
1Scientific Reports | 7:46176 | DOI: 10.1038/srep46176

www.nature.com/scientificreports

Three serum metabolite signatures 
for diagnosing low-grade and high-
grade bladder cancer
Guangguo Tan1,*, Haibo Wang1,*, Jianlin Yuan2, Weijun Qin2, Xin Dong3, Hong Wu1 & 
Ping Meng2

To address the shortcomings of cystoscopy and urine cytology for detecting and grading bladder cancer 
(BC), ultrahigh performance liquid chromatography (UHPLC) coupled with Q-TOF mass spectrometry 
in conjunction with univariate and multivariate statistical analyses was employed as an alternative 
method for the diagnosis of BC. A series of differential serum metabolites were further identified 
for low-grade(LG) and high-grade(HG) BC patients, suggesting metabolic dysfunction in malignant 
proliferation, immune escape, differentiation, apoptosis and invasion of cancer cells in BC patients. In 
total, three serum metabolites including inosine, acetyl-N-formyl-5-methoxykynurenamine and PS(O-
18:0/0:0) were selected by binary logistic regression analysis, and receiver operating characteristic 
(ROC) test based on their combined use for HG BC showed that the area under the curve (AUC) was 
0.961 in the discovery set and 0.950 in the validation set when compared to LG BC. Likewise, this 
composite biomarker panel can also differentiate LG BC from healthy controls with the AUC of 0.993 
and 0.991 in the discovery and validation set, respectively. This finding suggested that this composite 
serum metabolite signature was a promising and less invasive classifier for probing and grading BC, 
which deserved to be further investigated in larger samples.

Bladder cancer (BC) is the second most common cancer of the genitourinary tract and a prevalent cause of 
cancer-related death worldwide1. BC is classified as low-grade (LG) and high-grade (HG) tumors based on the 
degree by which cancer cells histologically differ from normal bladder cells. LG BC has a low risk of recurrence 
and progression, whereas HG BC is frequently associated with tumor recurrence and progression to metastatic, 
lethal disease2. LG BC in general can be effectively treated with endoscopic local resection3. However, radical cys-
tectomy are most commonly used to HG BC4. An early diagnosis of BC, especially discriminating HG BC from 
LG BC, could be of great importance in determining the appropriate treatment regimes.

Currently, the gold standard clinical method to diagnose BC is cystoscopy, although it is an invasive, unpleas-
ant, and expensive approach. Sometimes it may miss a flat lesion, especially carcinoma in situ (CIS), which is 
considered HG BC. In addition, the voided-urine cytology approach is the most common for detection of HG BC; 
however, this method is subjective, costly, and it has interobserver variability as well as poor sensitivity and spec-
ificity, especially for LG BC5,6. Recently, many urine-based protein biomarkers were implicated in identification 
of HG BC. But until now none of the molecular markers have been generally accepted in the clinical practice7,8. 
Therefore, the identification of objective and noninvasive biomarkers that could discriminate HG BC from LG 
BC or healthy control would be of considerable clinical value in individualized treatment and improvement of 
prognosis for BC.

Evidence that cancer is primarily a metabolic disease enabled investigations to identify biomarkers for diagnosis 
and the pathological mechanism of many cancers from the perspective of metabolism9. Metabonomics focuses 
on the quantitative measurement of as many endogenous metabolites as possible in biosamples such as plasma 
and urine in order to acquire an overview of the metabolic or disease status10. It is known that a minor alteration 
at the level of gene or protein expression usually results in a significant change in small molecule metabolite level; 
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therefore, metabonomics is an intensive and direct approach for capturing diseases specific metabolic signatures as 
possible biomarkers and obtaining fundamental mechanistic insights into carcinogenesis and staging of cancer11–13.

Previously, this method has been used to characterize the metabolic changes in the urine samples from BC 
patients14–17. To some extent, the levels of urinary metabolites are susceptible to the amount of liquid intake 
and the severe dietary influence (vegetarian or nonvegetarian)18,19. These intrinsic limitations make urine a less 
suitable biofluid to determine the differentiation of LG and HG BC. In contrast to urine, the overall metabolites 
changes in the serum of BC patients can be a better indicator of bladder dysfunction because serum is not only 
less prone to be affected by exogenous factors but also intra- and interindividual variations are far less18. To date, 
only one report has revealed serum metabolic variations between LG and HG BC using 1H NMR spectroscopy20. 
Given that 1H NMR analytical technology cannot provide complete coverage of the human metabolome due to 
the diverse physicochemical properties of metabolites and the relatively low sensitivity of 1H NMR, the deter-
minations of the metabolite differentiations between LG and HG BC are still far from complete. It is meaningful 
to apply complementary metabonomic platforms such as mass spectrometry to identify these differentiations 
between LG and HG BC.

In this study, a non-targeted metabonomics platform based on ultrahigh performance liquid chromatography 
(UHPLC) coupled with Q-TOF mass spectrometry was employed to determine the global metabolic changes 
between healthy controls and BC patients, particularly focusing on the metabolic alterations between LG and HG 
BC. The objective of this study was to identify potential biomarkers of HG BC for early diagnosis and individual-
ized treatment of BC and better understanding of the underlying mechanism of BC.

Materials and Methods
Chemicals and reagents.  HPLC-grade Methanol and acetonitrile (ACN) were purchased from Merk 
(Darmstadt, Germany). Formic acid was obtained from Fluka (Buchs, Switzerland). 5-Methylcytidine, octanoyl-
carnitine, glycocholic acid and decanoylcarnitine were purchased from Sigma-Aldrich (St. Louis, MO). 
Phytosphingosine, sphinganine and palmitoylcarnitine were purchased from Acros Organics (NewJersey, 
USA). Lysophosphatidylcholine (20:0) and lysophosphatidylcholine (18:2) were purchased from Larodan AB 
(Malmo, Sweden). Hypoxanthine, inosine, kynurenine, hippuric acid, citric acid, indoleacetic acid and L-2-
chlorophenylalanine (internal standard) were obtained from Shanghai Jingchun Reagent Co. Acetyl-N-formyl-
5-methoxykynurenamine (AFMK) and indolelactic acid were purchased from Haorui Chemicals and Seebio 
Biotech (shanghai) Co.,Ltd, respectively. Ultrapure water was prepared with a Milli-Q water purification system 
(Millipore, Bedford, MA, USA).

Recruitment and sample collection.  The study protocol was approved by the Human Ethics Committee 
of the Fourth Military Medical University, and written informed consent was obtained from all study volunteers 
prior to participation. All procedures involving the human subjects were carried out in accordance with the rec-
ommendations of the Helsinki Declaration.

All the patients were first diagnosed by cystoscopy. Subsequently, transurethral resected tissue specimens were 
collected to conduct histopathological assessment to define LG and HG BC. Both stage and grade of tumors were 
determined according to the World Health Organization (WHO)/International Society of Urological Pathology 
(ISUP) classification criteria21. Adjacent, non-involved tissue samples were also gleaned from a few patients and 
used as controls. None had received chemotherapy or radiation before sample collection. Age- and sex-matched 
healthy controls (HC) were included. Exclusion criteria included renal pathology, urinary tract infections, diabe-
tes, arthritis, any other malignancies, tuberculosis, endocrine disorders, drug abuse, and other conditions known 
to influence metabolic phenotype. A total of 172 serum samples were collected from 60 patients with LG BC, 60 
patients with HG BC, and 52 HC in the morning before breakfast and stored at −​80 °C until analysis.

Histopathological Examinations.  All tissue samples were fixed in 10% buffered formalin and embedded 
in paraffin wax for histopathology within 7 days. Tissues were sliced at a thickness of 5 to 6 μ​m using a microtome 
followed by staining with hematoxylin and eosin for pathological assessment by the department of pathology, 
Fourth Military Medical University. An average of 3–5 slices was examined for each tissue sample.

Sample preparation.  Fasting venous blood was obtained from all the above-mentioned individuals. The 
blood samples were allowed to clot for 90 min in freezer (4 °C) and then centrifuged at 3000 ×​ g for 10 min. The 
supernatants (serum) were separated and transferred into new vials, and immediately stored frozen at −​80 °C 
until UHPLC-Q-TOFMS analysis. Prior to the analysis, serum samples were thawed and vortexed for 5 s at room 
temperature. Subsequently, a 300 μ​L volume of methanol (containing 12.5 μ​g/ml L-2-chlorophenylalanine as the 
internal standard) was added to 100 μ​L of serum. After vigorous shaking for 1 min and incubation on ice for 
10 min, the mixture was centrifuged at 14,000 ×​ g for 15 min at 4 °C to precipitate the protein. All supernatant was 
transferred into an auto-sampler vial.

As part of the system conditioning and quality control (QC) process, 100 μ​L from each serum sample was 
pooled to generate a pooled QC sample and aliquots of 100 μ​L of this pooled sample were extracted by the same 
method. It was inserted through the analytical run at intervals of 9–15 real samples to be analyzed sixteen times. 
The QC samples were sufficiently spread out through the whole run as to ensure its validity.

UHPLC-Q-TOFMS analysis.  UHPLC analysis was performed on Agilent 1290 Infinity LC system (Agilent, 
Germany). Chromatographic separation was carried out at 40 °C on an ACQUITY UPLC HSS T3 C18 column 
(2.1 mm ×​ 100 mm, 1.7 μ​m, Waters, Milford, MA). The column oven was set at 40 °C. The mobile phase consisted 
of 0.1% formic acid (A) and ACN modified with 0.1% formic acid (B), using a gradient elution of 5% B at 0–2 min, 
5%–95% B at 2–13 min, 95% B at 13–15 min. The total run time was 20 min including equilibration. The flow rate 
was 400 μ​L/min and the injection volume was 3 μ​L.



www.nature.com/scientificreports/

3Scientific Reports | 7:46176 | DOI: 10.1038/srep46176

An Agilent 6530 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) mass spectrometer (Agilent, USA) was 
used in the study. The Q-TOF mass spectrometer was operated in electrospray ionization source (ESI) positive 
ion mode with a capillary voltage of 3.5 kV, drying gas flow of 11 L/min, and a gas temperature of 350 °C. The 
nebulizer pressure was set at 45 psig. The fragmentor voltage was set at 120 V and skimmer voltage was set at 
60 V. All analyses were acquired using a mixture of 10 mM purine (m/z 121.0508) and 2 mM hexakis phosphazine 
(m/z 922.0097) as internal standards to ensure mass accuracy and reproducibility. Data were collected in centroid 
mode and the mass range was set at m/z 50–1000 using extended dynamic range. Potential biomarkers were ana-
lyzed by MS/MS. MS spectra were collected at 2 spectra/s, and MS/MS spectra were collected at 0.5 spectra/s, with 
a medium isolation window (~4 m/z) and a fixed collision energy of 20 V. A negative ion scan was only employed 
when metabolite identification was carried out.

Data handing and statistical analysis.  The acquired UHPLC-Q-TOFMS data were exported in mzData 
format and then processed by XCMS package (http://metlin.scripps.edu/download/)22 as described in our pre-
vious publication23. The internal standard was used for data quality control (reproducibility) and data normal-
ization. The ion peaks generated by the internal standard were also removed. The resulting three-dimensional 
matrix, including retention time and m/z pairs (variable indices), sample names (observations), and normalized 
ion intensities (variables), was exported for multivariate data analysis.

The normalized data was imported into a SIMCA-P (version 11.0, Umetrics, Umeå, Sweden) for principal 
component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) as well as orthogonal partial 
least-squares discriminant analysis (OPLS-DA) after mean-centering and unit variance (UV)-scaled for equal 
metabolite weighting. PCA makes it is possible to extract and display the systematic variation in the data. A PCA 
model provides a summary of all observations in the data table24. By relates a data matrix containing independent 
variables from samples (peak intensity values) to a matrix containing dependent variables (class belonging) for 
those samples, PLS-DA and OPLS-DA can remove those variations from the independent variables that are not 
correlated to the dependent variables, and enable reduced model complexity with preserved prediction ability25. 
Especially, the OPLS-DA can remove the uncorrelated signals resulting in information of the within-class varia-
tion25. The quality of the models was evaluated with the relevant R2X, R2Y, Q2Y, R2Y- intercepts and Q2Y-intercepts 
to avoid the risk of over-fitting26.

Differential metabolites were firstly selected according to the variable importance in the projection (VIP >​ 1) 
generated from the OPLS-DA model. Furthermore, a two-tailed Student’s t-test (p <​ 0.05) on the normalized 
peak areas was used to determine if different biomarker candidates obtained from OPLS-DA modeling were 
statistically significant between groups. The software MedCalc (version 11.4.2.0) was used to perform variable 
selection of potential biomarkers and receiver operating characteristic (ROC) analysis based on binary logistic 
regression model.

Metabolite identification.  Metabolite identification was carried out according to the authors’ previous 
work with slight modification23,27. Briefly, ions of interest were scanned in both positive and negative modes to 
facilitate the judgment of quasi-molecular ions. Potential molecular formulae were calculated by MassHunter 
Workstation Software-Qualitative Analysis (Agilent Technologies, California, United States). Structure informa-
tion was obtained by searching freely accessible databases of HMDB (www.hmdb.ca)28, METLIN (http://metlin.
scripps.edu)29 and KEGG (http://www.kegg.jp)30 utilizing detected molecular weights (under the above men-
tioned conditions, the mass difference was less than 10 ppm). At the same time, fragment ions were subjected to 
analysis through MS/MS to narrow the scope of target compounds. Finally, commercial standards were adopted 
to support the metabolites’ identification.

Results
Subject populations.  The BC patients and healthy subjects were divided into a discovery set and a valida-
tion set. Serum metabolic profiling was performed on the two datasets. The discovery set was used to identify 
serum diagnostic markers for LG and HG BC; the validation set was used to independently validate the diag-
nostic performance of these biomarkers. A summary of patient demographics for the two datasets is presented 
in Table 1. Figure S1 exhibits typical UHPLC-Q-TOFMS total ion current (TIC) chromatographs, providing 
an overview of the metabolic profile in sera from HC, LG, and HG subjects. Histopathological examinations of 
the corresponding tissue samples are also shown alongside each TIC chromatographs. Normal urinary bladder 
epithelium is multilayered and is composed of basal, intermediate, and very large surface cells that look like an 
umbrella (Figure S1A). Low-grade BC exhibited fused and branching papillae. The cells were observed to be 
ordered and cohesive, with minimal crowding and minimal loss of polarity (Figure S1B). High-grade BC exhib-
ited fused and branching papillae. The cells were observed to be disordered with frequent loss of polarity and 
discohesive (Figure S1C).

Data quality assessment.  A stability data set that displays a biochemical snapshot is very important to suc-
cessful metabonomic study, reflecting the temporal state of an organism through its endogenous low molecular 
weight metabolites. To acquire reliable data, technical errors derived from sample collection, sample preparation, 
and UHPLC-Q-TOFMS analysis must be minimized to avoid confounding multivariate data analysis. In this 
study, samples from each group were alternated in random order. Moreover, a pooled QC sample was analyzed 
in parallel with the real samples to monitor the stability of the analytical system. PCA results of the QC sample 
demonstrated that the deviation of the peak areas was less than 2 SD (Figure S2), indicating that the data from the 
UHPLC-Q-TOFMS were statistically acceptable. In addition, the retention time deviation of the ions generated 
from XCMS package was less than 30 s for the UHPLC-Q-TOFMS analysis (data not shown), indicating high 
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reproducibility. This confirms that differences observed between groups by multivariate statistical analysis were 
more likely to reflect varied metabolite profiles rather than analytical variation arising from technical errors.

Identification of differential metabolites between LG/HG BC and healthy subjects.  In this 
work, the BC patients were classified into two subgroups according to the histopathological evaluation of 
transurethral-resected tissue specimens, i.e., LG BC group and HG BC group. As an unsupervised multivariate 
statistical model, PCA was first performed to explore the metabolic differences among healthy subjects, LG BC 
patients and HG BC patients (12PCs, R2X =​ 0.882, Q2 =​ 0.532). A tendency in the PCA scores plot to separate 
BC patients and healthy subjects into the two classes was detected (Fig. 1A), indicating a significantly different 
serum metabolome between BC patients and healthy subjects. However, we did not observe an obvious difference 
between the LG BC and HG BC patients in the PCA scores plot. Furthermore, the supervised PLS-DA model was 
conducted (3PCs,R2Y =​ 0.816,Q2 =​ 0.773). A dramatic difference between BC patients and healthy subjects was 
observed in the PLS-DA score plot (Fig. 1B). Meanwhile, an obvious separation trend between LG BC and HG BC 
patients was also observed. Model validation with the number of permutations equalling 99 generated intercepts 
of R2 =​ 0.146 and Q2 =​ −​0.310, which meant that the PLS-DA model was non-overfitting and reliable (Fig. 1C).

To identify the metabolites that can discriminate the metabolic distinctions, the supervised OPLS-DA mod-
els between the LG BC patients and healthy subjects and between HG BC patients and healthy subjects were 
performed. The OPLS-DA scores plots (Figure S3A (2PCs, R2Y =​ 0.990, Q2 =​ 0.959) and Figure S3C (2PCs, 
R2Y =​ 0.966, Q2 =​ 0.928)) displayed significant differences between the BC patients and healthy subjects. By 
combining the VIP values (>​1) generated from OPLS-DA model with the results from the two-tailed Student’s t 
test, 25 and 25 metabolites were selected as differential metabolites for LG BC and HG BC patients, respectively 
(Table 2). Among these metabolites, 24 metabolites were the common characteristic of both LG BC and HG BC 
patients. 16 metabolites of them were unambiguously assigned by the comparison with the authentic standard 
compound. The structures and MS/MS spectra of the metabolites identified by data base searching are presented 
in Supporting Information Figure S4.

The serum samples of BC patients exhibited higher levels of 5-aminoimidazole ribonucleotide (AIR), 
5-methylcytidine, hypoxanthine, inosine, kynurenine, AFMK, indolelactic acid, indoleacetic acid, glycocholic 
acid, PS(O-18:0/0:0), phytosphingosine, sphinganine, acylcarnitines and LysoPCs in combination with lower 
levels of citric acid, hippuric acid and LysoPE(22:6/0:0). These abnormal metabolite levels in serum reflected the 
alterations in the metabolic phenotype, which could provide insight into the underlying mechanism of BC.

Identification of differential metabolites between LG BC and HG BC.  To illustrate metabo-
lite profiles between LG BC patients and HG BC patients and to identify potential biomarkers of HG BC, 
further analysis was performed to discriminate between LG BC and HG BC. The scores plot of PLS-DA 
(2PCs,R2Y =​ 0.763,Q2 =​ 0.627) showed a clear separation trend between LG BC and HG BC patients (Fig. 1D). 
Model validation with the number of permutations equalling 99 generated intercepts of R2 =​ 0.235 and Q2 =​  
−​0.250, which indicates that this PLS-DA model is not overfitting and reliable (Fig. 1E). The OPLS-DA model 
was further performed to discriminate LG BC patients and HG BC patients. A dramatic difference between the 
two groups of patients was observed (Fig. 1F), demonstrating that there existed the direct association between the 
metabolic profiles of serum and the histopathology of bladder tissue.

Similarly, 13 differential metabolites were identified as potential marker for discriminating between LG 
BC patients and HG BC patients. In contrast with the LG BC group, the level of AIR, hypoxanthine, inosine, 
AFMK, indoleacetic acid, glycocholic acid, PS(O-18:0/0:0), phytosphingosine, sphinganine, linolenyl carnitine 
and LysoPC(20:0) were increased in the HG BC group, whereas the levels of 3-hydroxydecanoyl carnitine and 
3-hydroxyoctanoyl carnitine were markedly decreased. To quantitatively assess the capability of the potential 

Parameters

Discovery set (Race: Chinese) Validation set (Race: Chinese)

LGBC HGBC Healthy LGBC HGBC Healthy

Sample size 34 34 30 26 26 22

Gender (male/female) 29/5 30/4 24/5 22/4 21/5 17/4

BMI (median, range) 23.1 (17.1–27.6) 22.3 (16.6–28.2) 23.5 (17.5–27.7) 23.5 (16.7–28.2) 22.7 (16.3–27.4) 23.6 (17.0–28.4)

Hematuria 4 (11.7%) 5 (14.7%) 0 3 (11.5%) 3 (11.5%) 0

Medications 0 0 0 0 0 0

BC stage

  Ta 2 (5.9%) 2 (5.9%) — 1 (3.8%) 2 (7.7%) —

  T1 19 (55.9%) 6 (17.67%) — 15 (57.7%) 4 (15.3) —

  T2 13 (38.2%) 17 (50.0%) — 10 (38.5%) 13 (50.0%) —

  T3 — 7 (20.6%) — — 5 (19.3%) —

  T4 — 2 (5.9%) — — 2 (7.7%) —

Smoking habit

  Smokers 23 (67.6%) 21 (61.8%) 22 (73.3%) 17 (65.4%) 16 (61.5%) 15 (68.2%)

  Ex-smokers 3 (8.3%) 5 (14.7%) 0 2 (7.7%) 2 (7.7%) 0

  Nonsmokers 8 (23.5%) 8 (23.5%) 8 (26.7%) 7 (26.9%) 8 (30.8%) 7 (31.8%)

Table 1.   Demographic and clinical details of recruited subjects.



www.nature.com/scientificreports/

5Scientific Reports | 7:46176 | DOI: 10.1038/srep46176

marker metabolites to discriminate between LG BC patients and HG BC patients, the area under the ROC curve 
(AUC) and sensitivity as well as specificity were calculated individually for these 13 metabolites. The results are 
listed in Table 3, where AFMK and sphinganine demonstrated relatively high sensitivity (≥​80%), and inosine, 
indoleacetic acid and PS(O-18:0/0:0) yielded specificity of more than 80%. However, none of the metabolites 
demonstrated both high sensitivity and specificity, making it necessary to apply multiple serum metabolites in the 
diagnosis of HG patients out of all BC patients. Complex diseases such as bladder cancer were generally involved 
with the disturbances of multiple metabolic pathways. Therefore, a panel of biomarkers will have more diagnostic 
power than one biomarker.

Identification of a simplified HG BC metabolite signature.  It was no doubt that a panel of biomarkers 
including these 13 serum metabolites will have more power to diagnose. However, diagnosis based on quantifi-
cation of so many metabolites would not be convenient and economical in clinical practice. With bladder cancer 
progression (from healthy subjects to LG BC patients and then to HG BC patients), eleven metabolites demon-
strated progressive increase trend (Fig. 2) and thus were further used as candidates. They could be assigned to 
different functions, such as proliferation, immune escape, differentiation, apoptosis and invasion, which will be 
discussed below. To identify a simplified serum metabolite signature that would be more practical in diagnosing 
HG BC, a binary logistic regression model with a stepwise optimization algorithm involving the 11 differential 
metabolites were subjected to variable selection based on the training set. As a result, three metabolites including 
inosine, AFMK and PS(O-18:0/0:0) were selected to establish a binary logistic regression model on the discovery 
set. The relative concentrations of these three serum metabolite biomarkers among the three groups are presented 
in Fig. 3A. The prediction model is as follows:

Figure 1.  Multivariate data analysis based on the data from UHPLC-Q-TOFMS spectra of HG BC ( ), LG BC 
( ), and HC (▲​). (A) PCA score plot from HG BC, LG BC and HC, (B) PLS-DA score plot from HG BC, LG 
BC and HC, (C) Validation plot of PLS-DA model obtained using 99 permutation tests from HG BC, LG BC 
and HC, (D) PLS-DA score plot from HG BC and LG BC, (E) Validation plot of PLS-DA model obtained using 
99 permutation tests from HG BC and LG BC, and (F) OPLS-DA score plot from HG BC and LG BC.
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P 1/[1 exp ( ( 17 358 456 1279 Inosine 320 7426 AFMK
1506 7241 PS(O 18:0/0:0)))]

To evaluate the diagnostic performance of this prediction model with the simplified metabolite signature, 
ROC analyses on the prediction model was further conducted to obtain the diagnostic values of the biomarker 
panel. It demonstrated that a panel of three metabolites yielded an AUC of 0.961 (sensitivity is 88.2% and spec-
ificity is 91.2%; Fig. 3B, left). Based on this sensitivity and specificity of the ROC curves on the discovery set, an 
optimal cutoff value of 0.4669 was produced. According to this cutoff value, it was observed that 61 out of 68 
samples (89.7%) could be accurately predicted in the discovery set (Fig. 3C, left), which indicated that LG BC 
and HG BC patients could be well-stratified with high accuracy by using the combination of inosine, AFMK and 
PS(O-18:0/0:0).

Validation of the simplified HG BC biomarker panel.  Based on the discovery set, a simplified HG BC 
metabolite signature was identified and preliminarily validated as an effective classifier of LG BC patients and HG 
BC patients. In order to validate this metabolite signature before proceeding to a larger-scale clinical trial, the 
simplified biomarker panel was used to classify blinded diverse samples from an independent test cohort of 26 LG 
BC patients and HG BC patients. ROC analysis yielded an AUC of 0.950 (84.6% sensitivity and 84.6% specificity; 
Fig. 3B, right) in discriminating HG BC patients from LG BC patients. Likewise, according to the cut off value 
(0.4669) from the training set, it was also found that 44 out of 52 samples (84.6%) in test set could be accurately 
predicted (Fig. 3C, right).

Estimation and validation of this prediction model for LG BC.  Similarly, when the LG BC patients 
were compared to healthy controls, the results indicated that a panel of the three metabolites based on this above 

No. tR (min) m/za Formula Metabolitesb
LGBC/healthy HGBC/healthy

VIPe p valuef FCg VIP p value FC

1 0.66 296.0661 C8H14N3O7P 5-Aminoimidazole ribonucleotidec 1.52 2.04 ×​ 10−10 1.63 1.81 9.38 ×​ 10−24 2.19

2 0.70 258.1050 C10H15N3O5 5-Methylcytidined 1.64 1.51 ×​ 10−12 1.48 1.44 2.03 ×​ 10−11 1.51

3 1.02 137.0457 C5H4N4O Hypoxanthined 1.23 1.15 ×​ 10−6 1.45 1.54 7.02 ×​ 10−13 1.96

4 1.05 215.0160* C6H8O7 Citric acidd 1.57 9.64 ×​ 10−6 0.72 1.16 7.04 ×​ 10−12 0.57

5 1.44 269.0880 C10H12N4O5 Inosined 1.60 8.66 ×​ 10−12 1.79 1.67 3.48 ×​ 10−17 2.72

6 2.24 209.0917 C10H12N2O3 Kynurenined 1.83 1.59 ×​ 10−17 1.61 1.73 1.02 ×​ 10−18 1.64

7 4.82 180.0651 C9H9NO3 Hippuric acidd 1.10 2.45 ×​ 10−5 0.68 0.94 8.07 ×​ 10−4 0.74

8 4.83 265.1182 C13H16N2O4 Acetyl-N-formyl-5-methoxykynurenamined 1.15 8.24 ×​ 10−6 1.61 1.78 1.62 ×​ 10−18 2.28

9 5.67 304.2112 C15H29NO5 3-hydroxyoctanoyl carnitinec 1.48 9.93 ×​ 10−10 2.13 1.43 3.03 ×​ 10−9 1.57

10 6.01 206.0806 C11H11NO3 Indolelactic acidd 1.49 5.25 ×​ 10−10 1.60 1.78 6.37 ×​ 10−18 2.14

11 6.34 286.2011 C15H27NO4 2-Octenoylcarnitinec 1.43 5.62 ×​ 10−9 1.74 1.49 9.10 ×​ 10−12 1.91

12 6.63 176.0697 C10H9NO2 Indoleacetic acidd 1.41 1.06 ×​ 10−8 1.58 1.69 3.15 ×​ 10−17 2.54

13 6.91 332.2428 C17H33NO5 3-hydroxydecanoyl carnitinec 1.85 1.62 ×​ 10−18 2.18 1.47 1.45 ×​ 10−10 1.67

14 6.93 288.2168 C15H29NO4 Octanoylcarnitined 1.53 1.55 ×​ 10−10 1.48 1.04 2.98 ×​ 10−5 1.51

15 7.58 314.2325 C17H31NO4 9-Decenoylcarnitinec 1.79 3.06 ×​ 10−16 1.66 1.50 7.72 ×​ 10−11 1.80

16 7.80 466.3159 C26H43NO6 Glycocholic acidd 1.02 1.01 ×​ 10−4 1.68 1.60 1.79 ×​ 10−13 2.34

17 7.97 316.2482 C17H33NO4 Decanoylcarnitined 1.47 1.67 ×​ 10−9 1.54 1.07 2.27 ×​ 10−5 1.57

18 8.09 512.3345 C24H50NO8P PS(O-18:0/0:0)c 1.62 2.78 ×​ 10−12 1.59 1.74 8.93 ×​ 10−20 2.15

19 8.39 318.3003 C18H39NO3 Phytosphingosined 0.98 1.58 ×​ 10−4 1.33 1.51 8.99 ×​ 10−13 1.87

20 9.23 302.3052 C18H39NO2 Sphinganined 1.49 8.04 ×​ 10−10 1.44 1.77 2.67 ×​ 10−20 1.98

21 9.85 422.3263 C25H43NO4 linolenyl carnitinec 1.79 2.60 ×​ 10−16 1.81 1.62 2.14 ×​ 10−15 2.51

22 10.26 526.2934 C27H44NO7P LysoPE(22:6/0:0)c 1.37 3.91 ×​ 10−8 0.67 1.29 4.85 ×​ 10−8 0.69

23 10.27 520.3406 C26H50NO7P LysoPC(18:2)d 1.61 5.18 ×​ 10−12 1.34 1.74 2.82 ×​ 10−20 1.61

24 12.18 456.4043 C27H53NO4 Arachidyl carnitinec 1.56 4.47 ×​ 10−11 1.35 1.61 5.23 ×​ 10−14 1.53

25 12.23 550.3860 C28H56NO7P LysoPC(20:1)c 1.79 2.64 ×​ 10−16 1.78 1.61 1.77 ×​ 10−13 1.51

26 13.44 552.4028 C28H58NO7P LysoPC(20:0)d 1.41 1.07 ×​ 10−8 1.53 1.60 6.09 ×​ 10−15 2.05

Table 2.   Differential serum metabolites among LG BC patients and HG BC patients as well as healthy 
controls. aThe ion marked were “*“ were [M +​ Na]+ and other ion were [M +​ H]+. bThe metabolites marked 
with “c” were putatively annotated, the metabolites marked with “d” were structurally identified by reference 
standards, and those in italic type were identified as differential metabolites that are common to both LG BC/
HC and HG BC/HC. eVariable importance in the projection (VIP) was obtained from the OPLS-DA model. fThe 
p value was calculated from Student’s t test. gFold change was calculated from the normalized peak area between 
LG BC group vs HC group or between HG BC group vs HC group.
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prediction model generated an AUC of 0.993 with a sensitivity of 94.1% and a specificity of 93.3% and 0.991 
with a sensitivity of 92.3% and a specificity of 90.9% for the discovery (Figure S5A, left) and validation sets 
(Figure S5A, right), respectively. Likewise, according to this sensitivity and specificity of the ROC curves on the 
discovery set, an optimal cutoff value of 0.0024 was obtained. Based on this cutoff value, it was found that 60 out 
of 64 samples (93.8%) in the discovery set (Figure S5B, left) as well as 44 out of 48 samples (91.7%) in validation 
set (Figure S6B, right) could be accurately predicted. This finding indicated that this simplified plasma metabolite 
signature was a “good” classifier of BC patients and healthy controls.

Metabolic pathway analysis.  To explore the underlying molecular functions of these serum metabolite 
biomarkers, metabolic pathway analysis was performed. These metabolites were found to be primarily involved 
in purine, pyrimidine, tryptophan, phenylalanine, fatty acid β​-oxidation, citrate cycle, phospholipid, sphingo-
lipid, and bile acid biosynthesis metabolism. A simplified metabolic pathway is demonstrated in Fig. 4 based on a 
KEGG database online (http://www.genome.jp/kegg/pathway.html). We proposed potential metabolic dysfunc-
tion in BC, including malignant proliferation, immune escape, differentiation, apoptosis and invasion of BC cells.

Discussion
Bladder cancer can be classified as low-grade and high-grade based on the degree by which cancer cells histo-
logically differ from normal bladder cells, being high-grade BC more aggressive and invasive than low-grade3. 
Besides the precise detection of BC, the grading (LG or HG) of BC is crucial to determine the appropriate treat-
ment regimes for BC; however, the consistency in pathological reports is a major issue31. Here, the possibility 
of using serum metabolite profiles of BC patients for indentifying the grade of BC at an early phase was pre-
liminarily assessed. Serum-based metabolite profile could accurately discriminate HG BC, LG BC and healthy 

No. tR(min) m/za Formula Metabolitesb VIPe p valuef FCg AUCh
sensitivity 

(%)
specificity 

(%)

1 0.66 296.0661 C8H14N3O7P 5-Aminoimidazole ribonucleotidec 1.71 1.79 ×​ 10−8 1.34 0.79(0.68–0.89) 0.73 0.68

2 1.02 137.0457 C5H4N4O Hypoxanthined 1.49 2.04 ×​ 10−6 1.35 0.79(0.67–0.88) 0.68 0.70

3 1.44 269.0880 C10H12N4O5 Inosined 1.72 1.34 ×​ 10−8 1.44 0.86(0.75–0.93) 0.68 0.82

4 4.83 265.1182 C13H16N2O4 Acetyl-N-formyl-5-methoxykynurenamined 1.54 8.81 ×​ 10−7 1.41 0.80(0.69–0.89) 0.82 0.70

5 5.67 304.2112 C15H29NO5 3-hydroxyoctanoyl carnitinec 1.08 9.55 ×​ 10−4 0.73 0.67(0.55–0.78) 0.70 0.65

6 6.63 176.0697 C10H9NO2 Indoleacetic acidd 1.82 1.20 ×​ 10−9 1.34 0.88(0.77–0.94) 0.76 0.80

7 6.91 332.2428 C17H33NO5 3-hydroxydecanoyl carnitinec 1.38 1.39 ×​ 10−5 0.76 0.80(0.69–0.89) 0.76 0.73

8 7.80 466.3159 C26H43NO6 Glycocholic acidd 1.19 2.64 ×​ 10−4 1.39 0.77(0.65–0.86) 0.62 0.70

9 8.09 512.3345 C24H50NO8P PS(O-18:0/0:0)c 1.69 2.78 ×​ 10−8 1.35 0.88(0.77–0.94) 0.73 0.82

10 8.39 318.3003 C18H39NO3 Phytosphingosined 1.60 2.40 ×​ 10−7 1.40 0.84(0–.73–0.92) 0.76 0.68

11 9.23 302.3052 C18H39NO2 Sphinganined 1.88 1.60 ×​ 10−10 1.38 0.91(0.81–0.96) 0.80 0.76

12 9.85 422.3263 C23H45NO4 linolenyl carnitinec 1.42 8.24 ×​ 10−6 1.38 0.77(0.65–0.86) 0.68 0.76

13 13.44 552.4028 C28H58NO7P LysoPC(20:0)d 1.39 1.22 ×​ 10−5 1.34 0.76(0.64–0.86) 0.70 0.65

Table 3.   Differential metabolites for discrimination between HG BC patients and LG BC patients. aThe 
ions were [M +​ H]+. bThe metabolites marked with “c” were putatively annotated, the metabolites marked 
with “d” were structurally identified by reference standards, and those in italic type were subjected to variable 
selection analysis prior to a binary logistic regression analysis. eVariable importance in the projection (VIP) 
was obtained from the OPLS-DA model. fThe p value was calculated from Student’s t test. gFold change was 
calculated from the normalized peak area of HG BC group vs LG BC group. hArea under the receiver operating 
characteristic (ROC) curve, with the 95% confidence interval (CI) range in parentheses.

Figure 2.  Heatmap and their potential function of 11 differential metabolites between LG BC and HG 
BC patients. It was generated by the average normalized peak areas. These metabolites showed progressive 
elevation with the progression of BC (from HC to LG BC to HG BC).

http://www.genome.jp/kegg/pathway.html
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control cohorts, and different clusters of BC patients based on low and high grades were discovered in the 
OPLS-DA score plot of metabolic data, which indicated that disease status resulted in specific metabolic per-
turbations in the patients. Compared to the previous 1H NMR-based metabolomic study on LG and HG BC20, 
UHPLC-Q-TOFMS-based metabolomic approach provided larger coverage of LG and HG BC-related metabo-
nome including sphingolipids, phospholipids, acylcarnitines and several metabolites of tryptophan pathway. 
Concentrating on the direct association of the serum metabolite profiles of BC and the histopathology of bladder 

Figure 3.  Box plots of serum inosine, AFMK and PS(O-18:0/0:0), ROC curves based on the binary logistic 
regression model by the combination of three serum metabolites from the HG and LG BC dataset and 
the prediction plots according to the optimal cutoff value obtained from ROC curves. (A) Box plots of the 
relative intensities of the three metabolites in HC, LG BC and HG BC. (B) The ROC curves of the discovery 
set (B, left) and validation set (B, right) were obtained from the established prediction model. (C) The optimal 
cutoff value was obtained (0.4669) and applied to evaluate the prediction capacity (89.7% for discovery set (C, 
left) and 84.6% for validation set (C, right) ) of the current model, where 0 and 1 on the x axis represent LG BC 
and HG BC patients, respectively, and blue circle represent samples.
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tissue, a composite panel of potential biomarkers including inosine, AFMK and PS(O-18:0/0:0) was identified 
as a diagnostic tool, which could precisely distinguish not only between HG BC and LG BC but also between 
LG BC and healthy control. These findings demonstrated that this simplified metabolite signature should aid in 
the development of objective laboratory-based diagnostic tools for BC and the categorization of the LG and HG 
forms of BC.

It was found that the identified metabolites were primarily involved in purine, pyrimidine, tryptophan, pheny-
lalanine, fatty acid β​-oxidation, citrate cycle, phospholipid, sphingolipid, and bile acid biosynthesis metabolism. 
The disturbed metabolic pathways are discussed in detail below.

The levels of AIR, hypoxanthine and inosine were significantly increased with bladder cancer progression 
(from healthy subjects to LG BC patients and then to HG BC patients), which suggested that purine metabo-
lism was upregulated in BC patients, especially in HG BC patients. AIR is an intermediate of purine nucleotide 
biosynthesis. In the normal breakdown of purine nucleotides, hypoxanthine and inosine were converted to uric 
acid32. However, the metabolic pathways were dysregulated as purine biosynthesis is favored due to enhanced 
cancer cells cycle activity, therefore AIR, hypoxanthine and inosine were accumulated for the de novo synthesis 
of purines. Likewise, due to the greater energetic state of the tumor cells, the level of 5-methylcytidine involved 
in RNA synthesis was elevated in BC patients, which suggested that pyrimidine metabolism was upregulated in 
BC patients.

The levels of kynurenine, AFMK, indolelactic acid and indoleacetic acid were increased in LG and HG BC 
patients compared to healthy controls, which suggested the perturbed tryptophan metabolism is implicated in 
BC patients. Although the potential role of the metabolic pathway in the development of BC has been reported 
in the previous urine and tissue metabonomic studies33,34, AFMK, indolelactic acid and indoleacetic acid were 
firstly identified as the diagnostic serum biomarkers of BC. Excessive tryptophan metabolites seem to play a role 
in suppressing antitumor immune responses, thus promoting cancer cells survival, through activation of aryl 
hydrocarbon receptor, which is involved in carcinogenesis35,36.

Hippuric acid is a metabolite of phenylalanine. In addition, phenylalanine, an important energy metabolism 
precursor, can also be transformed into some biomolecules, such as pyruvate, 2-oxoglutarate and fumarate, to 
enter into citrate cycle. Here, a significantly decreased level of hippuric acid was observed in BC subjects com-
pared to healthy controls, suggesting the phenylalanine metabolism is perturbed in BC subjects. In agreement 
with this presumption, previous urine metabonomic studies have consistently reported that BC is associated with 
significantly reduced levels of metabolites in this metabolic pathway such as phenylalanine and hippuric acid37,38. 
One possible explanation was due to the fact that cancer cells require more energy for continuous growing and 
proliferation.

Acylcarnitine derivatives including 3-hydroxyoctanoyl carnitine, 2-octenoylcarnitine, 3-hydroxydecanoyl 
carnitine, octanoylcarnitine, 9-decenoylcarnitine, decanoylcarnitine, linolenyl carnitine, arachidyl carnitine were 
obviously increased in BC subjects relative to healthy controls. It is Acylcarnitines are essential for the transport 
of long chain fatty acids across the mitochondrial membrane for degradation and energy production, and that 
they have the ability to shuttle short chain fatty acids from the inside of the mitochondria to the cytosol39. During 
this process, carnitine is esterified to form acylcarnitine derivatives catalyzed by acetyl-CoA40. Therefore, the 
higher levels of acylcarnitines might be reflected the dysregulated fatty acid β​-oxidation pathway in BC patients. 
In addition, citric acid, an important intermediate in citrate cycle, was observed to be reduced in BC subjects, 
which suggested that citrate cycle were impaired in BC patients. This result reflected the increased conversion of 

Figure 4.  Proposed metabolic mechanisms associated with bladder cancer. The heatmap of the differential 
metabolites were generated by the average normalized peak areas, and metabolites in blue represent progressive 
increased trend from healthy control to LG BC patients to HG BC patient. Abbreviations: PRPP, phosphoribosyl 
pyrophosphate; PS, phosphatidylserine; PE, phosphoethanolamine; PC, phosphocholine; LysoPE, 
lysophosphatidylethanolamine; LysoPC, Lysophosphatidylcholine.
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citrate into fatty acids necessary for β​-oxidation to support the rapid proliferation of cancer cells. Numerous dis-
orders have been described that lead to disturbances in energy production and intermediary metabolism, which 
are characterized by the abnormal levels of acylcarnitines and citrate16,41,42. This also implies a single metabolite 
will have limited use for an accurate diagnosis of BC, however, the biomarker panel would be more specificity.

The increased levels of LysoPC(18:2), LysoPC(20:1), LysoPC(20:0) and PS(O-18:0/0:0) and the decreased lev-
els of LysoPE(22:6/0:0) were observed in BC subjects relative to healthy controls, suggesting that the perturbed 
phospholipid metabolism is implicated in BC. It is known that phospholipid metabolism regulate a variety of bio-
logical processes including cell proliferation, tumor cell invasion, and inflammation43,44. A possible explanation is 
due to the fact that proliferating tumor cells have a high demand of phospholipids for making up cell membranes, 
which they satisfy by overactivating the endogenous lipogenesis45.

The levels of phytosphingosine and sphinganine were significantly increased in BC subjects relative to healthy 
controls, which suggests that the perturbed sphingolipid metabolism is implicated in BC. Metabolism of sphin-
golipids was reported to have potential relation to cell growth, differentiation, apoptosis and angiogenesis46,47. 
Increased levels of phytosphingosine and sphinganine may reflect a relatively higher tumor cell proliferation rate 
and increased lipid membrane remodeling.

Gycocholic acid, a product of bile acid biosynthesis, is a hydrophobic conjugated bile acid. For the first time, 
we confirmed that gycocholic acid is up-regulated in BC subjects relative to healthy controls, suggesting that the 
perturbed bile acid biosynthesis is implicated in BC. A previous study has demonstrated that bladder cancer cell 
lines expressed the elevated peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). 
These receptors could sense and metabolize bile acids48, which was in support of our data. In addition, much 
evidence has demonstrated that the hydrophobic conjugated bile acids are likely to be implicated in the aetiology 
of a number of different important cancers49, which could stimulate the growth and invasion of tumor cell50. 
Unfortunately, no more bile acids was identified in this study. Further investigations will be needed to search and 
elucidate other bile acids on a targeted metabonomics platform.

It should be noted that, among the identified biomarkers, indolelactic acid, indoleacetic acid and hippuric acid 
are gut bacteria-related metabolites51. It was possible that the changes in these metabolites were due to the gut 
microbiome changes in the BC patients. Further investigations will be needed to elucidate interactions between 
the gut microbiota and host metabolism in the BC patients, which may provide insight into the role of the gut 
microbiota in bladder cancer progression

Conclusion
In conclusion, the present study revealed the UHPLC-Q-TOFMS based serum metabonomics approach is able to 
discover biomarkers applicable to the diagnosis of BC and the categorization of the LG and HG forms of BC. A 
panel of serum metabolite markers related with the transformation of bladder cancer pathology (LG or HG) was 
identified in this study, where the combination of serum inosine, AFMK and PS(O-18:0/0:0) could discriminate not 
only HG BC and LG BC but also LG BC and healthy control with satisfactory sensitivity as well as specificity. The 
results were on par with the gold-standard highly invasive and painful cystoscopic approach used in clinical prac-
tice. The elucidation of the correlation between serum metabolite profiles of BC patients and their histopathological 
status was potentially valuable both in aiding diagnosis and in providing novel insights regarding metabolism in 
BC as well as determining the appropriate treatment regimes of BC patients. In the future, analysis of additional 
large-scale samples should be explored to further validate the clinical utility of biomarkers described in this study.
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