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Abstract

Rapid growth in scientific output requires methods for quantitative synthesis of prior

research, yet current meta-analysis methods limit aggregation to studies with similar

designs. Here we describe and validate Generalized Model Aggregation (GMA), which

allows researchers to combine prior estimated models of a phenomenon into a quantitative

meta-model, while imposing few restrictions on the structure of prior models or on the meta-

model. In an empirical validation, building on 27 published equations from 16 studies, GMA

provides a predictive equation for Basal Metabolic Rate that outperforms existing models,

identifies novel nonlinearities, and estimates biases in various measurement methods. Addi-

tional numerical examples demonstrate the ability of GMA to obtain unbiased estimates

from potentially mis-specified prior studies. Thus, in various domains, GMA can leverage

previous findings to compare alternative theories, advance new models, and assess the reli-

ability of prior studies, extending meta-analysis toolbox to many new problems.

Introduction

Normal science progresses when scientists build on prior research to extend, test, and apply

theories of biological, physical, and social phenomena [1]. Aggregating the findings from the

existing literature therefore plays a critical role in advancing the sciences. In most cases, quali-

tative review articles provide the method for taking stock of what is known, but offer little

quantitative guidance for combining those results. Quantitative combination of prior models

is, however, needed for prediction, model comparison, hypothesis testing, and cost-benefit

analysis.

The current approach to quantitative aggregation of prior research uses various meta-

analysis techniques [2]. The common approaches to meta-analysis combine findings from

multiple studies each measuring the impact of one explanatory variable (e.g., a treatment)

on one response variable (e.g., a health outcome). Therefore, they seek better estimates of

one specific effect across multiple studies. Fixed effect meta-analyses assume the underlying

effect is the same across different studies, while random effect models allow for a distribu-

tion (typically normal) for the underlying effect across studies and estimate the parameters
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of that distribution. Such meta-analyses are often used in biomedical research to aggregate

multiple statistical estimates [3], e.g., from clinical trials, into more reliable estimates of

causal effects [4]. More complex methods are being devised to enable meta-analysis where

simple methods are not applicable. Multivariate meta-analysis methods combine prior stud-

ies that include multiple outcomes, e.g., disease-free and overall survival in cancer research

[5]. These methods utilize the correlation among those outcomes and across studies to

come up with tighter estimates for each underlying effect [6]. A related stream of research

uses meta-regression to assess how the effect of interest is modified by factors that vary

across prior studies [7]. Despite their utility, current meta-analysis methods can only com-

bine relationships between explanatory and response variables that use the same functional

forms and variable measures across the prior studies [8]. Moreover, more complex meta-

analysis methods may rely on hard-to-verify assumptions such as multi-variate normality

for correlated effects in multivariate meta-analysis and expose the study to risk of data-

drudging (e.g., by considering different effect modifiers in meta-regression [9]). Therefore,

reliable and transparent methods for quantitative aggregation of findings do not exist when

prior studies use different statistical models, different subsets of potential explanatory vari-

ables, or different transformations on the variables they include.

Despite these limitations, the rapid growth of scientific literature has promoted increasing

applications of meta-analysis. Publications listed in nine major databases (Web of Science

Core Collection, MEDLINE, Biological Abstracts, Zoological Records, BIOSIS Citation Index,

Data Citation Index, SciELO Citation Index, Current Contents Connect, and Derwent Innova-

tions Index) with the term “meta-analysis” in the title show over 25-fold growth (from 1,247 in

to 31,314) over the last decade, now reaching tens of thousands annually. Thus, the value of a

broader method for quantitative aggregation of prior research can be immense across various

disciplines. Consider a few examples.

• Over 125 studies in environmental science have analyzed the impact of the pesticide Atra-

zine on freshwater vertebrates, yet no quantitative conclusion can be drawn in the absence of

a method to combine them [10].

• A meta-regression study combines 60 prior estimates of the impact of climate change on

human violence [11], but its findings are questioned because the method does not account

for cross-study correlations and mixes heterogeneous measures (e.g., linear, non-linear, and

lagged effects) in the original studies [12].

• In energy research, multiple methods exist to estimate diffuse solar energy in a location

using data from distant sensors [13], however, there is no method for proposing a model

that aggregates these methods into a single estimating equation.

• In occupational health, at least 10 studies have estimated the effectiveness of workplace-

based return-to-work interventions after injury or illness [14], yet the heterogeneity in study

designs and statistical methods have precluded quantitative aggregation of these findings.

• In urban planning, a review found 45 published models of municipal solid waste generation

[15]; given the various analytical methods applied, these studies have not been combined to

provide a more general and reliable model.

• In obesity research, over 47 separate studies have estimated human basal metabolic rate

(BMR) as a function of different body measures, such as fat mass (F), lean mass (L), body

weight (BW), age, and height, among others [16]; combining these findings into a single

equation would benefit research and practice.
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In such settings, besides quantitative aggregation of prior findings, a general approach to

aggregation could allow researchers to leverage the data previously collected by others to build,

test, and compare alternative new theories, and assess the reliability of individual studies.

In this paper, we introduce the Generalized Model Aggregation (GMA) method. GMA uses

available summary statistics from prior studies to estimate a meta-model that, when simulated,

can replicate those original statistics. GMA provides consistent and reliable estimates, requires

few restrictions on the structure of the meta-model or previous studies, can correct for biases

in prior studies due to missing variables and model mis-specification, allows for both fixed

effect and random effects models, and accommodates statistics for hypothesis testing and

model selection. Moreover, the GMA approach relies on few assumptions about model struc-

ture and underlying effects, offering transparent and easy-to-understand results even in aggre-

gating heterogeneous prior studies. Therefore, GMA enables quantitative model aggregation,

theory building, and theory testing in a wide range of applications that previously relied only

on qualitative literature reviews to synthesize existing findings. We demonstrate the GMA

method in multiple simulated scenarios and an empirical validation.

Methods

Background and overview

The intuition behind GMA is simple and summarized in Fig 1. Prior studies provide statistical

estimates (denoted as signatures, e.g., regression coefficients, correlation matrices, and variance

of effect sizes across prior studies) that, even if biased and incomplete, include relevant informa-

tion about the phenomenon of interest, i.e., the data generating process. A meta-model corre-

sponds well to the real data generating process if the same statistical operations that generated

the empirical signatures of prior studies lead to similar signatures when applied to simulated

data from the meta-model. Thus, by matching the simulated signatures from a meta-model

against the empirical signatures of prior studies, we can estimate the parameters of the meta-

model. The resulting meta-model aggregates prior research by embedding into a single model

the quantitative information from all prior studies and the variations across them.

Fig 1. Overview of GMA. Prior studies provide the vector of empirical signatures, ~γγ l. The hypothesized meta-model

is estimated by simulating those signatures and matching them against empirical ones.

https://doi.org/10.1371/journal.pone.0175111.g001
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The idea of matching simulated summary statistics against the empirical ones is well-

established. For example, it is the basic idea of the method of simulated moments [17], and

has been applied to estimating complex models with intractable likelihood functions using

indirect inference [18, 19], estimating dynamic network models using the stochastic actor-

based approach [20], approximate Bayesian computation for estimating posterior without

calculating likelihood [21], as well as in model calibration in sample survey completion

using external data [22]. In these various methods matching simulated statistics against

empirical ones is the basic idea, but each method has a different goal, and thus various

approaches for selection of summary statistics, definition of the models and linking func-

tions, generation of simulations, and optimization are pursued. To our knowledge, GMA

provides the first formal method to apply this basic idea to meta-analysis and complex

model aggregation problems.

Generalized model aggregation

Consider a data generating process y = f(x,ε;β0) where the response variable, y, is a (possibly

nonlinear) function of explanatory variables x = [xi]; i = 1,2,. . .,I where β0 = [β0,j]; j = 1,2,. . .,J
are the function’s parameters and ε is a random error term. Errors can have an arbitrary joint

distribution, the parameters of which are included in β0, so that by estimating the parameter

vector β0 the data generating model is fully specified. This general model can accommodate

any explicit functional relationship between a group of variables, including dynamic models,

as well as fixed and random effects models, among others.

In GMA, we estimate the data generating model by utilizing the results of L available studies

that have been previously estimated based on data from the data generating process. Suppose

that each study includes a subset of Il� I; l = 1,2,. . .,L explanatory variables and a response var-

iable, denoted by Xl ¼ ½ x
T
l1 xT

l2 � � � xT
lnl
�
T

and yl respectively, and each study estimates the

parameters of a functional relationship between yl and xl using nl observations. Let ~γ l be the

empirical signatures from study l, which may include estimated model parameters, goodness

of fit measures, correlation matrices, or any metric reported in the original study that captures

some statistical regularity among xl and yl. The set of possible signatures is limited to the statis-

tics reported in prior studies but there is no simple rule for identifying the right signatures.

Typically, good signatures are sensitive to changes in the parameters of the meta-model, pro-

viding a clear signal for model identification, and have low variance. Note that the function by

which ~γ l is estimated, hl(Xl,yl), is known from the original study.

At the heart of GMA is the idea that if we simulate the true function f to generate ys values

given β and consistently simulated Xs values, and transform Xs and ys values using the function

γs
lðβÞ ¼ hlðX

s
l ; y

s
lðβÞÞ, the resulting vector of statistics, γs

lðβÞ, would be close to the correspond-

ing empirical signatures, ~γ l. Specifically, Eð~γ l � γs
lðβÞÞ would converge to zero as nl grows large.

Therefore, the simulated counterparts of this expectation, elð~γ l;X
s
l ; y

s
lðβÞÞ ¼

1

S

XS

s¼1

ð~γ l � γs
lðβÞÞ,

would be small if the function used for generating simulations closely resembles the true data

generating process. The same idea applies to the separate set of empirical signatures, ~γ0, that

capture between-study characteristics, e.g., between-study variance in some comparable effect

sizes. Defining e ¼ ½ eT
0

eT
1
� � � eT

L �
T
, where eT

0
is the error in predicting between-study sig-

natures and eT
i the difference between simulated and empirical signatures from study i, the

parameters of the data generating model, β, are then estimated by minimizing a weighted

squared zero function, β̂ ¼ arg min
β

feTWeg, where W is a positive semi-definite weight matrix.
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GMA estimates share their theoretical underpinnings with the method of simulated

moments [17, 23] and indirect inference [18, 19] giving them many appealing statistical prop-

erties. They do not require explicit likelihood functions and are consistent under mild assump-

tions, specifically, as long as the underlying signatures are consistent and include enough

information to identify the model (Notes D and E in S1 File include conditions and proofs).

Estimated parameters are asymptotically multivariate normal under many common scenarios

(see Note F in S1 File), providing a direct and simple path to confidence interval estimation

and hypothesis testing. While any positive semi-definite weighting matrix can be used for esti-

mation, W is optimal (in terms of minimizing the variance of estimated parameters; see Note

G in S1 File) when it is proportional to the inverse of the covariance matrix of the empirical

signatures. That covariance matrix is unknown, however it can be estimated iteratively from

the estimated model (See below, and Note G in S1 File for details). More generally, the covari-

ance matrix for β, around the true value, can be estimated as DW−1D (Note H in S1 File),

where D is the partial derivative of signatures with respect to model parameters β; and general

confidence intervals can be obtained using bootstrapping methods [24] (Notes I and C.3 in S1

File). Using the optimal weighting matrix (Ŵ�), the goodness of fit for a meta-model can be

assessed using the statistic w0 ¼
S

1þS min
β

ffiffiffi
n
p

1

S

XS

s¼1

ð~γ � γsðβÞÞ

" #T

Ŵ� 1

S

XS

s¼1

ð~γ � γsðβÞÞ

" #

, which

asymptotically follows a Chi-square distribution with dimð~γÞ � dimðβÞ degrees of freedom

under the null hypothesis that the estimated function is the true data generating process (Note

J in S1 File). The goodness of fit measure provides a test to identify the studies with signatures

most divergent from other prior studies, and assists with diagnosis of the underlying causes of

such discrepancy. Models with different numbers of parameters can be compared using a

Model Selection Criterion (MSC) that balances goodness of fit against the number of estimated

parameters [25] and the model with the smallest MSC value is preferred (Note K in S1 File).

Implementing GMA requires samples of (simulated) explanatory variables, Xs, consistent

with the empirical distributions, and an appropriate W to be used in the optimization that

estimates β. Samples of explanatory variables can be obtained in several ways: (i) Existing

empirical data sources may include such data. For example, in aggregating studies of the deter-

minants of BMR, publicly available data from the NHANES includes the explanatory variables

related to BMR estimation (but not the BMR itself.) (ii) Samples can be simulated based on

information provided in prior studies, e.g., the reported mean and covariance matrix of xl. In

this case correlation/covariance matrices of prior studies need to be combined using one of the

existing methods (e.g., see [26]) to provide a single matrix for simulating samples. (iii) When

prior studies do not report correlation or covariance matrices of explanatory variables, the

joint distribution of x may be modeled with additional parameters. That auxiliary model can

be estimated simultaneously or separately using the GMA to match any information we have

about the distribution of explanatory variables (see Notes B.2 and B.3 in S1 File for a demon-

stration and comparison across these methods). In fact, in some common settings the informa-

tion in reported regression coefficients (signatures) allow one to estimate those distributions

(see Note B.2 in S1 File for one such example). Finally, if available, original data from any of

the prior studies can also be directly used instead of samples of Xs.

An efficient estimate of W is typically not available at the outset. That matrix can be esti-

mated iteratively, e.g., starting with a diagonal W matrix with elements proportional to the

reciprocal of squared elements of ~γ, estimating β using this initial weight matrix, then simulat-

ing the signatures many times to estimate their covariance matrix, and using the inverse of this

estimate as W in the next round of β estimation. Similar to the method of simulated moments

A flexible method for aggregation of prior statistical findings
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[23], in most problems the process converges to an efficient estimate of W in just a few

iterations.

Fig 2 summarizes the inputs and outputs of GMA. In short, the inputs to GMA include

empirical signatures from prior studies, the information needed to replicate each prior study,

and data sources that allow us to create samples of independent variables. This information is

then used by GMA to estimate the parameters of a data generating function (meta-model), the

output of which can be matched against the empirical signatures. Besides estimating the meta-

model, GMA also offers useful output information on the reliability of prior studies and their

measurement methods. S1 File provides the details of the GMA algorithm, proof of consis-

tency, distribution of parameter estimates and hypothesis testing procedure, optimal weight

function (W), procedure for generating simulated inputs (Xs) and goodness of fit measures.

These and statistical proofs and additional information on various experimental settings are in

Notes A-K in S1 File. We also provide the code (in MATLAB) and instructions required for

replicating the analysis and new GMA applications (see S2 File and S3 File).

Results

Experimental results

To validate GMA, we first test it on simulated problems where the underlying data generating

model is known. In each case, a true data generating process, f(X;β0), is specified, raw data are

generated from the process and (imitations of) prior studies are estimated. Coefficients and

error statistics from those studies are then utilized as signatures in GMA (~γ) to estimate the

parameters of the data generating model (β̂). Finally, these estimates are compared to the true

values (β0).

Fig 2. GMA and its inputs and outputs.

https://doi.org/10.1371/journal.pone.0175111.g002
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Seven scenarios across five model structures are explored. In Scenario 1 (Fig 3A), the “true”

data generating process is y = 1+x1+x2+x3+ε. Regression results from three “prior” studies, all

assumed to be linear regressions, are considered. Each imitated prior study uses a constant

and two of the three explanatory variables to estimate y (three coefficients estimated). The

prior models are therefore mis-specified. Further, the explanatory variables are correlated and

therefore the estimated coefficients of the prior studies are potentially different from the true

coefficients. We apply GMA to estimate the true model, using those three coefficients and the

mean squared error (MSE) of each study, a total of 4×3 = 12 signatures. We simulate the

explanatory variables, (Xs), based on mean vectors and covariance matrices reported in the

three prior studies. Fig 3A reports results from one typical example. GMA estimates correctly

infer the true data generating process, with rather tight confidence intervals.

Fig 3. Aggregation of three “prior” study regressions across four scenarios. a) Estimated parameters of a linear generating

process (meta-model) y = β0+β1x1+β2x2+β3x3+ε. Three prior studies of the form y = β0+βixi+βjxj+ε; (i,j = {1,2,3}; i 6¼ j) are estimated and

their coefficients are reported within the gray bars. b) Similar to a, but prior studies estimate models of the form y = β0+βixi+ε; (i = {1,2,3}).

c) Similar to a, but using binary outcomes and logistic regression meta-model of the form Pr(y = 1) = (1+exp(−(β0+β1x1+β2x2+β3x3)))
−1

with prior studies including only two of the three explanatory variables and a constant. d) Similar to c, but only including one explanatory

variable and a constant in each prior study. In (a), (b), (c), and (d), γ1 represents the intercept and γ2, γ3, and γ4 represent the coefficients

of x1, x2, and x3, respectively, both in “prior” study regressions and meta-model. In (a) and (b), γ5 represents MSE in “prior” study

regressions and the estimated standard deviation of the error term in the meta-model.

https://doi.org/10.1371/journal.pone.0175111.g003
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GMA is similarly effective in three other linear models. In Scenario 2 (Fig 3B), the complex-

ity of the problem is increased. The same true data generating process is used but prior studies

now include a constant term and only one explanatory variable. Thus after including MSE

each “prior” study offers three signatures for a total of 9 signatures, which are used to estimate

the meta-model. Scenario 3 (Fig 3C) reports an experiment parallel to Scenario 1 (i.e., a con-

stant and two of the three explanatory variables included in each prior study), but this time the

outcome is binary following a logistic model as Pr(y = 1) = (1+exp(−(1+x1+x2+x3)))−1, and the

three “prior” studies estimate a logistic regression. Scenario 4 (Fig 3D) extends the logistic

regression example to a case where only one of the explanatory variables and a constant are

included in each prior study regression.

In all four scenarios GMA extracts unbiased estimates of the true data generating process with

95% confidence intervals comparable to or tighter than those in the original studies. Even when

prior studies are missing important variables and do not include the true effects in their confi-

dence intervals, their signatures contain information, and GMA can extract that information to

yield better estimates (Note B.1 in S1 File). In fact, in the above examples, GMA is effective even

though none of the prior studies include all the relevant explanatory variables. Moreover, GMA

may result in corrected effects that fall outside of the range of effects estimated by all prior studies

(e.g., see estimated effect for γ2 and γ4 in Fig 3A), which is infeasible in common meta-analysis

methods that use weighted averaging of prior estimates. Furthermore, GMA offers a method to

resolve the apparent inconsistency across coefficients from the prior studies. For example in Sce-

nario 1, “prior” study 1 estimates the (mis-specified) model y = γ1 + γ2x1 + γ3x2 + �, finding γ3 =

2.55 with a 95% confidence interval of (2.2, 2.9), which excludes the true value (of 1), and study 2

estimates = γ1 + γ3x2 + γ4x3 + �, finding γ3 = 0.7 with a 95% confidence interval of (0.4, 1.0).

GMA uses the information in these mis-specified models to estimate β2 = 0.9, with a 95% confi-

dence interval of (0.7, 1.1). GMA resolves the apparent inconsistency by showing how the esti-

mates of the prior studies differ from each other and from the true value due to model mis-

specification and the correlations among the explanatory variables. In the supporting informa-

tion, we assess the impact of various methods for generating the explanatory variables and their

potential errors (Table B in S1 File). Moreover, to check the robustness of these findings, the

experiments are repeated 1,000 times for scenario one (Table A in S1 File), and the large sample

results are consistent with the basic findings reported above.

In Scenario 5, we explore GMA’s ability to infer a continuous nonlinear data-generating

process from prior analyses of variance (ANOVA) on categorical data. We use a true data gen-

erating process of the form y = 1+x1+x2+x1x2+ε*N(0,1). Three “prior” ANOVA studies with

sample sizes n = 100 are considered where factors (x variables) are categorized into three (for

x1) and four (for x2) groups based on the 33th and 66th percentiles for x1 and the first, second,

and third quartiles for x2. Two prior one-way ANOVA studies assess the treatment effect of

x1 and x2 separately, and a third study looks at both factors, but includes no interaction

term. In this example, the prior studies include data limited on multiple fronts: continuous

variables are discretized, interaction effects are not considered, and variables are missing in

two of the prior studies, therefore, it may be hard to identify the underlying model. To con-

duct GMA, main effects, Mean Sum of Squares due to Treatment (MST), and Mean Squared

Errors (MSE) are included as signatures, creating 6, 7, and 11 signatures for the three stud-

ies, respectively. GMA is then used to estimate a data generating process of the form y =

β0+β1x1+β2x2+β3x1x2+ε*N(0,β4). Over 1,000 replications of this experiment, we are able

to consistently identify unbiased estimates for the underlying data generating process as

well as accurate analytical confidence intervals, even though the prior studies ignored the

continuous nature of the data (used categorical explanatory variables) and included no

interaction terms (see Note B.4 in S1 File for additional details).

A flexible method for aggregation of prior statistical findings

PLOS ONE | https://doi.org/10.1371/journal.pone.0175111 April 6, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0175111


Scenario 6 explores GMA’s applicability to nonlinear models. Specifically, following a prior

study [27], the true data generating process for transmission fluid leakage in transmission sys-

tems is assumed to be a nonlinear function of time and temperature. Simulated prior studies

include two linear models, one only including time, and the other including both time and

temperature. The results of one experiment are reported in Fig 4 (with additional details in

Table E in S1 File). Again, GMA is able to aggregate mis-specified prior studies and accurately

estimate the true model. This example is noteworthy because the nonlinearities of the true

model, not included in prior studies, are identified by GMA.

Finally, in the last scenario we assess GMA’s ability to estimate random effects models and

compare it with the standard random effects method that is the workhorse of classical meta-

analysis [28]. In this comparison, we use as signatures five “prior” effect sizes, along with their

reported within-study variances, and using the GMA estimate the summary effect size and the

between-study variance in the mean effects. We compare the GMA results with standard ran-

dom effects meta-analysis that uses the DerSimonian and Laird method [29]. We vary the true

between-study variance across five levels to assess the sensitivity of comparisons to the level of

noise. In data generation, we follow the basic assumptions of standard meta-analysis, i.e., nor-

mally distributed within and between study error terms. Since not required by GMA, these

assumptions favor the analytical method used in classical meta-analysis and thus provide a

conservative test, nevertheless, across 200 replications for each of the five parameter set-ups,

GMA does as well as, or statistically better than, the classical method in terms of estimation

errors. Details of this scenario are discussed in Note B.6 in S1 File.

In the previous scenarios, we assumed no measurement errors for explanatory variables.

However, measurement errors are common and can lead to biased parameter estimates in the

Fig 4. Comparison of two linear models and the nonlinear meta-model with the underlying true model. The predicted outcome is

fluid leakage rate and its expected value under the true data generating process (left), and each model is shown using color maps. Black

dots in the two middle charts identify the original data points used in estimation of the two linear models. However, these “raw” data

points are not used in GMA estimation, only the coefficients of the two linear models (3+2 coefficients) and two R2 terms (total of 7

signatures) are used for estimation of the non-linear meta-model (graphed on the right).

https://doi.org/10.1371/journal.pone.0175111.g004
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prior studies, and thus in GMA results. Therefore, it is important to account for those errors

when they are expected to be large. There are multiple methods in the literature for correcting

for measurement error in traditional meta-analysis [30, 31] and it may be possible to adapt

some of those to GMA. Specifically, it is easy to incorporate a measurement error into simula-

tions of meta-model in GMA, by adding a (simulated) error term to the simulated explanatory

variables, before replicating the prior studies on this simulated, measured, data. If good esti-

mates for the magnitude of those measurement errors are available, those can be used in the

simulations, and the estimation of the resulting model can progress without any additional

parameters. More challenging is the case when priors for measurement error size are not avail-

able. In this case the variances of measurement errors could be added to the unknown parame-

ters to be estimated by GMA, and the augmented model estimated as before. We explored this

idea in the case of scenario one, assuming normally distributed measurement noise levels as a

fraction (δ between 0 and 1) of the underlying variables’ actual standard deviations, and esti-

mating the extended meta-model with the resulting three additional unknown parameters.

Repeating this analysis 100 times for each value of δ, we found that measurement error

increases the variance in parameter estimates and the width of the confidence intervals. Never-

theless, these confidence intervals are still largely reliable, and GMA offers estimates for mea-

surement noise that were otherwise not available. The details for this analysis are reported in

Note B.7 in S1 File.

Empirical example

Basal metabolic rate (BMR) is the largest component of human energy expenditure and

accurate estimates are critical for understanding human metabolism, developing obesity

and malnutrition interventions, and identifying patients with metabolic abnormalities,

among others. As an empirical validation of GMA, we aggregate prior studies of the deter-

minants of BMR and compare the predictive power of the resulting meta-model with exist-

ing models in the literature. We focus on a single population group, white males over 18

years of age. A recent review of the literature [12] yields 16 studies reporting 27 regression

models that estimated equations for BMR (in Kcal/Day) for members of this population and

included sufficient details for simulated replication. Those regressions use different samples

of the population and include various subsets of height (H; in cm), weight (W; in Kg), fat

mass (F; in Kg), lean mass (L; in Kg) and age (A; in Years) as explanatory variables. The

prior studies do not report the covariance or correlation matrices of their samples. How-

ever, data on these explanatory variables are available in many public databases, including

the U.S. National Health and Nutrition Examination Survey (NHANES) [32]. We thus sam-

ple these explanatory variables from NHANES. We use sampling functions that are sepa-

rately estimated by GMA, replicating, as signatures, the reported mean and variances of

explanatory variables for each prior study (see Note C.1 in S1 File for details on generation

of explanatory variables). In replicating prior studies, we include additional parameters to

capture variations due to different technologies used to measure BMR and fat mass. We

then combine NHANES data, sampling functions, and signatures from prior studies to gen-

erate the GMA estimates for four alternative meta-model specifications. These alternatives

include both linear and nonlinear candidates derived from detailed modeling of human

metabolism and weight dynamics [33]. Overall results are summarized in Table 1. The

resulting best fitting equation based on MSC is:

BMR ¼ � 3526 þ 3:6Hþ 11F � 5:8L � 2:6A � 130:4lnðFÞ þ 1299:3lnðLÞ þNð0; 136Þ
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The accuracy of this model is compared against alternatives in predicting BMR in an empir-

ical validation sample of 159 male subjects [34] not used in the estimation or prior studies.

Our model’s mean absolute percentage error (MAPE) of 6.66% is lower than any of the 27

equations used in creating the meta-model, which have MAPEs in the range 7.17%-14.36%.

Our model also proves more accurate than the equations by World Health Organization [35]

(MAPE = 7.98%) and Institute of Medicine [36] (MAPE = 7.66%), which are widely adopted

by researchers and practitioners and are considered among the most accurate models. The

improvements in accuracy are substantial when we consider the lower bound on error due to

unobservable individual variations. For example, if the same model structure as our best-fitting

equation from GMA was fitted to the validation sample, thus providing the lowest error for

this sample, its MAPE would be 6.60% (Note C.6 in S1 File).

While the validation dataset is not large for the standards of many typical statistical analy-

ses, it is noteworthy in this context. First, the sample is a relatively large one in this literature

given the costs and complexities involved in good measurements of BMR and Fat Mass.

Indeed, we found only 3 prior studies that included larger samples, while the vast majority of

prior research had used much smaller samples (typically under 50 subjects). Moreover, we

needed a validation sample that was not used in prior published BMR estimation, so that we

would not unintentionally bias our own model selection procedure, or contaminate the input

data into GMA when using prior studies that had utilized the validation sample. The validation

sample we used offered a satisfying resolution to both concerns.

Besides providing more accurate equations without using any individual level data, GMA

provides three additional insights. First, it identifies a statistically significant nonlinearity in

the change in BMR as a function of L and F. None of the prior studies included a nonlinear

term, yet our results suggest a nonlinearity can be inferred and improves prediction, a finding

which is consistent with detailed (organ level) modeling of BMR that finds different organs

respond differently to changes in body weight [37]. Second, in the process of estimating the

meta-model we included parameters that represent the biases in different methods for the

measurement of BMR and fat mass. Therefore, this application of GMA also provides esti-

mates for how different measurement methods compare with each other, which can be used to

calibrate different measurement methods (Note C.4 in S1 File). Finally, using the changes in

goodness of fit measure induced by exclusion of each prior study, we assess the consistency of

previous research and identify the outliers (Note C.5 and Table H in S1 File). We also provide

a comparison of the analytical confidence intervals with those obtained by bootstrapping for

this empirical example, finding that the two methods are fairly consistent (Table J in S1 File).

Discussion

GMA provides a flexible method to quantitatively combine diverse statistical findings. GMA

extends meta-analysis to more heterogeneous sets of underlying studies that vary in design

Table 1. Estimates for alternative BMR meta-model specifications.

Alternative Meta-model Estimates MSCa

BMR = 558 + 2.8H + 7.5F + 12L - 3.1A + N(0,170) 2,676

BMR = 851 + 1.1H + 8.7F + 13L - 3A - 3.3BMIb + N(0,172) 2,722

BMR = 231 + 4.4H + 3.1F + 16.2L - 2.4A + 0.06F2 - 0.03L2 + N(0,128) 2,429

BMR = -3526 + 3.6H + 11F - 5.8L - 2.6A - 130.4 ln(F) + 1299.3 ln(L) + N(0,136) 2,390

aModel Selection Criterion, MSC = χ0 + 2 dim(β).
bBody Mass Index (BMI), a common measure of obesity, is weight divided by height squared.

https://doi.org/10.1371/journal.pone.0175111.t001
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and variable operationalization. At the heart of this method is the idea that any statistic

reported in prior studies has information about, i.e., a signature of, the data generating process.

The development of GMA, a method to piece together many such signatures, further high-

lights the importance of detailed reporting and replicability of scientific studies. For example,

there is much useful information in the covariance matrix of explanatory variables and report-

ing that, even if in an online appendix, would be very valuable for other researchers. GMA can

facilitate the iterations of theory building and theory testing central to scientific method. By

allowing researchers to formally estimate and compare new models against prior results, GMA

provides faster feedback about the usefulness of new models and theories. Moreover, GMA

can be used to assess the consistency of new detailed models of a phenomenon against more

aggregate empirical findings. For example, detailed models of BMR defined at the body-organ

level could be constructed and partially estimated by GMA against prior BMR equations.

While domain-specific research informs many disaggregated parameters (e.g., the metabolic

rates of brain and liver), GMA could ensure the aggregation of those components into a model

that is consistent with overall findings (e.g., BMR change over age and due to weight changes).

Such applications promise a more fruitful dialogue between mechanism-based and statistical

models. GMA can also help resolve apparent inconsistencies among prior studies. For exam-

ple, the effect of different measurement methods for similar concepts could be estimated and

inconsistencies due to measurement separated from those due to missing variables or hetero-

geneity in the underlying samples.

This paper introduces the idea of GMA and motivates future research to apply, elaborate,

and expand the method. First, to keep the method general, we used a simulation-based

approach that can use any signature with a squared error matching function. More efficient

likelihood based linking functions could be devised for well-behaved subsets of empirical sig-

natures. Second, we offered various methods for generating samples of explanatory variables.

Given the importance of these samples as inputs to GMA, future research should seek addi-

tional methods, assess the pros and cons of those methods, and investigate the sensitivity of

results to various degrees of inconsistency between these samples and those from the data gen-

erating process. Third, we showed that GMA does a fine job in estimating traditional random

effects meta-analysis models. Systematic comparisons with other meta-analysis methods is

another promising area of research. Forth, a more detailed treatment of measurement error

and conditions under which GMA can estimate that is a promising area for future studies.

Moreover, theoretical research can focus on the properties of effective signatures and the mini-

mum set of signatures required for identifying a given model. Finally, the extent of usefulness

of GMA will only be known when more empirical applications are conducted. We hope this

paper motivates many such applications.

GMA may overcome some of the common challenges faced by meta-analysis by accommo-

dating broad model specifications, including study-specific effects, and potential omitted vari-

able biases [38, 39]. Nevertheless, GMA is no panacea and its use will be limited to settings

where it is empirically and computationally feasible and its fundamental assumptions are

valid. Data required for simulating consistent samples of explanatory variables may not be

available from prior studies or other data sources. Computational costs of GMA scale with the

costs of simulating the prior studies and the number of simulations needed in the optimization

(estimation) step. These costs are often limited when prior studies only include analytical or

convex estimation problems: the most demanding of our analyses, the BMR example, required

about 45 minutes of computation on a standard laptop. However, those costs may become pro-

hibitive if replicating each prior study is computationally expensive or the optimization payoff

landscape is very complex. More conceptually, GMA assumes that the different prior studies

tackle the same underlying phenomenon, that those studies are statistically representative of
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the population of interest, and that the prior studies provide enough details to enable their rep-

lication. These assumptions may be violated [40]. If prior studies come from different phe-

nomena (e.g., BMR equations for mice and human subjects) the imposition of a single meta-

model would be unrealistic [41, 42]. Publication [43] and design biases [44] may lead to

uneven pools of existing studies, which, if not explicitly modeled, can bias GMA outcomes.

Moreover, poor replicability plagues many research reports [45, 46] complicating the simu-

lated replication of the original studies needed by GMA. As with any meta-analysis method,

careless use of GMA can induce unjustified certainty by providing quantitative meta-models

where the underlying studies should not be combined, are systematically biased, or are not

replicable [47]. GMA’s goodness of fit measure allows for the identification of some of the het-

erogeneity problems in prior studies. Overall, our results suggest that careful application of

GMA can provide new opportunities to learn from prior research, leverage existing data, build

new theories, and test competing models.
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