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Abstract

This paper presents a novel, fast and semi-automatic method for accurate cell cluster segmentation 

and cell counting of digital tissue image samples. In pathological conditions, complex cell clusters 

are a prominent feature in tissue samples. Segmentation of these clusters is a major challenge for 

development of an accurate cell counting methodology. We address the issue of cluster 

segmentation by following a three step process. The first step involves pre-processing required to 

obtain the appropriate nuclei cluster boundary image from the RGB tissue samples. The second 

step involves concavity detection at the edge of a cluster to find the points of overlap between two 

nuclei. The third step involves segmentation at these concavities by using an ellipse-fitting 

technique. Once the clusters are segmented, individual nuclei are counted to give the cell count. 

The method was tested on four different types of cancerous tissue samples and shows promising 

results with a low percentage error, high true positive rate and low false discovery rate.

Introduction

Pathologists often depend on parameters such as the number, shape and size of cells in a 

tissue sample to make important diagnostic decisions. In healthy conditions, nuclei in cells 

are mostly distinct and parameters can be determined by direct image segmentation methods 

such as region-based methods, histogram-based methods and edge detection based methods. 

However, in pathological conditions, individual cells come close together and nuclei form 

dense clusters. Figure 2(a) shows dark elliptical nuclei touching and overlapping in a 2-D 

tissue sample. Therefore, accuracy of cell-counting, cell shape and size determination 

depends on the segmentation of these dense clusters.

Previous work addresses segmentation of simple-clusters and touching cells by extending 

and improving image-segmentation methods [1, 2]. Few authors have developed algorithms 

that address cluster segmentation specifically [3, 4, 5, 6]. All these methods addressing 

cluster segmentation either could segment only simple clusters [1, 2] or give good results 

only for circular cells [1, 2, 3] or resulting cell shape is not a good model for the original cell 

shape [4, 5, 6] or have very complex algorithm [3, 4, 6]. However, this paper presents an 
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edge-based image segmentation method, shown in the flow-diagram (figure 1(a)), that is 

simple to implement and can segment complex clusters with reasonable accuracy. The 

method involves detection of concavities on cell cluster edges and segmentation at these 

concavities by ellipse fitting. The elliptical model used is a good approximation to the 

original cell shape. Recently, Wang and Song [7] and Bai et al. [8] introduced the concept of 

cluster segmentation using concavity detection. In this paper, we present a novel method for 

notch detection using cross-product (section 3), and a new technique for cluster 

segmentation using ellipse fitting (section 4). Also, we perform quantitative analysis of 

segmentation result using standard statistic parameters. Using proposed methodology, 

pathologists will be in better position to take diagnostics decisions.

Preprocessing

We have implemented our method for different types of tissue samples including standard 

photo micrographs of H&E stained biopsy tissue sections of renal cell carcinoma (RCC) and 

IHC stained biopsy tissue sections of head and neck (H&N) cancer. (Refer to section 7 for 

detail.)

Due to the nature of tissue images and the variability in the sample preparation, staining, and 

image acquisition process, it is imperative to pre-process these images in order to remove 

variations.

The preprocessing steps have been depicted in figure 1(b) and corresponding images are 

shown in figure 2. In stained RGB tissue images various entities in a tissue slice such as 

nuclei, glands, cytoplasm and red blood cells appear as different colors. The first pre-

processing step involves the generation of a binary mask for cell nuclei from the RGB image 

using K-means clustering [9, 10], where seed points are selected by user interaction. The 

binary mask of a tissue sample often has clusters with holes as shown in figure 2(b). If these 

holes are not filled, they can be detected as false boundaries during the edge-detection 

process. Therefore, the next step involves filling in the holes using an algorithm based on 

morphological reconstruction [11] to obtain properly connected clusters as shown in figure 

2(c). Very small objects in the binary mask are generally due to noise and due to 

misclassification during the k-means clustering. As such, the next step involves noise 

removal using the size threshold. Images in figure 2(c) and figure 2(d) show the mask before 

and after noise removal. Based on connected component analysis each object in the image is 

processed as an individual cluster. The boundary of each cluster is then detected based on a 

neighborhood of 8 pixels. Figure 2(e) shows result after edge detection. The resulting 

sequence of pixels that form the boundary of the cluster is then processed using smoothing 

techniques for better notch detection. Noise or jaggedness present on the edges of the 

clusters may lead to false concavity detection on the edge and consequently may be treated 

as a notch for segmentation. Therefore, it is necessary to make the boundary smooth and 

preserve true concavities. Our algorithm performs simple smoothing using a moving average 

low-pass filter. The Resulting image after smoothing is shown in figure 2(f).
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Concavity or Notch Detection

After preprocessing, the next step involves detection of concavities or notches. A concavity 

is the point on the cluster edge where two individual cells overlap. Therefore, the concavities 

can be found using angle (6) between adjacent normals on the edge of the cluster as 

suggested by previous work [8]. In this method, we divide the edge of the cluster into fixed 

length segments, and plot a normal at the middle point of every segment as shown in figure 

3. If (hi gives the slope of normal at middle point of segment i with respect to positive x-

axis, then 6 for any segment i is given by:

(1)

Edges have a depression around a concavity and a sudden change in surface orientation. 

Hence, 6 has maxima at concavities as shown in figure 4(a). As illustrated in the graph using 

a high threshold (dotted line) only major concavities are discovered. These concavities are 

sharp concavities and in order to discover relatively smooth concavities the threshold needs 

to be decreased (solid line) and with this decrease some false detections start appearing at 

points with sufficient angle change, such as the ones at the edge of the individual elliptical 

cell with high eccentricity.

To avoid these false detections with a decrease in threshold, we exploit the fact that the 

desired concavities are located at the edge where the surface is concave (when viewed from 

inside the cell). As such, any detection at locations where the surface is convex can be 

rejected. The process involves splitting the cluster edge into segments of equal length. 

Vectors are generated for tangents at every segment. The cross product of each pair of 

adjacent tangential vectors is calculated while moving in clockwise direction along the 

cluster edge. The magnitude of the cross product depends on the angle between the vectors 

and its sign depends on the direction in which the first vector moves towards the second 

vector.

(2)

Where, a and b are first (dotted line) and second (solid line) tangential vectors; is the angle 

between the vectors, and n is the unit vector perpendicular to a and b in the direction given 

by right hand rule.

If cluster is in X-Y plane, Z component of the cross product represents magnitude and 

direction of cross product. As shown in figure 5 at convex surface, the direction of 

movement is clockwise and n is negative z-direction. While at concave surface, the direction 

of movement is anti-clockwise and consequently n is positive z-direction. High positive z 

component represents notch while negative value represent convex surface. Comparing 

figure 4(a) and figure 4(b), it can be observed that false detections in figure 4(b) are no 

longer affecting the concavity detection which can now be done at relatively lower threshold.
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Segmentation

After detecting the concavities, we segment the cluster into cells. The segmentation 

algorithm assumes that cells have approximately elliptical shape with different eccentricities, 

suggested by a various authors. Figure 6 shows the flow chart for the segmentation of 

clusters.

4.1. Cell-size computation

First, the average cell size is computed based on user interaction. The user selects a few 

samples of single cells. We then compute the average cell size from samples and use it to set 

a threshold for identifying cell clusters.

4.2. Cluster identification

This step differentiates between cluster, single cell and noise. Depending on the standard cell 

size, two thresholds are set. The first threshold decides if any region is large enough to be 

treated as a cluster, and the second threshold decides if it is small enough to be treated as 

noise. The detected clusters undergo further segmentation while single cells are passed to 

ellipse fitting algorithm. Due to these thresholds the methodology is robust in segmenting 

cells in a tissue image with cell size within a range from the average cell-size.

4.3. Notch pairing based on distance threshold

In this step, we compare the distance between all the notches. Any two notches that are 

closer than a particular threshold, which depends on average cell size, form a pair and the 

cluster is split at these two notches; preference is given to the notches that are closer. Cluster 

splitting based on distance splitting is continued iteratively until the point is reached where 

no further segmentation is possible. During this process each cluster segments into either 

sub-clusters or sub-clusters and individual cells. The sub-clusters generated during this step 

generally have circular shape and cannot be further split using the threshold criteria. 

Therefore, these sub-clusters are passed to next step for segmentation based on centroid.

4.4. Notch pairing using centroid

After distance-based segmentation, if there are any clusters left, they are segmented by using 

centroid connection. In this step, starting with the notch with highest z-component (section 

3), notches are connected through the centroid to split the cluster into cells. Any 

segmentation step is possible only if it results in regions with size larger than a minimum 

cell size threshold.

4.5. Ellipse fitting

We picked up the ellipse fitting method proposed by Fitzgibbon et al. [12] which is reported 

to have better accuracy than other standard methods. The edge pixels of cells obtained in the 

segmented mask after step 4.4 are compared with the edges of the cluster as shown in figure 

2(f). Common edges pixels are then used as data for ellipse fitting algorithm. The final result 

of the segmentation of the input image in figure 7(a) is shown in figure 7(b); black lines 

mark the cell boundaries.

Kothari et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results and Discussions

In order to test the robustness of our algorithm, we selected H&E stained tissue images from 

three subtypes of renal cell carcinoma (RCC) – papillary (PA), chromophobe (CH) and clear 

cell (CC) and IHC stained head and neck (H&N) cancer tissue images, thereby introducing 

morphological structure variations (RCC subtypes) and stain color variations (H&E and 

IHC). Quantitative analysis of these four different types (PA,CH, CC, H&N) of tissue 

images, numbered 1–4 respectively, is shown in table 1,. Estimated number (EN) was 

calculated by the algorithm and false positive (FP) and False negative (FN) were estimated 

by comparison with manual segmentation results. The results have been analyzed based on 

three standard statistics parameters – True positive rate, false discovery rate and percentage 

error. High true positive rate, low false discovery rate and low error rate illustrate the 

usefulness of the method for cell-counting of various tissue samples. The method is simple 

to implement and can generate results in real-time, this is highly suitable for clinical 

applications. The method is semi-automatic and requires user interaction only in seed 

selection (section 2) and cell size calculation (section 4.1).

As compared to previous methods of segmentation using concavities [6, 7, 8], our method 

will generate better results due to higher accuracy in concavity detection. The method may 

generate errors at places when two cells overlap in such a fashion that concavities are very 

smooth or absent. Also the results are dependent on how good color segmentation is 

performed during the k-means clustering process for generation of the binary mask. The 

future work includes efforts to improve the color-segmentation and the cluster segmentation 

to further enhance the efficiency of the method. Also method is being tested for larger 

dataset of about 100 images to evaluate the robustness of the method.
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Figure 1. 
a) Overall flow-diagram for the method, b) Flow diagram of pre-processing steps
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Figure 2. 
Pre-processing steps implemented for papillary tissue sample. (a) Input RGB image shown 

in gray scale, (b) binary mask of nuclei, (c), filled binary mask, (d) mask after noise removal 

(e) result after edge detection, (f) result after smoothing
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Figure 3. 
A synthetic cluster illustrating the method of calculating ⊖, angle between adjacent normals.
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Figure 4. 
a) Graph illustrating angles between adjacent normals for different segment number along 

the edge of cluster in figure 3. Dotted line and complete line represents high and low 

threshold respectively. b) Relation between z-component and segment number for the same 

cluster. Thin circles mark true concavities and thick circles mark the possible false 

concavities
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Figure 5. 
Figure depicts cross product resultant direction in case of convex and concave contour 

locations; concavities are marked
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Figure 6. 
Flow-chart for Segmentation
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Figure 7. 
a) Input papillary tissue, b) result image after segmentation of image, green line mark the 

cell boundaries
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Figure 8. 
Pie chart representation of estimate and actual positive for image number 1 in Table 1
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