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Abstract

Consider distributional limit of the Pearson chi-square statistic when the number of classes mn 

increases with the sample size n and . Under mild moment conditions, the limit is 

Gaussian for λ = ∞, Poisson for finite λ > 0, and degenerate for λ = 0.
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1. Preliminaries

The Pearson chi-square statistic is probably one of the best-known and most important 

objects of statistical science and has played a major role in statistical applications ever since 

its first appearance in Karl Pearson’s work on “randomness testing” (Pearson, 1900). The 

standard test for goodness-of-fit with the Pearson chi-square statistic tacitly assumes that the 

support of the discrete distribution of interest is fixed (whether finite or not) and unaffected 

by the sampling process. However, this assumption may be unrealistic for modern ’big-data’ 

problems which involve complex, adaptive data acquisition processes (see, e.g., Grotzinger 

et al. 2014 for an example in astrobiology). In many such cases the associated statistical 

testing problems may be more accurately described in terms of triangular arrays of discrete 

distributions whose finite supports are dependent upon the collected samples and increase 

with the samples’ size (Pietrzak et al., 2016). Motivated by ’big-data’ applications, in this 

note we establish some asymptotic results for the Pearson chi-square statistic for triangular 

arrays of discrete random variables for which their number of classes mn grows with the 

sample size n. Specifically, let Xn,k, k = 1, . . . , n, be iid random variables having the same 

distribution as Xn, where
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Recall that the standard Pearson chi-square statistic is defined as

(1)

where the empirical frequencies p̂n(i) are

As stated above, in what follows we will be interested in the double asymptotic analysis of 

the weak limit of , that is, the case when mn → ∞ as n → ∞.

Observe that  given in (1) can be decomposed into a sum of two uncorrelated components 

as follows

(2)

where

(3)

and

(4)

The second equality above introduces notational convention we use throughout. Note that 

for fixed n the statistic S n is simply a sum of iid random variables and Un is an 

unnormalized U-statistic (see, e.g., Korolyuk and Borovskich, 2013). It is routine to check 

that
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and consequently

Moreover, since we also have ℂov(Un, S n) = 0, it follows that

When mn = m is a constant then the classical result (see, e.g., Shao, 2003, chapter 6) implies 

that the statistic  asymptotically follows the χ2-distribution with (m−1) degrees of 

freedom. Consequently, when m is large the standardized statistic 

may be approximated by the standard normal distribution. However, in the case when mn → 
∞ as n → ∞ the matters appear to be more subtle and the above normal approximation 

may or may not be valid depending upon the asymptotic relation of mn and n, as described 

below. Since S n is a sum of iid random variables, the case when S n contributes to the limit 

of normalized  may be largely handled with the standard theory for arrays of iid variables. 

Consequently, we focus here on a seemingly more interesting case when the asymptotic 

influence of Un dominates over that of S n. Specifically, throughout the paper we assume 

that as n, mn → ∞

(C)

Note that (C) implies  in probability and, in particular, is 

trivially satisfied when Xn is a uniform random variable on the integer lattice 1, . . . , mn, that 

is, when  for i = 1 . . . , mn. Under condition (C) we get a rather complete picture 

of the limiting behavior of . Our main results are presented in Section 2 where we discuss 

the Poissonian and Gaussian asymptotics. Some examples, relations to asymptotics known 

in the literature and further discussions are provided in Section 3. The basic tools used in our 

derivations are listed in the appendix. In what follows limits are taken as n → ∞ with mn 

→ ∞ and  stands for convergence in distribution.

2. Poissonian and Gaussian asymptotics

We start with the case when a naive normal approximation for the standardized  statistic 

fails. Indeed, as it turns out, when mn is asymptotically of order n2, we have the following 

Poisson limit theorem for .
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Theorem 2.1

Assume that the condition (C) holds, as well as

(5)

Then

(6)

Proof—Due to (C) it suffices to consider the asymptotics of Un alone. We write

(7)

where An,1 = 0 and for k = 2, . . . , n

(8)

The above representation implies that to prove (6) we need only to show that 

. To this end we will verify the conditions of Theorem A.1 in the 

appendix, due to Beśka, Kłopotowski and Słomiński (Beśka et al., 1982). Denote ℱn,0 = {∅, 

Ω} and ℱn,k = σ(Xn,1, . . . , Xn,k), k = 1, . . . , n. Then using the first form of An,k from (8) 

we see that

due to (5) and thus (A.1) holds. Similarly,

(9)
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and thus (A.2) also follows with . Since An,k ≥ 0 the required convergence in (A.3) (for 

any ε > 0) will follow from convergence of the unconditional moments

(10)

Using the second form of An,k from (8) we see that the conditional distribution of mn 

pn(Xn,k) An,k given Xn,k follows a binomial distribution Binom(k − 1, pn(Xn,k)). Since for M 
~ Binom(r, p) we have  M = rp,  M2 = rp + r(r − 1) p2 and  M3 = rp +3r(r − 1)p2 +r(r 
− 1)(r − 2)p3, we thus obtain

Similarly,

Note that (C) and (5) imply  and therefore

Combining the limits of the last three expressions we conclude that the right-hand side of 

(10) tends to zero and hence (A.3) of Theorem A.1 is also satisfied. The result follows.

Let us now consider the case . As it turns out, under this condition the statistic 

is asymptotically Gaussian.

Theorem 2.2

Assume that condition (C) is satisfied and that there exists δ > 0 such that

(11)

as well as
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(12)

Then

(13)

Remark 2.3

Note that under (C) the conditions (11) (with δ = 1) and (12) are implied by the condition 
n/mn → λ ∈ (0, ∞).

Proof—As in Theorem 2.1, under our assumption (C) it suffices to show convergence in 

distribution to N ~ Norm(0, 1) of the normalized Un variable

where

(14)

and the last equality defines Bn,k. Since (I(Xn,k = Xn, j)|ℱn,k−1) = pn(Xn, j) for any j = 

1, . . . , k − 1, it follows that (Yn,k|ℱn,k−1) = 0. Consequently, (Yn,k, ℱn,k)k=1,...,n are 

martingale differences. Therefore, to prove (13) we may use the Lyapounov version of the 

CLT for martingale differences (see Theorem A.2 in the appendix).

Due to (14) we have

Since ar(I(Xn = Xn, j)|ℱn,k−1) = pn(Xn, j)(1 − pn(Xn, j)) and
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we obtain

Consequently, (A.4) is equivalent to

(15)

To show the above, we separately consider moments of the summands on the left-hand side 

of (15). For the first one, note that

where the last equality denotes the distributional equality of random variables. Therefore, 

using inequality (B.2) given in the appendix, we get (possibly with different universal 

constants C from line to line)

In view of this and the elementary inequality |a + b|p ≤ C(|a|p + |b|p) valid for any p > 0 and 

any real a, b we have for some constants C1, C2

For the numerator of the second part on the left hand side of (15) we may write
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Moreover,

since the expectations of the other terms resulting from squaring the large-bracketed first 

expression above are equal to zero. Consequently

and thus for the squared expectation of the second term in (15) we get

Note that here we used the fact that mn → ∞. To finish the proof we only need to show (A.

5). Again we will rely on the representation of Yn,k given in (14). Note that

Since I(Xn, j = Xn,k) − pn(Xn,k), j = 1, . . . , k − 1, are conditionally iid given Xn,k and

then by conditioning with respect to Xn,k and applying Rosenthal’s inequality (see (B.1) in 

the appendix) to the conditional moment of the sum we obtain
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(16)

By virtue of the Schwartz inequality we obtain that

in view of (11). Therefore, it only suffices to show that the first term in the last expression in 

(16) converges to zero. But this follows due to (11) and (12), since

3. Discussion

We will now illustrate the results of the previous section with some examples as well as put 

them in a broader context of earlier work by others. For the sake of completeness, we first 

note

Remark 3.1. The case λ = 0

Consider . Then the last part of the right hand side of (7) converges to zero and we 
are left with the sum of non-negative random variables which satisfies

To see the above, it suffices to consider the convergence of the first moments. To this end 

note that

The simple illustration of Theorem 2.2 is as follows.
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Example 3.1

Let α ∈ [0, 1) and set pn(i) = (Cαiα)−1 for i = 1, . . . , mn. Here 

 in view of the general formula

(17)

Note that for 0 < α < 1 the condition (C) is equivalent to

(18)

and implies (12). Applying (17) again we see that for any δ > 0

and therefore (11) is also satisfied. Hence, the conclusion of Theorem 2.2 holds true under 

(18) for 0 < α < 1.

Note that in the above example the assumption (5) of Theorem 2.1 cannot be satisfied for 0 

< α < 1 (see (18)) but can hold for α = 0, that is, when the distribution is uniform. We 

remark that in our present setting such distribution is of interest, for instance, when testing 

for signal-noise threshold in data with large number of support points (Pietrzak et al., 2016). 

Combining the results of Theorems 2.1 and 2.2 and Remark 3.1 one obtains the following.

Corollary 3.2 (Asymptotics of  for uniform distribution)

Assume that  for i = 1, 2, . . . , mn and n = 1, 2, . . . as well as

Then

We note that the asymptotic distribution of  when both n and mn tend to infinity has been 

considered by several authors, typically in the context of asymptotics of families of 
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goodness-of-fit statistics related to different divergence distances. Some of these results 

considered also the asymptotic behavior of such statistics not only under the null hypothesis 

(as we did here) but also under simple alternatives and hence are, in that sense, more 

general. However, when applied to the chi-square statistic under the null hypothesis they 

appear to be special cases of our theorems in Section 2. We briefly review below some of the 

most relevant results.

Tumanyan (1954, 1956) proved asymptotic normality of  under the assumption min1≤i≤mn 
npn(i) → ∞ which in the case of the uniform distribution is equivalent to n/mn → ∞, a 

condition obviously stronger than  we use (see Corollary 3.2).

Steck (1957) generalized these results on normal asymptotics assuming among other 

conditions that infn n/mn > 0 which again is stronger than . He also obtained 

the Poissonian and degenerate limit in the case of uniform distribution, in agreement with 

the first two cases in our Corollary 3.2. The main result of Holst (1972) for the chi-square 

statistic gives normal asymptotics under the regime n/mn → λ ∈ (0, ∞) and max1≤j≤n pn( j) 
< β/n which also is stronger than our assumptions. In the uniform case under this regime the 

result was proved earlier in Harris and Park (1971). The main result of Morris (1975) for the 

chi-square statistics gives asymptotic normality under n min1≤j≤n pn( j) > ε > 0 for all n ≥ 1, 

max1≤j≤n pn( j) → 0 and the ”uniform asymptotically negligible” condition of the form 

, where , i = 1, . . . , mn, and . 

In the case of the uniform distribution it gives asymptotic normality of  under the 

condition n/mn > ε > 0, the result apparently weaker than the third part of Corollary 3.2.

Following the paper of Cressie and Read (1984) introducing the family of power divergence 

statistics (of which the chi-square statistic is a member), much effort was directed at proving 

asymptotic normality for wider families of divergence distances as well as for more than one 

multinomial independent sample, see e.g. Menéndez et al. (1998); Pérez and Pardo (2002) 

(in both papers the authors considered the regime n/mn → λ ∈ (0, ∞)) and Inglot et al. 

(1991), Morales et al. (2003) (in both papers the authors considered the regime 

 and  for some β ≥ 1) or Pietrzak et al. (2016) 

(with the regime n/mn → ∞). Note that for the asymptotic normality results all these 

regimes are again more stringent than what we consider here.

Finally, for completeness, we briefly address one of the scenarios when condition (C) does 

not hold.

Remark 3.3

Note that if then the asymptotic behavior of standardized  is the same as that 

of , where
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Since for any fixed n ≥ 1 random variables Yn,k, k = 1, . . . , n, are iid (zero mean) and ar 

Yn,k = n−1 it follows that {Yn,k, k = 1, . . . , n}n≥1 is an infinitesimal array. Therefore 
classical CLT for row-wise iid triangular arrays (cf., e.g., Shao, 2003, chapter 1) applies. 

Note also that the remaining case when  appears more complicated 
and requires a different approach.

Acknowledgments

The research was conducted when the second author was visiting The Mathematical Biosciences Institute at OSU. 
Both authors thank the Institute for its logistical support and funding through US NSF grant DMS-1440386. The 
research was also partially funded by US NIH grant R01CA-152158 and US NSF grant DMS-1318886. The authors 
wish to gratefully acknowledge helpful comments made by the referee and the associate editor on the early version 
of the manuscript.

References

Beśka M, Kłopotowski A, Słomiński L. Limit theorems for random sums of dependent d-dimensional 
random vectors. Probability Theory and Related Fields. 1982; 61(1):43–57.

Cressie N, Read TR. Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society. Series 
B (Methodological). 1984:440–464.

Grotzinger JP, Sumner D, Kah L, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold 
N, et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science. 
2014; 343(6169):1242777. [PubMed: 24324272] 

Hall, P., Heyde, CC. Martingale limit theory and its application. New York: Academic Press; 1980. 
includes indexes

Harris, B., Park, C. Indagationes Mathematicae (Proceedings). Vol. 74. Elsevier; 1971. The distribution 
of linear combinations of the sample occupancy numbers; p. 121-134.

Holst L. Asymptotic normality and efficiency for certain goodness-of-fit tests. Biometrika. 1972; 
59(1):137–145.

Inglot T, Jurlewicz T, Ledwina T. Asymptotics for multinomial goodness of fit tests for a simple 
hypothesis. Theory of Probability & Its Applications. 1991; 35(4):771–777.

Korolyuk, VS., Borovskich, YV. Theory of U-statistics. Vol. 273. Springer Science & Business Media; 
2013. 

Marcinkiewicz J, Zygmund A. Quelques théoremes sur les fonctions indépendantes. Fund Math. 1937; 
29:60–90.

Menéndez M, Morales D, Pardo L, Vajda I. Asymptotic distributions of φ-divergences of hypothetical 
and observed frequencies on refined partitions. Statistica Neerlandica. 1998; 52(1):71–89.

Morales D, Pardo L, Vajda I. Asymptotic laws for disparity statistics in product multinomial models. 
Journal of Multivariate Analysis. 2003; 85(2):335–360.

Morris C. Central limit theorems for multinomial sums. The Annals of Statistics. 1975:165–188.

Pearson K. On the criterion that a given system of deviations from the probable in the case of a 
correlated system of variables is such that it can be reasonably supposed to have arisen from 
random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science. 1900; 50(302):157–175.

Pérez T, Pardo J. Asymptotic normality for the Kϕ-divergence goodness-of-fit tests. J Comput Appl 
Math. 2002; 145:301–317.

Rempała and Wesołowski Page 12

Stat Probab Lett. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pietrzak M, Rempała GA, Seweryn M, Wesołowski J. Limit theorems for empirical Rényi entropy and 
divergence with applications to molecular diversity analysis. TEST. 2016:1–20.

Rosenthal HP. On the subspaces ofl p (p¿ 2) spanned by sequences of independent random variables. 
Israel Journal of Mathematics. 1970; 8(3):273–303.

Shao, J. Springer Texts in Statistics. Springer; 2003. Mathematical Statistics. 

Steck GP. Limit theorems for conditional distributions. Univ California Publ Statist. 1957; 2(12):237–
284.

Tumanyan SK. On the asymptotic distribution of the chi-square criterion. Dokl Akad Nauk SSSR. 
1954; 94:1011–1012.

Tumanyan SK. Asymptotic distribution of the chi-square criterion when the number of observations 
and number of groups increase simultaneously. Teor Veroyat Yeyo Primen. 1956; 1(1):131–145.

von Bahr B, Esseen CG. Inequalities for the r-th absolute moment of a sum of random variables, 1 ≦ r 
≦ 2. The Annals of Mathematical Statistics. 1965; 36(1):299–303.

Appendix A. Limit Theorems

Below, for convenience of the readers, we recall some results which are used in the proofs. 

The first one is found in Beśka et al. (1982) and the second one is a version of the martingale 

CLT (see, e.g., Hall and Heyde, 1980).

Theorem A.1 (Poissonian conditional limit theorem)

Let {Zn,k, k = 1, . . . , n; n ≥ 1} be a double sequence of non-negative random variables 

adapted to a row-wise increasing double sequence of σ-fields { n,k−1, k = 1, . . . , n; n ≥ 1}. 

If for n → ∞

(A.1)

(A.2)

and for any ε > 0

(A.3)

then , where Z ~ Pois(η) is a Poisson random variable.

Theorem A.2 (Lyapunov-type martingale CLT)

Let {(Zn,k, ℱn,k) k = 1, . . . , n; n ≥ 1} be a double sequence of martingale differences. If
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(A.4)

and

(A.5)

then , where N ~ Norm(0, 1) is a standard normal random variable.

Appendix B. Moment Inequalities

The following moment inequalities are used in Section 2.

Rosenthal inequality

Rosenthal (1970). If X1, . . . , Xn are independent and centered random variables such that |

Xi|r < ∞, i = 1, . . . , n and r > 2 then

(B.1)

MZ-BE inequality

Marcinkiewicz and Zygmund (1937) for r ≥ 2, von Bahr and Esseen (1965) for 1 ≤ r ≤ 2. If 

X1, . . . , Xn are independent and centered random variables such that |Xi|r < ∞, i = 1, . . . , 

n then for r > 1

(B.2)

where .
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