a 3D graphene. We suggest experiments with higher 
resolution to resolve the strong anisotropy of the Dirac cones along the tetragonal axis for small energies.

Despite the vanishing excitation energy the optical transition matrix elements at k± are finite. Together with 
the band linearity and the vanishing gap we have derived constant but finite imaginary parts of the dielectric 
tensor. We demonstrate that the low-frequency value is governed by the Sommerfeld finestructure constant 
and an effective averaged Fermi velocity. We relate the measured dependence of the optical conductivity on the 
light polarization to the anisotropic Dirac cones for not too large photon energies. For energies in the range of 
about 0.5 eV the slopes of the optical conductivity are influenced by Kane-like fermions, also with linear band 
dispersions.

Methods
In order to compute the structural, electronic and optical properties of Cd3As2 we apply the Density Functional 
Theory (DFT) as implemented in the code Quantum Espresso package37. Exchange and correlation (XC) are 
treated within the generalized gradient approximation (GGA) of Perdew, Burke and Ernzerhof (PBE)38. The 
electron-ion interaction is described by ultrasoft pseudopotentials for the s and p electrons but also for the 
low-lying Cd4d electrons39. Scalar relativistic corrections (mass and Darwin terms) and spin-orbit interaction 
(SOI) are taken into account. The inclusion of SOI has been done by first solving an all-electron radial Dirac-like 
Kohn-Sham equation for each atomic species and then taking the two upper components of the Dirac spinor 
electronic states in order to build the pseudopotential projectors40,41.

The wavefunctions are expanded into plane waves up to an energy cutoff of 80 (70) Ry for small (large) 
unit cells with 10 (80) atoms. The Brillouin Zone (BZ) is sampled by a uniform grid of 4 ×​ 4 ×​ 4 (2 ×​ 2 ×​ 2) 
Monkhorst-Pack k-points42 which are displaced in [111] direction by half a grid step. The atomic positions are 
determined by relaxing the atomic coordinates for given lattice constants until the Hellmann-Feynman forces are 
smaller than 1 meV/Å. Since quasiparticle corrections to the positions of the band extrema are vanishing24 around 
the Fermi level we restrict ourselves to the Kohn-Sham eigenvalues of the DFT. On an absolute energy scale there 
is a tendency for compensation of the blueshift of the spectra due to quasiparticle effects with their redshift due 
to excitonic effects24, hence they are neglected. Such effects may only slightly increase the wave-vector dispersion. 
Indeed, in the case of graphene and other 2D honeycomb material the Fermi velocities increase by about 15–20% 
due to quasiparticle effects30,31.

Figure 12.  Energy loss spectra for vanishing momentum transfer but propagation along the Cartesian axes 
of the Cd3As2 80-atom bct crystal. The different directions are displayed by colored lines.
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The frequency-dependent dielectric tensor ε ω( )ij  is calculated within the independent-particle approach43. 
The optical absorption is dominated by the imaginary part of its diagonal elements (j =​ x, y, z)24

∑∑ε ω π
ω

ε ε δ ε ε ω= −






 − |〈 | | 〉| − −Im e
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2

,
, ,

2
, , 

with V as the crystal volume. Here only interband transitions between occupied (|vk〉) and empty (|ck〉) Bloch 
states with ∈k BZ and corresponding eigenvalues εc k,  and εv k,  are taken into account. Their occupation is 
described by a smeared Fermi distribution f  ε( ). The real part of (8) follows via the Kramers-Kronig relation24. The 
strength of the optical transitions in (8) is governed by the matrix elements of the jth component of the momen-
tum operator p. For the simple cubic geometry we have used a mesh of 30 ×​ 30 ×​ 30 k-points, whereas a mesh of 
5 ×​ 5 ×​ 5 k has been used for the bct phase. For the low energy limit of ε ω( )jj  we have used a more dense mesh of 
k-points around the Dirac nodes. The dielectric function (8) is directly related to the optical conductivity tensor 
σ̂(ω) (see eq. 5). Therefore, the imaginary part in (8) not only allows the calculation of the real part via the 
Kramers-Kronig relation but also real and imaginary parts of the components of the conductivity tensor. In addi-
tion, by means of both quantities also the energy loss function ε ω= −L Im(1/ ( ))j jj  for vanishing momentum 
transfer can be derived.
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