
Robust Cell Segmentation for Histological Images of 
Glioblastoma

Jun Kong*, Pengyue Zhang†, Yanhui Liang†, George Teodoro∔, Daniel J. Brat*,‡, and 
Fusheng Wang†

*Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA

†Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA

∔Department of Computer Science, University of Brasília, Brasília, DF, Brazil

‡Department of Pathology, Emory University, Atlanta, GA, 30322, USA

Abstract

Glioblastoma (GBM) is a malignant brain tumor with uniformly dismal prognosis. Quantitative 

analysis of GBM cells is an important avenue to extract latent histologic disease signatures to 

correlate with molecular underpinnings and clinical outcomes. As a prerequisite, a robust and 

accurate cell segmentation is required. In this paper, we present an automated cell segmentation 

method that can satisfactorily address segmentation of overlapped cells commonly seen in GBM 

histology specimens. This method first detects cells with seed connectivity, distance constraints, 

image edge map, and a shape-based voting image. Initialized by identified seeds, cell boundaries 

are deformed with an improved variational level set method that can handle clumped cells. We test 

our method on 40 histological images of GBM with human annotations. The validation results 

suggest that our cell segmentation method is promising and represents an advance in quantitative 

cancer research.
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1. Introduction

Glioblastoma (GBM, WHO grade IV) is the most common astrocytoma [1], with an 

incidence of about 10,000 cases per year in the United States. In contrast to the lower grade 

gliomas, GBMs present with radial growth rates almost ten times as fast, yet underlying 

mechanisms are only partly explained [2]. Specific pathological hallmarks in GBM, such as 

highly anaplastic and pleomorphic tumor cells, pseudopalisading cells around necrosis and 

vascular proliferation are thought to be relevant to the drastically accelerated disease 

progression [3, 4].

To enhance investigation of GBM using histologic sections of human tissue samples, a 

robust and automated cell segmentation method is required. However, cell segmentation for 

histological imaging data is challenging because of the large variations in cell shape and 

appearance. In addition, it is quite common for groups of cells to clump together, presenting 
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a barrier to accurate cell delineation. A large number of cell segmentation methods have 

been developed, including watershed [5], dynamic generalized Voronoi diagram [6], contour 

concavity detection [7], concave vertex graph [8], deformable models [9], and gradient flow 

analysis [10]. In contrast to these methods, a class of approaches involving seed detection 

has drawn special attention [11, 12, 24, 14]. The final outputs of all these methods depend 

on a set of seeds for cell contour initialization. Therefore, the accuracy of seed detection for 

cell localization is important.

In this work, we develop a new cell segmentation system to automatically segment cells in 

digital histological images of GBM specimens. As illustrated in Figure 1, it consists of a 

new seed detection algorithm and a newly designed cell contour deformation method based 

on the variational level set framework. The cell seed detection algorithm draws joint 

information of spatial connectivity, distance constraint, image edge map, and a shape-based 

voting result derived from eigenvalue analysis of Hessian matrix across multiple scales. 

Thus, it produces robust and accurate seed detection results, especially for overlapped or 

occluded cells. With cell contours initialized from these seeds, we deform them with an 

improved variational level set method that can converge to true cell boundaries.

2. Method

Our workflow for cell segmentation in bright-field histological images of GBMs has two 

sequential steps, seed detection and cell contour deformation (Figure 1). Additionally, each 

step consists of a sequence of processing modules that are described below in detail.

2.1. Seed Detection

Seed detection identifies the number and location of cells presented in histological images. 

This is a critical step for robust cell analysis as histological images present a large number of 

overlapped cells with some parts occluded.

GBM tissue sections for analysis are stained with Hematoxylin and Eosin (H&E) stains. 

Hematoxylin is a dark blue or violet stain that positively binds to DNA/RNA in nucleus, 

whereas eosin binds to proteins in cytoplasm and intracellular membranes. In light of H&E 

staining mechanism, we first deconvolve each stain component from the original color 

image. Color deconvolution [15] can be realized by computing the Optical Density (OD): 

OD = − log(Lo/Li), where Li and Lo are intensity of light entering and exiting a specimen, 

respectively. The un-mixer U ≜ (u⃗1 | u⃗2 | u⃗3) is defined as a 3 × 3 matrix with unit length 

columns that represent the OD values associated with the red, green, and blue channel for 

hematoxylin, eosin, and null stain. Denoting C(i, j)3×1 as a vector representing three stain 

amounts at pixel (i, j), we can compute OD for red, green, and blue channel as Y = UC. This 

leads to an orthogonal representation of the stains as C = U−1Y, where U−1 is the color 

deconvolution matrix.

We next use image hues from hematoxylin channel for cell locations. Although the 

decoupled hematoxylin channel only reflects hematoxylin stain intensity, its background 

presents variable levels of noise due to imperfect staining process and heterogeneous 

responses of histological components to chemical stains. To remedy this problem, we 
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“normalize” local image background noise with morphological reconstruction operation 

[16]. Two image morphological components, namely marker Φ and mask Ψ image, are 

involved in a morphological reconstruction operation, which can be written down as follows: 

, where . Note n* is the smallest 

positive number such that ; ρ represents the structural element with 

which marker image Φ is recursively dilated with. In addition, ⊕ represents morphological 

dilation. When subtracting the reconstructed image  from the mask image Ψ, the 

difference image  consists of a near zero-level background, and a 

group of enhanced foreground peaks, each representing an object of interest. In our analysis, 

we use the complement of the decoupled hematoxylin channel image as the input to 

morphological reconstruction. In Figure 2 (A), we present a typical background 

normalization result with morphological reconstruction where the marker image is obtained 

by applying the image opening process to the mask image with a circular structural element 

ρ having a radius of r = 10 pixels.

Given the difference image Δ with a near zero-level background, we proceed with a voting 

process where we assume all cells are close to either a circle or an ellipse in shape. Note that 

image intensity Δ(x) at x in proximity to x* can be represented by Taylor series expansion: 

 where x = (x1, x2)T; 

ℋ(Δ(x)) is a 2 × 2 Hessian matrix with its entry H(i, j) = ∂2Δ/(∂xi∂xj) |x. As Hessian matrix 

is symmetric, it is diagonalizable. We denote λ1 and λ2 (λ1 ≤ λ2) as two eigenvalues of 

ℋ(Δ(x)). Note that cell centers in Δ have larger intensity values than peripheral points, i.e. 

Δ(x*) > Δ(x). Therefore, both eigenvalues of the resulting Hessian matrix have negative sign 

[17]. As λ1 ≤ λ2, we only need to check sign of λ2 to infer whether the associated pixel x 
belongs to a cell. As cells have variable sizes, we convolve Δ with a family of Gaussian 

filters with different scales G(x, si), i = 1, 2, …, N to reach scale invariant. For the voting 

process, we begin with a zero-valued voting map for all pixels in the image domain. As we 

check the sign of bigger eigenvalue of the Hessian matrix at all scales for each pixel, we 

incrementally increase the voting map V(x) at pixel x where the sign of bigger eigenvalue is 

negative at a given scale. In Figure 2 (B), we present a voting map overlaid with a typical 

histological image region where cell regions in dark exhibit high votes.

The vote at any given location on the voting map is an integer not larger than the number of 

scales N: V(x) ≤ N, ∀x ∈ Ω, where Ω is the voting map domain. If we consider the voting 

map as a surface in a three-dimensional space as shown in Figure 3 (A), those strong peaks 

on the voting surface can be detected as we move down an imaginary horizontal plane (e.g. 

from the green to magenta plane in Figure 3) intersecting with the voting surface. For each 

intersection plane P(v; x), we generate a binary image from the original voting map with 

threshold v. The resulting centroids of foreground objects satisfying all the following 

conditions are appended to the peak list L(v): (a) It does not exist in the peak list L(v + 1); 

(b) The object is valid with its size no less than area threshold A(α, β, v), where α and β are 

pre-defined scalars; (c) Its centroid is within the foreground region in the binary mask M(x) 

detected by Otusu's adaptive thresholding method. For all peaks in L(v), pairwise distances 
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are computed. Centroids of adjacent centroids (p1, p2) departed less than distance threshold 

D1 are then iteratively merged. Peak merging is necessary as typical large cells present a few 

dark spots representing nucleoli. One such example is shown in Figure 3 (B: top) where two 

green points are merged to a red one. Next, we conduct a second round of distance-based 

merging process with a more stringent threshold D2 (D1 < D2). Iteratively, two peaks (p1, p2) 

are merged only if the following conditions are both true: (a) Distance between p1 and p2 is 

less than D2; (b) The path  connecting p1 and p2 is not intersected with any canny edge 

point derived from the original image. We make use of information drawn from edge map to 

prevent centroids of closely clumped nuclei from being merged. The yellow arrow in Figure 

3 (B:bottom) highlights the edge that blocks adjacent two seeds from merging. The complete 

algorithmic description is presented in Algorithm 1. The developed seed detection method 

can help localize clumped cells in histological images without tedious parameter tuning 

process, as it uses joint information from spatial connectivity, distance constraint, image 

edge map, and a shape-based voting map derived from eigenvalue analysis of Hessian matrix 

across multiple scales.

Algorithm 1 New Seed Detection Algorithm

Input: Icolor: original image; L ← Ø; V(x) ← 0, ∀x; parameters (ρ(r), {si}, α, β, D1, D2)

Output: L: a list of seeds for cells

1: {Initialization Phase}

2: Decouple Icolor into two stain channels: hematoxylin IH and eosin IE

3: Construct mask image: Ψ ← complement(IH) and marker image: Φ ← IH ⊕ ρ

4:

Compute reconstructed image 

5:

Compute difference image 

6: Igray(x) ← rgb2Gray(Icolor); M(x) ← otusuThresholding(Igray(x))

7: {Voting Map Construction}

8: for all i ∈ (1, 2, …, N) do

9:  for all x ∈ Ω do

10:   λ2 (x) ← eigHessian(Δ(x), si)

11:   if sign(λ2(x))< 0 then

12:    V(x) ← V(x) + 1

13: {Detecting and Merging Seeds}

14: vsort ← descentSort(V(x)); v0→1 ← flip(normalize(vsort))

15: Let vc and vp be the current and previous voting value in vsort

16: for all vc and vp ∈ vsort, where vc ← vsort(i) do

17:  find objects (vc) ← label(V(x) ≥ vc)

18:  for all o ∈ (vc) do

19:   if size(o)≥ A(α, β, vi) = β + exp(αv0→1 (i)) && M(centroid(o)) = 1 && o ∩ L = Ø then

20:    L ← L ∪ {centroid(o)}

21: while any(L.pairwiseDistance() ≤ D1)=true do

22:  find p ∈ L s.t. any(L.pairwiseDistance(p) ≤ D1) = true && sum(L.pairwiseDistance(p)) ≤ 
sum(L.pairwiseDistance(p′)) ∀p′ ∈ L

23:  find Q = {q| s.t. (L.pairwiseDistance(p, q) ≤ D1) = true}
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24:  L ← L ∪ Mean({p} ∪ Q)

25:  L ← L \ ({p} ∪ Q)

26: {Merging Seeds with Edge Information}

27: while any(L.pairwiseDistance() ≤ D2 && !L.isBlockedByEdge()) = true do

28:  for all p ∈ L do

29:   find Q(p) = {q| s.t. (L.pairwiseDistance(p, q) ≤ D2 && !L.isBlockedByEdge(p, q)) = true}

30:   find p ∈ L s.t. Q(p) ∆ Ø && sum(L.pairwiseDistance(p, Q(p))) ≤ sum(L.pairwiseDistance(p′,Q(p′))) ∀p′ ∈ 
L

31:  L ← L ∪ Mean({p} ∪ Q(p))

32:  L ← L \ ({p} ∪ Q(p))

2.2. Cell Contour Deformation

We initialize cell contours as small circles centered around cell seeds and use active contour 

deformable models to converge them to true cell boundaries. By contrast to boundary-based 

deformable models highly dependent on image gradient strength, region-based methods 

work better when image gradients are weak. Therefore, they are more appropriate for 

occluded cell segmentation. Enlightened by the variational level set formulation [19, 9, 21], 

we modify this model with integration of shape prior knowledge and adaptive occlusion 

term to segment multiple objects with occlusion.

For a given image, we assume N Lipschitz functions ϕi : Ω → ℛ, where i = 1, 2, …, N. 

Their zero-level sets represent N cells { i} with closed and bounded contours in the image 

domain Ω [19]. To drive cell contour deformation, we aim to minimize the following 

functional:

(1)

where C = {ci, cb} are constants for the cell i and background, respectively; H(x) is the 

Heaviside step function; Q(x) is an edge strength function approaching to zero, i.e. the 

smallest value, on edges; R(x) is a double-well potential function [20]; Γ is a distance vector 

derived from ϕi; Ti is a similarity transformation from cell i to shape priors; Ψ is a matrix 

consisting of distance vectors derived from training shapes; ηi is a sparse coefficient vector 

for the i-th cell, with each non-zero entry representing approximation weight of specific 

shape prior; {λo, λb, ω, ν, μ} is a set of weights.
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First two terms in the functional represent intensity fitting errors with region-wise constants 

for cells and background. We design the third component as an adaptive occlusion term that 

dynamically penalizes overlapped contours based on overlapped contour number. With 

theory of sparse representation [22], we introduce to the variational model a shape 

reconstruction error by approximating the shape of interest with a sparse linear combination 

of manually extracted shape priors. All shape priors are aligned with generalized Procrustes 

analysis [23]. The last two terms regulate zero level set smoothness, drive contour to strong 

edges, and maintain the signed distance property for computation stability.

3. Experiments and Results

We test our method on a set of histological images of H&E stained GBM specimens 

captured at 40 × magnification. The whole image dataset consists of 40 image patches of 

interest, with 0.2265 micrometer per pixel. The total number of human annotated cells for 

seed detection and boundary segmentation is 5396 and 237, respectively. We apply the 

proposed seed detection method to GBM dataset with the following parameter setup: r = 10, 

S = {si|3, 3.3, 3.6, …, 10}, α = β = 10, D1 = 15, D2 = 25. Moderate variations to this set can 

lead to similar results.

For quantitative analysis, we assess performance of seed detection methods with reference to 

human annotations that serve as ground truth. Note that we evaluate our approach with non-

touching and occluded cells in each image separately. Four metrics are computed from each 

image to show seed detection performance: Cell Number Error (C), Miss Detection (M), 

False Recognition (F), Over Segmentation (O), and Under Segmentation(U). Cell Number 

Error is used to demonstrate the absolute difference between the number of cells detected by 

machine and that reported by human expert. Miss and False Detection represent the number 

of missing and false recognition events when machine-based seed detection method is used 

to detect individual cells with no occluded neighbors. Meanwhile, we use Over and Under 

Segmentation to record events where the number of machine-identified cells from a cell 

clump is more and less than the true number marked by human expert, respectively. The 

resulting outputs are shown in Table 1. Additionally, we compare our method with an 

oriented kernel-based iterative voting method [24]. By contrast to our method, the iterative 

voting method tends to miss detecting cells. We illustrate seed detection results from both 

methods on two typical images in Figure 4. For cell contour deformation, we have λo = λb = 

1, ω = 2000, ν = μ = 5000, and ξ = 2. Typical seed detection and final contour deformation 

results are shown in Figure 5 where cell boundaries are color coded. Importantly, our 

method can recognize occluded cells with seed detection method and successfully recover 

their overlapped boundaries. We validate the final cell boundaries using human annotations, 

with Jaccard coefficient J = 0.70 ± 0.14, Precision P = 0.96 ± 0.10, Recall R = 0.73 ± 0.15, 

and Hausdorff distance d = 5.97 ± 4.87.

4. Conclusions

In this paper, we present a robust cell segmentation method for high-resolution histological 

imaging data, with capability to recover boundaries of occluded cells commonly seen in 

histology samples. This new method first detects cells with seed connectivity, distance 
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constraints, image edge map, and a shape-based voting image. Next, it deforms cell 

boundaries with an improved variational level set method that can handle occluded cells. We 

apply our method to a histological image dataset of GBM specimens. Validation results 

suggest our method is promising for segmentation of touching cells and could prove 

important to cancer research.
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Fig. 1. 
An overview of the proposed method is presented.

Kong et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The voting map of a typical image region is demonstrated. (A) The original, deconvolved 

hematoxylin channel, marker image (top), reconstructed, difference, and voting image 

(bottom); (B) Voting map overlaid with original image.
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Fig. 3. 
Illustration of (A) voting peak detection by sliding down an imaginary horizontal plane that 

intersects with the voting surface; (B) Distance-based Seed Merging (top) and Edge-based 

Seed Separation (bottom).
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Fig. 4. 
Comparisons of seed detection results between our method (cyan circle) and iterative voting 

[24] (yellow cross).
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Fig. 5. 
Typical results of cell seed detection and contour deformation by our modified variational 

level set method.
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