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Abstract

Purpose of review—Endothelial dysfunction is an early feature of vascular disease induced by 

cardiovascular risk factors (CRF). In growing populations with obesity, diabetes, hypertension and 

heart failure, mineralocorticoid receptor (MR) antagonism improves endothelial function. This 

review summarizes recent advances in our understanding of the specific role of endothelial cell 

(EC) MR in vascular function in health and disease.

Recent findings—Using transgenic mice with MR expression specifically modulated in ECs, 

recent studies support the emerging concept that while EC-MR may be protective in health, in the 

presence of CRFs, EC-MR contributes to endothelial dysfunction and progression of vascular 

disease. Proposed mechanisms include a role for EC-MR in decreased nitric oxide production and 

bioavailability, increased vascular oxidative stress, regulation of epithelial sodium channels that 

enhance vascular stiffness, and increased EC adhesion molecules promoting inflammation. The 

role of EC-MR may also depend on the sex, race, or vascular bed involved.

Summary—Recent advances support the idea that EC-MR is a mediator of the switch from 

vascular health to disease in response to CRFs. Further investigation of the molecular mechanism 

is underway to identify therapeutic interventions that will limit the detrimental effects of EC-MR 

in patients at cardiovascular risk.
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Introduction

The vasculature is lined with endothelial cells (EC) which dynamically regulate vascular 

tone, stiffness, inflammation, and thrombotic potential in health and disease. Through these 

functions, the endothelium contributes to regulation of organ blood flow, blood pressure 

(BP), and vascular integrity. Endothelial function is influenced by paracrine and circulating 
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factors regulating the production and activity of endothelium-derived vasoactive and growth 

factors, adhesion molecules that mediate leucocyte-EC interaction, and regulators of blood 

coagulation. In the healthy vasculature, the endothelium is anti-inflammatory, anti-

thrombotic and promotes vasodilation. In the presence of cardiovascular risk factors, the 

endothelium becomes pro-inflammatory and pro-thrombotic and is characterized by 

impaired endothelium-dependent relaxation, a marker of endothelial dysfunction that 

predicts cardiovascular risk[1,2]. The mechanism by which the healthy endothelium 

becomes dysfunctional in response to cardiovascular risk factors is not completely 

understood.

Endothelial dysfunction occurs in response to common cardiovascular risk factors including 

obesity, metabolic syndrome, hypertension and heart failure. These conditions are all also 

associated with increased levels of the BP-regulating hormone aldosterone and activation of 

its mineralocorticoid receptor (MR)[3]. In patients with these conditions, MR antagonism 

improves endothelial function[4,5,6**]. In addition to its role in controlling renal salt and 

water homeostasis, MR is also expressed in the vascular endothelium[7,8]. Recent reports 

that perivascular tissue is a paracrine source of MR ligands in obesity [9] and 

hyperadrenergic states [10] further supports the potential for direct vascular MR activation to 

contribute to vascular disease in high risk patients. However, the specific role of EC-MR in 

vascular health and disease has been controversial until recently[8]. The development of 

transgenic mice in which MR expression can be specifically modulated in ECs has recently 

advanced our understanding of the role of EC-MR in maintaining a healthy vasculature and 

its contribution to cardiovascular disease. This review summarizes our understanding of the 

role of endothelial MR in vascular function and disease with an emphasis on data published 

in the past year.

Physiological versus pathological role of MR in endothelial function: still a paradox?

Early studies investigating the role of EC-MR in endothelial function produced conflicting 

findings[reviewed in 3,11]. Aldosterone can induce either vasoconstriction or vasodilation in 

isolated vessels [reviewed in 8,12]. Rapid vasodilator action of aldosterone was described to 

be dependent on MR activation of PI3-kinase/Akt signaling, enhancing the production of the 

endothelium-derived vasodilator nitric oxide (NO) via phosphorylation of endothelial NO 

synthase (eNOS, Figure 1)[12,13]. However, when tested in vitro, EC-MR activation 

decreased eNOS activity is some studies[14,15] while it enhanced eNOS-derived NO 

production in others[16].

Clinical studies also originally appeared contradictory. Several studies reveal a protective 

role of MR on endothelial function in healthy populations. Acute and chronic MR activation 

in healthy men improved endothelium-dependent relaxation and enhanced NO 

bioactivity[17]. Accordingly, short-term MR antagonism with eplerenone impaired 

endothelial function in healthy older adults, as measured by brachial artery flow-mediated 

dilation (FMD), in association with reduced eNOS activity as determined by decreased 

eNOS Ser1177-phosphorylation[18*]. In another study, MR inhibition improved FMD; 

however, the degree of improvement correlated with increased adiposity and fasting glucose, 

with no effect on vasorelaxation in non-obese patients[19]. This apparent contradiction is 
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consistent with the emerging concept that although EC-MR may be protective in a healthy 

population, in the presence of cardiovascular risk factors (e.g. obesity, metabolic syndrome), 

EC-MR becomes a contributing factor to endothelial dysfunction. This is consistent with 

previous studies demonstrating that MR antagonism improves endothelial function in heart 

failure patients [4], and with a more recent reports showing that spironolactone improved 

coronary flow reserve (CFR) in patients with diabetes [6**] and enhanced EPC-derived NO 

production in patients with hypertension due to hyperaldosteronism[20**].

Overall, clinical studies reveal that MR inhibition in patients with cardiovascular disease or 

risk factors improves endothelial function. However, these studies cannot differentiate 

between direct effects of EC-MR or secondary effects on the endothelium mediated by MR 

in other tissues. To address this, genetic mouse models have been developed with EC-

specific MR deletion. The first mouse model used the Tie2 promoter driving Cre 

recombinase expression resulting in MR deletion from EC as well as leukocytes (due to Tie2 

expression in bone marrow–derived cells). In this model, Schafer et al. [21] found normal 

endothelium-dependent relaxation in aortae of healthy EC-MR-KO mice, while Rickard et 

al. [22] found vasodilation to be reduced in the aorta and mesenteric arteries, with no change 

in BP or vasoconstriction (Table 1). Because MR activation promotes macrophage activation 

and T lymphocyte differentiation [29], MR deletion in leukocytes could have independently 

influence endothelial function in this model.

To address this controversy, a truly EC-MR specific knockout mouse model (VE-cadherin 

promoter driven Cre recombinase) was recently developed with intact leukocyte MR[24*]. 

In this model, EC-MR deletion did not contribute to BP or to endothelial-dependent 

relaxation of coronary or mesenteric arteries in healthy animals. However, mesenteric 

arteries from male EC-MR knockout (EC-MR-KO) mice were protected from endothelial 

dysfunction following exposure to angiotensin II-induced hypertension[24*]. Similarly, in 

female mice, EC-MR deletion protected from aortic endothelial dysfunction caused by 

Western diet-induced obesity[25*]. This is consistent with data in the Tie2-Cre/EC-MR-KO 

model showing that aortic endothelial function was unchanged in healthy EC-MR-KO mice, 

but these mice were protected from endothelial dysfunction caused by high fat diet-induced 

obesity[21](Table 1).

These clinical and animal studies support an emerging paradigm in which basal EC-MR 

activity may contribute to normal vasodilation without determining vascular tone or BP, but 

that EC-MR contributes to the extent of endothelial dysfunction in the setting of 

cardiovascular risk factors such as hypertension, obesity, and diabetes (Figure 1).

Impact of Sex, Race and Vascular Bed Differences in the role of MR in Endothelial Function

Obesity is associated with increased plasma aldosterone levels[30] likely due to production 

of aldosterone-releasing factors, including leptin, by adipocytes[31**]. Interestingly, in a 

mouse model of Western diet-induced obesity, females developed higher plasma aldosterone 

levels compared to males [26,32] perhaps due to estrogen regulation of adrenal aldosterone 

production [33]. Consistent with this, improvement of endothelial function with MR 

blockade was more prominent in female compared to male hyperleptinemic mice[34*]. 

Female EC-MR-KO mice were also protected from increased endothelial stiffness and 
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endothelial dysfunction induced by Western diet, further supporting a direct role for EC-MR 

in obesity-induced endothelial dysfunction[25*]. These studies suggest sex differences in the 

role of EC-MR in endothelial dysfunction, although the molecular mechanisms are still 

being explored. In human ECs in vitro, activated estrogen receptor (ER) has been shown to 

inhibit the transcriptional activity of MR [35], providing another potential mechanism for 

sex differences in the role of MR in EC function. Human coronary EC have been shown to 

express the cortisol-inactivating enzyme 11βHSD-2 supporting that aldosterone can act as a 

ligand for EC-MR ([7] and reviewed in [8]). However, whether 11βHSD-2 expression and/or 

function is modified by risk factors or other biological variables is not known and hence the 

potential for corticosteroids to activate EC-MR in vivo under different circumstances cannot 

be ruled out.

In contrast to the protective role of MR activation in brachial artery FMD observed in 

previous studies of healthy populations [18*,36], normotensive African-Americans 

developed endothelial microvascular dysfunction (evaluated by digital pulse arterial 

tonometry) in response to acute aldosterone administration and this was prevented by 

spironolactone[37*]. It was suggested that the endothelial dysfunction in healthy African-

Americans may be due to decreased vascular G6PD activity in this population. Aldosterone 

has previously been shown to suppress G6PD expression in ECs [15], supporting a potential 

direct role for EC-MR in the mechanism. This detrimental effect of acute aldosterone 

administration seen in healthy African-Americans was not observed in brachial artery FMD 

in a predominantly Caucasian male population [17]. However, since these studies examined 

microvessel dysfunction in African-Americans and large vessels in the Caucasian 

populations, further studies are needed to clarify whether there are indeed racial differences 

in the vascular response to aldosterone or alternatively, a higher susceptibility of resistance 

microvessels to endothelial dysfunction in response to EC-MR activation when compared to 

large conduit vessels like the aorta or brachial arteries.

Indeed, clinical and animal data support differences in the role of EC-MR in conduit 

compared to microvessel function. Garg et al. [6**] observed that MR antagonism in type 2 

diabetics improved CFR, an indicator of coronary microvascular function. The coronary 

benefits contrast with studies showing no improvement in forearm FMD with MR blockade 

in patients with diabetes[38,39], metabolic syndrome[40], or coronary artery disease[41]. 

These differences in the role of MR may be due to mechanistic differences in regulation of 

the coronary versus peripheral vasculature. Indeed, the role of EC-MR in hypertension-

induced vascular dysfunction in mice differed in the coronary compared to the mesenteric 

microvasculature in the EC-specific MR-KO mouse model[24*] (Table 1). Further studies 

are needed to determine the mechanism for the distinct response to risk factors in the 

endothelium of different vascular beds and the role of EC-MR in mediating these 

differences.

New Insights into Mechanisms for the Role of EC-MR in Endothelial Function

Overall, clinical and experimental data support that MR blockade with spironolactone or 

eplerenone improves endothelial function in humans and animal models with high 

cardiovascular risk [reviewed in 3,11]. Tissue specific KO mice suggest a role for EC-MR in 
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this protective effect (Table 1). While our understanding is still limited, the available data 

regarding the molecular mechanisms by which EC-MR contributes to endothelial 

dysfunction in the setting of cardiovascular disease are summarized in the following sections 

and depicted in Figure 1.

EC-MR Contributes to Vascular Oxidative Stress and Impaired NO 
Bioavailability—In the healthy endothelium, NO is produced by eNOS and diffuses to the 

underlying smooth muscle cells, where it mediates vasodilation. NO also acts locally on ECs 

to prevent inflammation and thrombosis. In the setting of cardiovascular disease risk factors 

NO production and bioavailability are impaired. Production of NO may decrease due to a 

decline in eNOS expression or activity, as indicated by phosphorylation of Ser1177. eNOS 

functions as a dimer and in the setting of vascular disease may also become uncoupled due 

to a decrease in the eNOS cofactor BH4 resulting in superoxide anion generation by eNOS 

rather than NO production. Superoxide reacts with NO to further decrease its bioavailability. 

Cardiovascular risk factors are associated with increased vascular oxidative stress due to 

reactive oxygen species produced by uncoupled eNOS and other enzymes, including 

NADPH and mitochondrial oxidases.

One mechanism involved in the protective role of MR blockade in endothelial function is 

increased NO bioavailability due to reduction in vascular oxidative stress and increased NO 

production[10,42,43,44]. Decreased eNOS uncoupling has been demonstrated in humans 

[20**] and rats [10] after spironolactone treatment. This effect was associated with 

increased eNOS dimerization, expression of the chaperone HSP-90 and availability of BH4 

resulting in reduced superoxide generation and increased NO production. Spironolactone has 

also been shown to increase vascular superoxide dismutase and catalase expression, 

important anti-oxidants, and to reduce expression of p47phox, the regulatory subunit of 

NADPH oxidase[20**,43]. The specific role of EC-MR was recently demonstrated in vivo 

as EC-MR deletion prevented the aldosterone-induced increase in superoxide production in 

cerebral arteries [23*] and resulted in enhanced eNOS Ser1177 phosphorylation and 

improved endothelial function in aortae of Western-diet fed mice[25*]. Thus, human and 

animal studies support the concept that EC-MR contributes to vascular dysfunction in 

response to cardiovascular risk factors by enhancing vascular oxidative stress and impairing 

NO function.

EC-MR Modulates Endothelial Stiffness by Regulating the Epithelial Sodium 
Channel (ENaC)—The epithelial sodium channel (ENaC), a classical target of MR in the 

kidney, has more recently been identified in vascular ECs where it is also MR-regulated and 

mediates endothelial sodium transport thereby contributing to vascular stiffness[45]. 

Aldosterone increases expression of ENaC in human ECs in association with increased EC 

stiffness[46,47]. Enhanced EC stiffness alters shear forces in the vasculature resulting in 

impaired NO production[48]. In the Western diet-induced obesity model, aortic stiffening 

and decreased NO production in female mice was blocked by spironolactone[42]. In this 

model, EC-specific MR deletion prevented aortic stiffening and this beneficial effect was 

associated with attenuation of endothelial ENaC promoter activity and gene expression and 

restoration of eNOS phosphorylation[25*]. These data support that regulation of ENaC by 
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EC-MR may be an additional mediator of endothelial dysfunction in response to 

cardiovascular risk factors including obesity.

Contributions of EC-MR to Vascular Thrombosis and Inflammation—When ECs 

lining the vasculature become damaged by cardiac risk factors, they also become 

dysfunctional in their anti-inflammatory and anti-thrombotic functions thereby contributing 

to development of atherosclerosis and its complications, myocardial infarction and stroke. 

Overexpression of MR in EC in mice or MR activation with aldosterone enhanced 

endothelial protein C receptor (EPCR) expression via a transcriptional mechanism, 

decreasing thrombin generation and attenuating vascular thrombosis[27]. These data suggest 

that MR activation could be antithrombotic in the endothelium. However, this contrasts with 

previous studies demonstrating that aldosterone increases thrombosis in experimental 

models of vascular injury in mice[49,50]. Once again these seemingly conflicting findings 

are consistent with the hypothesis that EC-MR has anti-thrombotic properties in healthy 

vessels, perhaps through increased NO bioavailability and EPCR, while in the presence of 

vascular injury or combined with risk factors, EC-MR may promote vascular thrombosis. 

Further studies are needed to test this hypothesis and explore potential mechanisms.

Substantial data support a role for EC-MR in vascular inflammation. In human coronary 

ECs, activation of MR by aldosterone increases transcription of the intercellular adhesion 

molecule-1 (ICAM-1) and promotes leucocyte adhesion[7]. This effect of EC-MR on 

ICAM-1 transcription is inhibited by estrogen activation of the ER[35]. This interaction 

between MR and ER in ECs may provide a mechanism for sex differences in the role of EC-

MR in vascular dysfunction and inflammation. In Western diet-induced obese female mice, 

EC-MR deletion reduced aortic and myocardial oxidative stress, macrophage polarization to 

the M1 pro-inflammatory phenotype, and inflammatory cytokine levels while increasing 

expression of the anti-inflammatory cytokine IL-10[25*,26]. In contrast with the anti-

inflammatory effects of EC-MR deletion in obese female mice, male EC-MR-KO mice were 

not protected from enhanced ICAM-1 expression, inflammatory cytokines, and T-cell 

recruitment in response to pressure overload-induced heart failure[51]. EC-MR deficiency 

also did not ameliorate the mineralocorticoid/salt-induced renal inflammation and kidney 

injury in male mice[52**]. Interestingly, obese female mice lost the protective effect of the 

endothelial ER-α seen in healthy females[53*]. Therefore, similar to endothelial 

dysfunction, there are important sex differences in the pro-inflammatory effects of EC-MR 

activation that require further investigation.

Conclusion

In summary, MR in EC may be vasculoprotective in normal physiology but ample data 

supports that in the setting of cardiovascular risk factors, including obesity, diabetes, and 

hypertension, EC-MR activation contributes to endothelial damage. Potential mechanisms 

include decreased NO bioavailability due to decreased NO production by eNOS and 

increased oxidative stress via eNOS uncoupling and NADPH oxidase activation and 

genomic regulation of ENaC and ICAM1 to increase vascular stiffness and inflammation, 

respectively. There are important differences in the role of EC-MR in vascular dysfunction 

in males compared to females, conduit versus resistance vessels, and in distinct vascular 
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beds. The detailed molecular mechanisms are only beginning to be elucidated and thus 

further study is needed to determine the ideal therapeutic interventions to limit the 

detrimental effects of EC-MR activation in patients at risk for cardiovascular disease.
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Key points

• In the healthy vasculature, EC-MR exerts a minimal or protective impact on 

endothelial function.

• In the setting of cardiovascular risk factors, EC-MR contributes to endothelial 

dysfunction, vascular stiffness, vascular inflammation and thrombosis.

• Mechanisms involved in EC-MR-induced vascular dysfunction include eNOS 

uncoupling, NADPH oxidase activation, ENaC-mediated endothelial 

stiffening, and ICAM-1-mediated vascular inflammation.

• Differences in vascular health, sex, race, vessel size, and vascular bed might 

explain the controversial role of EC-MR in vascular health and disease.
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Figure 1. Proposed model for the role of EC-MR in endothelial function
In the healthy vasculature, EC-MR exerts a protective role on endothelial function. In the 

presence of cardiovascular risk factors such as obesity, diabetes, or hypertension, EC-MR 

contributes to endothelial dysfunction through NADPH oxidase (Nox) activation, eNOS 

uncoupling, increased ENaC expression, and ICAM1/VCAM1-mediated inflammation. 

Asterisks indicate EC-MR mechanisms differentially regulated in females compared to 

males. EC=endothelial cells, MR=mineralocorticoid receptor, eNOS=endothelial nitric 

oxide synthase, ENaC=epithelial sodium channel, EPCR=endothelial cell protein C receptor, 

ICAM-1=intercellular adhesion molecule-1, NO=nitric oxide, P=serine phosphorylation, 

ROS=reactive oxygen species, VCAM1= vascular cell adhesion molecule-1.
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