Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Mar 21;73(Pt 4):550–552. doi: 10.1107/S205698901700408X

Crystal structure of 4,4′-di­nitro-[1,1′-biphen­yl]-2-amine

Md Serajul Haque Faizi a, Ashanul Haque a, Necmi Dege b, Syed Imran Hasan a, Mustafa Dege c, Valentina A Kalibabchuk d,*
PMCID: PMC5382619  PMID: 28435718

In the title biphenyl derivative, the dihedral angle between the benzene rings is 52.84 (10)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along [101].

Keywords: crystal structure, di­nitro, biphen­yl, amine, biphenyl derivatives, hydrogen bonding

Abstract

In the title biphenyl derivative, C12H9N3O4, the dihedral angle between the benzene rings is 52.84 (10)°. The nitro group attached to the benzene ring is inclined to the ring by 4.03 (2)°, while the nitro group attached to the amino-substituted benzene ring is inclined to the ring by 8.84 (2)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along [101]. Within the chains, these N—H⋯O hydrogen bonds result in the formation of R 2 2(20) and R 2 2(14) ring motifs. The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing R 2 1(6) ring motifs. The chains are linked by a second C—H⋯O hydrogen bond, forming a three-dimensional supra­molecular structure.

Chemical context  

Biphenyl and its derivatives have been shown to play an important role in fighting cancer and arteriosclerosis in humans (Umeda et al., 2005). The dihedral angle between the phenyl rings of biphenyl derivatives is associated with their affinity for cellular target mol­ecules and, therefore, can correlate with their toxicity. The parent compound, biphenyl, adopts a planar conformation in the solid state with a dihedral angle of 0° (Trotter, 1961). The calculated dihedral angle for biphenyl derivatives without ortho substituents is ca 41° (Shaikh et al., 2008). Deviations from the energetically most favourable conformation are most likely the result of crystal packing effects, which allow such compounds to adopt an energetically favorable conformation in the solid state by maximizing the lattice energy. Many research groups have calculated the inter-ring torsion angle of biphenyl in the solid state (Brock, 1980; Brock & Minton, 1989; Bastiansen & Samdal, 1985), and in the gas phase (Bastiansen & Traetteberg, 1962). We report here a detailed description of the mol­ecular structure and supra­molecular features of the title biphenyl derivative, 4,4′-di­nitro-[1,1′-biphen­yl]-2-amine, (I).graphic file with name e-73-00550-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (I), is illus­trated in Fig. 1. The dihedral angle between the two rings of the biphenyl unit is 52.84 (10)°. The nitro group (N3/O3/O4) is inclined to the benzene ring (C7–C12) to which it is attached by 4.03 (2)°. The nitro group (N1/O1/O2) is inclined to the amino-substituted benzene ring (C1–C6), to which it is attached, by 8.84 (2)°. The amino N atom, N2, lies in the plane of the C1–C6 benzene ring, and the N2—C5 bond length of 1.375 (3) Å clearly indicates a single bond. The C1—N1 distance of 1.466 (3) Å is slightly less than the C10—N3 bond distance of 1.477 (3) Å, which indicates that the 2-amino group containing a benzene ring (C1–C6) is more conjugated with the nitro group (N1/O1/O2) than is the other nitro group (N3/O3/O4) with respect to the C7–C12 benzene ring. The bond length of the C4—C7 bridge is 1.482 (3) Å, which indicates a single bond, and is similar to the same bond length of 1.494 (2) Å reported for dimethyl 2,2′-di­nitro­biphenyl-4,4′-di­carboxyl­ate (Lehane et al., 2014), and ca 1.493 Å observed in 2,2′-di­nitro­biphenyl (Sekine et al., 1994).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along the [101] direction. Within the chains, these N—H⋯O hydrogen bonds result in the formation of Inline graphic(20) and Inline graphic(14) ring motifs (Table 1 and Fig. 2). The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing Inline graphic(6) ring motifs (Table 1 and Fig. 2). The chains are linked by a second C—H⋯O hydrogen bond (Table 1), forming a three-dimensional supra­molecular structure, as illustrated in Figs. 3 and 4.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.92 (2) 2.36 (2) 3.229 (3) 157 (2)
N2—H2A⋯O4ii 0.89 (2) 2.50 (2) 3.345 (3) 157 (2)
C6—H6⋯O1i 0.93 2.54 3.308 (3) 140
C9—H9⋯O3iii 0.93 2.57 3.496 (3) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A view of the N—H⋯O and C—H⋯O hydrogen bonds (dashed lines; see Table 1), in the crystal of (I), forming chains that propagate along [101].

Figure 3.

Figure 3

A view along the b axis of the crystal packing of (I). Hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only H atoms H2A, H2B, H6 and H9 have been included.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of (I). Hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only H atoms H2A, H2B, H6 and H9 have been included.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016) revealed the structure of two similar compounds viz 4′-nitro-2-bi­phenyl­amine (II) (CSD refcode DIWFEU; Sutherland & Ali-Adib, 1986) and 4,4′-di­nitro­biphenyl (III) (DNTDPH; Boonstra, 1963). In (II), the benzene rings are inclined to one another by 54.64 (6)°, compared to ca 32.91° in (III), and to 52.84 (2)° in the title compound (I). In (II), the nitro group is inclined to the benzene ring to which it is attached by 7.08 (6)°, compared to ca 3.55 and 10.14° in (III) and 8.3 (2)° in the title compound (I).

Synthesis and crystallization  

The title compound (I), was prepared by a literature procedure (Ol’khovik et al., 2008). Orange prismatic crystals, suitable for single-crystal X-ray analysis, were grown by slow evaporation of a solution in ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and refined with U iso(H) = 1.2U eq(N). The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C12H9N3O4
M r 259.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.2940 (11), 7.0352 (6), 11.6043 (9)
β (°) 99.437 (6)
V3) 1151.15 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.34 × 0.20 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.980, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 6476, 2566, 1052
R int 0.044
(sin θ/λ)max−1) 0.646
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.092, 0.81
No. of reflections 2566
No. of parameters 180
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.10, −0.12

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT (Sheldrick 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S205698901700408X/su5355sup1.cif

e-73-00550-sup1.cif (229.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700408X/su5355Isup2.hkl

e-73-00550-Isup2.hkl (205.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901700408X/su5355Isup3.cml

CCDC reference: 1537734

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey for X-ray the data collection.

supplementary crystallographic information

Crystal data

C12H9N3O4 F(000) = 536
Mr = 259.22 Dx = 1.496 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.2940 (11) Å Cell parameters from 3570 reflections
b = 7.0352 (6) Å θ = 2.1–27.8°
c = 11.6043 (9) Å µ = 0.12 mm1
β = 99.437 (6)° T = 296 K
V = 1151.15 (16) Å3 Prism, orange
Z = 4 0.34 × 0.20 × 0.07 mm

Data collection

Stoe IPDS 2 diffractometer 2566 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1052 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.044
Detector resolution: 6.67 pixels mm-1 θmax = 27.4°, θmin = 2.9°
rotation method scans h = −18→18
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −8→9
Tmin = 0.980, Tmax = 0.993 l = −14→11
6476 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3
2566 reflections (Δ/σ)max < 0.001
180 parameters Δρmax = 0.10 e Å3
2 restraints Δρmin = −0.12 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.61664 (11) 0.3867 (2) 0.93876 (16) 0.0867 (5)
N1 0.60769 (13) 0.3912 (3) 0.8317 (2) 0.0701 (5)
O3 −0.08732 (12) 0.2401 (3) 0.36959 (17) 0.1108 (7)
O2 0.67457 (11) 0.3941 (3) 0.77943 (16) 0.1004 (6)
N2 0.26998 (16) 0.4451 (3) 0.8191 (2) 0.0831 (6)
N3 −0.02768 (15) 0.3445 (4) 0.3418 (2) 0.0899 (7)
O4 −0.04065 (12) 0.4408 (3) 0.25269 (19) 0.1165 (7)
C5 0.34478 (14) 0.4181 (3) 0.76003 (19) 0.0575 (5)
C6 0.43668 (14) 0.4150 (3) 0.82181 (19) 0.0597 (5)
H6 0.447162 0.429120 0.902589 0.072*
C4 0.33093 (14) 0.3924 (3) 0.63808 (18) 0.0578 (5)
C2 0.50098 (15) 0.3718 (3) 0.64471 (19) 0.0630 (6)
H2 0.553081 0.358487 0.606754 0.076*
C8 0.21562 (15) 0.4992 (3) 0.4654 (2) 0.0704 (6)
H8 0.260703 0.585579 0.448436 0.084*
C7 0.23591 (14) 0.3858 (3) 0.56438 (18) 0.0604 (5)
C1 0.51178 (14) 0.3912 (3) 0.76354 (19) 0.0565 (5)
C12 0.16757 (15) 0.2578 (3) 0.5889 (2) 0.0737 (6)
H12 0.180146 0.181271 0.655006 0.088*
C3 0.41015 (15) 0.3728 (3) 0.58389 (19) 0.0642 (6)
H3 0.401257 0.359785 0.503076 0.077*
C11 0.08146 (16) 0.2435 (3) 0.5161 (2) 0.0787 (7)
H11 0.035605 0.158226 0.532243 0.094*
C10 0.06496 (16) 0.3583 (4) 0.4192 (2) 0.0709 (6)
C9 0.13043 (16) 0.4857 (3) 0.3926 (2) 0.0754 (6)
H9 0.117272 0.561654 0.326283 0.090*
H2B 0.2854 (15) 0.490 (3) 0.8945 (17) 0.106 (9)*
H2A 0.2140 (13) 0.484 (4) 0.780 (2) 0.114 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0876 (11) 0.1025 (13) 0.0647 (12) 0.0106 (9) −0.0035 (9) −0.0071 (11)
N1 0.0702 (12) 0.0638 (12) 0.0744 (15) 0.0050 (10) 0.0068 (12) −0.0060 (12)
O3 0.0786 (11) 0.1494 (18) 0.1005 (16) −0.0237 (12) 0.0033 (10) −0.0310 (13)
O2 0.0715 (10) 0.1330 (15) 0.0988 (14) −0.0058 (11) 0.0202 (10) −0.0176 (12)
N2 0.0719 (13) 0.1179 (18) 0.0591 (14) −0.0019 (12) 0.0092 (11) −0.0076 (13)
N3 0.0814 (16) 0.1079 (19) 0.0760 (18) 0.0001 (13) 0.0000 (14) −0.0284 (14)
O4 0.1077 (14) 0.1460 (18) 0.0828 (15) 0.0023 (12) −0.0234 (11) 0.0033 (14)
C5 0.0680 (13) 0.0557 (13) 0.0501 (13) −0.0050 (10) 0.0135 (11) −0.0001 (10)
C6 0.0709 (13) 0.0582 (13) 0.0481 (12) −0.0029 (10) 0.0045 (11) 0.0007 (10)
C4 0.0708 (13) 0.0515 (12) 0.0512 (13) −0.0050 (10) 0.0102 (11) 0.0016 (11)
C2 0.0746 (14) 0.0591 (14) 0.0573 (15) −0.0005 (11) 0.0171 (12) −0.0026 (11)
C8 0.0774 (14) 0.0767 (15) 0.0542 (14) −0.0036 (12) 0.0025 (12) 0.0066 (12)
C7 0.0715 (13) 0.0594 (13) 0.0490 (13) −0.0049 (11) 0.0063 (11) −0.0043 (11)
C1 0.0645 (12) 0.0457 (12) 0.0580 (15) 0.0001 (10) 0.0063 (11) −0.0007 (11)
C12 0.0873 (15) 0.0735 (15) 0.0578 (15) −0.0149 (13) 0.0047 (13) 0.0043 (13)
C3 0.0862 (15) 0.0601 (13) 0.0468 (13) −0.0011 (11) 0.0123 (12) 0.0004 (11)
C11 0.0838 (16) 0.0794 (16) 0.0702 (18) −0.0193 (13) 0.0045 (13) −0.0057 (15)
C10 0.0702 (14) 0.0817 (17) 0.0562 (16) 0.0010 (12) −0.0033 (12) −0.0183 (13)
C9 0.0838 (15) 0.0808 (17) 0.0577 (15) 0.0032 (13) 0.0001 (13) 0.0054 (13)

Geometric parameters (Å, º)

O1—N1 1.228 (2) C2—C1 1.369 (3)
N1—O2 1.214 (2) C2—C3 1.372 (3)
N1—C1 1.466 (3) C2—H2 0.9300
O3—N3 1.209 (2) C8—C9 1.367 (3)
N2—C5 1.375 (3) C8—C7 1.389 (3)
N2—H2B 0.922 (17) C8—H8 0.9300
N2—H2A 0.894 (17) C7—C12 1.392 (3)
N3—O4 1.224 (3) C12—C11 1.378 (3)
N3—C10 1.477 (3) C12—H12 0.9300
C5—C6 1.390 (3) C3—H3 0.9300
C5—C4 1.408 (3) C11—C10 1.373 (3)
C6—C1 1.370 (3) C11—H11 0.9300
C6—H6 0.9300 C10—C9 1.368 (3)
C4—C3 1.389 (3) C9—H9 0.9300
C4—C7 1.482 (3)
O2—N1—O1 123.1 (2) C7—C8—H8 119.5
O2—N1—C1 118.3 (2) C8—C7—C12 118.8 (2)
O1—N1—C1 118.63 (19) C8—C7—C4 120.41 (19)
C5—N2—H2B 115.9 (14) C12—C7—C4 120.6 (2)
C5—N2—H2A 119.6 (17) C2—C1—C6 122.8 (2)
H2B—N2—H2A 116 (2) C2—C1—N1 119.0 (2)
O3—N3—O4 123.1 (2) C6—C1—N1 118.2 (2)
O3—N3—C10 118.6 (3) C11—C12—C7 120.5 (2)
O4—N3—C10 118.3 (3) C11—C12—H12 119.7
N2—C5—C6 119.4 (2) C7—C12—H12 119.7
N2—C5—C4 121.8 (2) C2—C3—C4 122.7 (2)
C6—C5—C4 118.80 (19) C2—C3—H3 118.6
C1—C6—C5 119.9 (2) C4—C3—H3 118.6
C1—C6—H6 120.1 C10—C11—C12 118.4 (2)
C5—C6—H6 120.1 C10—C11—H11 120.8
C3—C4—C5 118.49 (19) C12—C11—H11 120.8
C3—C4—C7 118.3 (2) C9—C10—C11 122.6 (2)
C5—C4—C7 123.25 (18) C9—C10—N3 119.0 (3)
C1—C2—C3 117.28 (19) C11—C10—N3 118.4 (2)
C1—C2—H2 121.4 C8—C9—C10 118.6 (2)
C3—C2—H2 121.4 C8—C9—H9 120.7
C9—C8—C7 121.0 (2) C10—C9—H9 120.7
C9—C8—H8 119.5
N2—C5—C6—C1 −179.0 (2) O2—N1—C1—C6 −170.96 (19)
C4—C5—C6—C1 1.3 (3) O1—N1—C1—C6 9.7 (3)
N2—C5—C4—C3 177.7 (2) C8—C7—C12—C11 0.2 (3)
C6—C5—C4—C3 −2.6 (3) C4—C7—C12—C11 −175.9 (2)
N2—C5—C4—C7 −2.1 (3) C1—C2—C3—C4 0.0 (3)
C6—C5—C4—C7 177.60 (19) C5—C4—C3—C2 2.0 (3)
C9—C8—C7—C12 −0.3 (3) C7—C4—C3—C2 −178.2 (2)
C9—C8—C7—C4 175.8 (2) C7—C12—C11—C10 0.0 (3)
C3—C4—C7—C8 −50.6 (3) C12—C11—C10—C9 −0.1 (3)
C5—C4—C7—C8 129.1 (2) C12—C11—C10—N3 −179.4 (2)
C3—C4—C7—C12 125.4 (2) O3—N3—C10—C9 −175.5 (2)
C5—C4—C7—C12 −54.9 (3) O4—N3—C10—C9 3.9 (3)
C3—C2—C1—C6 −1.4 (3) O3—N3—C10—C11 3.8 (3)
C3—C2—C1—N1 −179.90 (18) O4—N3—C10—C11 −176.8 (2)
C5—C6—C1—C2 0.7 (3) C7—C8—C9—C10 0.2 (3)
C5—C6—C1—N1 179.24 (19) C11—C10—C9—C8 0.0 (3)
O2—N1—C1—C2 7.6 (3) N3—C10—C9—C8 179.3 (2)
O1—N1—C1—C2 −171.76 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1i 0.92 (2) 2.36 (2) 3.229 (3) 157 (2)
N2—H2A···O4ii 0.89 (2) 2.50 (2) 3.345 (3) 157 (2)
C6—H6···O1i 0.93 2.54 3.308 (3) 140
C9—H9···O3iii 0.93 2.57 3.496 (3) 174

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2.

References

  1. Bastiansen, O. & Samdal, S. (1985). J. Mol. Struct. 128, 115–125.
  2. Bastiansen, O. & Traetteberg, M. (1962). Tetrahedron, 17, 147–154.
  3. Boonstra, E. G. (1963). Acta Cryst. 16, 816–823.
  4. Brock, C. P. (1980). Acta Cryst. B36, 968–971.
  5. Brock, C. P. & Minton, P. (1989). J. Am. Chem. Soc. 111, 4586–4593.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Lehane, R. L., Golen, J. A., Rheingold, A. L. & Manke, D. R. (2014). Acta Cryst. E70, o305. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Ol’khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshko, S. N. (2008). Russ. J. Org. Chem. 44, 1172–1179.
  11. Sekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101–1104. [DOI] [PubMed]
  12. Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  17. Sutherland, H. H. & Ali-Adib, Z. (1986). Acta Cryst. C42, 432–433.
  18. Trotter, J. (1961). Acta Cryst. 14, 1135–1140.
  19. Umeda, Y., Aiso, S., Yamazaki, K., Ohnishi, M., Arito, H., Nagano, K., Yamamoto, S. & Matsushima, T. (2005). J. Vet. Med. Sci. 67, 417–424. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S205698901700408X/su5355sup1.cif

e-73-00550-sup1.cif (229.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700408X/su5355Isup2.hkl

e-73-00550-Isup2.hkl (205.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901700408X/su5355Isup3.cml

CCDC reference: 1537734

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES