
RESEARCH ARTICLE

Distributed controller clustering in software

defined networks

Ahmed Abdelaziz1☯, Ang Tan Fong1☯*, Abdullah Gani1‡, Usman Garba1☯,

Suleman Khan2☯, Adnan Akhunzada3‡, Hamid Talebian1‡, Kim-Kwang Raymond Choo4‡

1 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia,

2 School of Information Technology, Monash University, Kuala Lumpur, Malaysia, 3 Computer Science

Department, Comsats Institute of Information Technology, Islamabad, Pakistan, 4 Department of Information

Systems and Cyber Security, The University of Texas, at San Antonio, San Antonio, Texas, United States of

America

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* angtf@um.edu.my

Abstract

Software Defined Networking (SDN) is an emerging promising paradigm for network man-

agement because of its centralized network intelligence. However, the centralized control

architecture of the software-defined networks (SDNs) brings novel challenges of reliability,

scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered

distributed controller architecture in the real setting of SDNs. The distributed cluster imple-

mentation comprises of multiple popular SDN controllers. The proposed mechanism is eval-

uated using a real world network topology running on top of an emulated SDN environment.

The result shows that the proposed distributed controller clustering mechanism is able to

significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22%

to 4.15%, compared to distributed controller without clustering running on HP Virtual Appli-

cation Network (VAN) SDN and Open Network Operating System (ONOS) controllers

respectively. Moreover, proposed method also shows reasonable CPU utilization results.

Furthermore, the proposed mechanism makes possible to handle unexpected load fluctua-

tions while maintaining a continuous network operation, even when there is a controller

failure. The paper is a potential contribution stepping towards addressing the issues of reli-

ability, scalability, fault tolerance, and inter-operability.

1. Introduction

Software Defined Networking (SDN) [1] is a new evolutionary concept for network architec-

ture, which separates the control plane from the data plane. The separation helps in better

management of the network with efficient handling of the network traffic on different planes

of the software-defined networks (SDNs) architecture. The data plane in SDN forwards net-

work traffic based on the control plane instructions. The SDN controller builds network intel-

ligence by observing the data plane forwarding entities and other SDN agents. No doubt, the

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Abdelaziz A, Fong AT, Gani A, Garba U,

Khan S, Akhunzada A, et al. (2017) Distributed

controller clustering in software defined networks.

PLoS ONE 12(4): e0174715. https://doi.org/

10.1371/journal.pone.0174715

Editor: Chun-Hsi Huang, University of Connecticut,

UNITED STATES

Received: July 27, 2016

Accepted: March 14, 2017

Published: April 6, 2017

Copyright: © 2017 Abdelaziz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

through the Cbecnh (controller benchmarked

dataset) can be accessed at: https://github.com/

ahmedmazar/Distributed-Controller-Clustering/

tree/master/Cbench. The HP VAN Controller

(commercial SDN controller) is owned by HP, but

the trial version (30 days) with complete

functionality is available at the following link:

https://marketplace.saas.hpe.com/sdn/content/

sdn-controller-free-trial.

Funding: The author(s) received no specific

funding for this work.

https://doi.org/10.1371/journal.pone.0174715
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174715&domain=pdf&date_stamp=2017-04-06
https://doi.org/10.1371/journal.pone.0174715
https://doi.org/10.1371/journal.pone.0174715
http://creativecommons.org/licenses/by/4.0/
https://github.com/ahmedmazar/Distributed-Controller-Clustering/tree/master/Cbench
https://github.com/ahmedmazar/Distributed-Controller-Clustering/tree/master/Cbench
https://github.com/ahmedmazar/Distributed-Controller-Clustering/tree/master/Cbench
https://marketplace.saas.hpe.com/sdn/content/sdn-controller-free-trial
https://marketplace.saas.hpe.com/sdn/content/sdn-controller-free-trial

centralized control helps in better network management; however, it always becomes a bottle-

neck when it comes to exchanging large volumes of data. Moreover, due to the centralized

architecture of the controller, it experiences overhead as the number of user increases. Conse-

quently, the controller becomes an obstacle to the smooth provision of service, and if the con-

troller itself fails, the switch that it had been managing can no longer be controlled. Moreover,

the SDN controller act as a single point of failure because all the forwarding decisions are

dependent directly on the controller [2]. Once the SDN controller or the switches-to-control-

ler links fail, the entire network may collapse.

The scalability, reliability, inter-operability and fault tolerance remains a challenge in central-

ized network architectures[3]. However, the positive aspect of SDN is that it is centralized but

highly flexible and programmable at the same time. The network programmability aspects of

SDNs makes unique. Moreover, the SDNs support multiple distributed SDN controllers to be

connected to a network serving as backup controllers in the time of a failure. Moreover, multi-

ple controllers allow load sharing when a single controller is overwhelmed with numerous flow

requests [4]. Furthermore, multiple controllers can reduce the latency, increase the scalability

and fault tolerance, and provide availability in SDN deployment. However, the main problem

with this approach is to maintain the consistency among various distributed controllers. The

network applications [5] will be treated improperly by the distributed controllers because of

inconsistency among the controllers concerning global view of the network states [6]. In addi-

tion, multiple controllers create controller resource management problems, including controller

state distribution, data sharing, consistency, and long propagation delay among multiple con-

trollers which limits the network convergence time as well as affects the ability of the controller

to respond to the various network events in minimal time such as PACKET_IN messages.

To the best of our knowledge, this is the first effort made in clustering of the distributed

controller in the SDN considering the placement of the controller and the challenges such as

reliability, scalability, and fault tolerance. We aim to improve network scalability, reliability

and performance by implementing a distributed controller clustering in SDNs. The proposed

mechanism employs multiple commercial and prominent SDN controllers in proactive and

reactive mode, whereby controllers in the clusters distribute an equal role. We carried two

detailed experimentation of latency and packet loss. The emulations results show promising

results. The proposed mechanism decrease long propagation delay among multiple controllers

improves the network convergence time and affects the ability of the controller to respond to

network events in a minimal time. Moreover, the proposed mechanism significantly reduces

the packet loss with a minimum overhead of the controller CPU. The emulation results

increase the overall performance of the SDNs and make possible to handle unexpected load

fluctuations while maintaining a continuous network operation, even when there is a control-

ler failure. The paper is an initial attempt towards handling the reliability, scalability, interop-

erability, and fault-tolerance.

The remaining of the paper is organized as follows: Section 2 gives a brief overview of the

SDN architecture. Section 3 discusses related work of distributed SDN controller in terms of

scalability and performance. Motivations that lead to consider distributed controller clustering

is discussed in section 4 and 5. Section 6 presents the proposed distributed controller architec-

ture. Experiment setup and system evaluation are detailed in section 5. Finally, section 6 con-

cludes the paper.

2. SDN network architecture

SDN is a new concept in computer networking, which promises to simplify network control

and management and also support innovation through network programmability [7].

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0174715

However, the traditional network is designed and implemented from a large number of net-

work devices such as switches, firewalls, routers with more complex controls and protocols.

The software is embedded on the network devices which require image updating whenever

new features are available for its updates. Network engineers are responsible for configuring

various network devices, which is a challenging and error-prone task for medium to large-

scale networks. Therefore, the separation of the control plane (software) from the data plane

[8] (hardware) in SDN is needed to provide more flexible, programmable, cost efficient and

innovative network architecture [9]. SDN was first introduced and promoted by Open Net-

work Foundation (ONF) to address the aforementioned issue. The SDN architecture logically

centralizes the network intelligence in the software-based controllers at the control plane.

The network devices (data plane)[8] simply acts packet-forwarding devices that can be pro-

grammed using an open interface called OpenFlow [10]. The separation of the control plane

from the data plane enables easier deployment of new technologies and applications; network

virtualization [11] and various middleboxes can be consolidated into a software control [12].

The separation of the control and data plane is compared to an operating system and the com-

puter hardware which is illustrated in Fig 1; where the controller acts as an operating system

and the forwarding devices (switches) act as the hardware devices (CPU, memory, storage).

The devices are located in the south of the controller whereas network applications are located

in the north of the controller. The network engineer develops customized network applications

to perform various tasks such as load balancing, routing, firewall as well as traffic engineering.

3. Related work

Distributed controller architectures with more than one controller could be used to address

some of the challenges of a single SDN controller [13] placement such as availability. In fact, a

vast majority of networks contain duplication as a means to ensure the availability of the sys-

tem. Furthermore, multiple controllers can reduce the latency or increase the scalability and

fault tolerance of the SDN deployment. However, this architecture increases the lookup over-

head of communication between switches and multiple controllers. A potential downside of

this approach is to maintain the consistent state in the overall distributed system. The network

applications will act incorrectly when the global view of the network state is inconsistent [6].

There has been a considerable amount of research work on distributed controller platforms

such as Onix, HyperFlow, Kandoo, DISCO, Elasticon and Pratyaastha, which suggest the

placement of multiple copies of SDN controllers throughout the control plane to provide scal-

ability for larger networks and traffic loads. Onix [14] is a distributed controller for large scale

networks that implements multiple SDN controllers. Onix handles the distribution and collec-

tion of information from switches and distributes controls appropriately among various con-

trollers. A similar system with a distributed control platform is HyperFlow [15] which is an

application of the NOX [16] controller that can handle state distribution between distributed

controllers through a push/subscribe system based on the WheelFS [17] distributed file system.

However, HyperFlow can only handle a few thousand events per second and anything beyond

that is considered a scalability limitation. Kandoo [18] distributes controller states by placing

the controllers in a two level hierarchy comprising a root controller and multiple local control-

lers. The system does not allow the controllers within a tier to communicate with one another

and limit the usage of the second tier services that requiring a global network view. ElastiCon

[19] proposes a controller pool, which dynamically grows or shrinks according to the traffic

conditions. Besides, the workload is dynamically distributed among the controllers. Pra-

tyaastha [20] proposes a novel approach for assigning SDN switches and partitions the SDN

application state to distributed controller instances. As observed from the existing distributed

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 3 / 19

https://doi.org/10.1371/journal.pone.0174715

controller architectures, the single point of failure of SDN controller was solved using multiple

distributed controllers. However, the solution presented various challenges such as the net-

work state distribution, the network topology consistent state, the master-selection issue and

etc. As a result, this research work was carried out to address these issues.

4. Motivations

The common perception that the possibility for the controller to become a single-point-of-fail

or a bottleneck of the network led to raising serval issues such as scalability, reliability, and per-

formance. Numbers of research papers proposed distributed controller clustering to address

these issues. In this section, we discuss these problems following by the placement of the con-

troller in terms of distributed controller clustering.

4.1 Scalability

Decoupling the control plane from the data plane presents a complexity in standardizing the

APIs between both planes which may lead to scalability limitations[21]. The controller

becomes a bottleneck when a certain number of connected switches and end hosts, initiates

more flow request than the controller can handle [22]. A study on the NOX controller has

shown that the controller can handle 30K requests/sec [23]. This can be sufficient for a small

to medium size network but becomes a bottleneck for a campus network or a data centre

Fig 1. Software defined network architecture.

https://doi.org/10.1371/journal.pone.0174715.g001

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0174715.g001
https://doi.org/10.1371/journal.pone.0174715

network. This is due to a large data-center network is consisting of 2 million emulated virtual

switches that generate 20 million flows per second [23].

The flow-setup process increases the controller load. Besides, the network broadcast over-

head and the increase of flow table entries impose limitations on the network scalability [24].

[25] proposed a distributed flow-management architecture (DIFANE), which can scale up to

meet a large number of switches that generating huge flow requests. In another solution, Devo-

Flow [26] proposed an approach in which micro-flows are managed in the data plane and the

huge flows are managed by the controller, thereby, reducing the controller load and maximiz-

ing network scalability.

4.2 Performance

An important performance metric of SDN is the flow-setup rate and flow-setup delay as SDN

uses a flow-based technique [24]. Every flow is required to go through the controller during

the flow setup process. The controller decides on the flow of traffic [27], and then, installs the

flows on the switch. However, the switches are capable of generating more traffic beyond the

capability of the SDN controller. For example, a controller software installed on a server over a

10 Gbps link that is in charge of switches capable of generating 1.2TB per sec of traffic [25].

Therefore, a controller may take tens of milliseconds to install a flow on the switch. In order to

overcome the limitations, the factors affecting flow-setup time should be considered. Some key

factors such as the processing and I/O performance of the controller were identified by [24].

4.3 Reliability

The SDN controller presents a single point of failure and hence the controller reduces the

overall network availability in SDN [28]. In the traditional network, when there is a link failure

or device failure, the network traffic is rerouted through another route or a nearby device to

maintain a continuous flow of traffic. However, when a central controller fails in an SDN net-

work, the whole network may collapse. To address this challenge, the controller is configured

with a backup controller to increase network reliability [24]. Distributed controller architec-

ture can be used to increase network reliability but the memory synchronization between mul-

tiple controllers must be maintained to avoid inconsistency in the network state [24]. The

controller clustering in SDN can be used to enable continuous network availability. In the

case of a controller failure, another controller in the cluster can continue to push flows to the

switches, thereby providing a reliable network. The next section presents the related works on

distributed controller architecture and controller placement techniques in SDN.

5. Controller placement problem

A study focusing on the Beacon controller [10] showed that a single SDN controller could han-

dle 12.8 million new flows per second on a 12 cores machine, with an average latency of 24.7

ms for each flow. However, to increase scalability, reliability, robustness and fast failover, [29]

recognized that the logically centralized controller must be physically distributed, as a single

SDN controller architecture presents a single point of failure. Besides, the controller reliability

will be affected when the switches in a network initiate more flow that the controllers can han-

dle. A reliability-aware controller placement problem was proposed by [30] with its main

objectives was to place a given number of controllers in a certain physical network such that

the pre-defined objective function is optimized. The reliability issue is addressed as a place-

ment metric that is reflected by the percentage of valid control paths. Although a tradeoff

between reliability and latency shows that additional latency was incurred using the research-

er’s algorithm.

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 5 / 19

https://doi.org/10.1371/journal.pone.0174715

In the controller placement problem, [31] developed a centralized algorithm in which a

centralized controller decided the number of controllers required and the placement in the

network. Although the solution is topology dependent, but, when the network grows, the

solution becomes non-scalable. [32] did not address the dynamic sharing of load between the

controllers in the changing network traffic instead the research was only focused on the propa-

gation delay. [32] addressed the problem of controller placement to maximize the reliability of

control networks and performed an evaluation of the trade-offs between optimizing for reli-

ability and latency.

A fast failover for controlling traffic in SDN was presented by [33]. The authors initiated

the study of controller placement for resilience and proposed a min-cut based algorithm for

network partitioning and controller placement. The solution is to minimize the interruption

between controller and switch links with no backup outgoing links. However, this approach

cannot be applied to the environments where multiple controllers are required.

DevoFlow [26] proposed to pre-install the wildcard rules in the switches that can replicate

themselves for the mice flows to create specific flow rules. The switches have the intelligence to

detect elephant flows. Elephant flows are an extremely large stream of flows. Similarly, [25]

developed DIFANE, in which the controller generates the forwarding rules, but, the controller

is not involved in the setup of each new flow. However, both DevoFlow and DIFANE require

some changes to the switches and clearly contradict the goals of SDN [34].

The impact of placing of multiple controllers in SDN was analyzed in a dynamic controller

provisioning setting by [28]. Besides, the author proposed a capacitated controller placement

algorithm to minimize controller load because the controller load is a critical factor in SDN-

based networks. The algorithm significantly reduced the number of required controllers and

the maximum load of a controller.

The location and number of the controller(s) placed in SDN play a key role in the reliability

and the performance of the network. A single SDN controller presents a single point of failure.

The entire SDN network will collapse in the event that the controller fails.

Fig 2 shows different controller placement scenarios using one or two controllers with five

switches. In scenario 1, a single controller controls the switches and in the other scenarios with

two controllers each, either switch can be connected to any of the controllers. The first sce-

nario with one controller connecting the five switches is less reliable than the other scenarios

because a single controller presents the single point of failure problem. The use of more than

one controller also affects the reliability of the network, for instance, in the second and third

scenarios where both are with two controllers but placed differently, the third scenario is more

reliable than the second scenario; because when the link between switch A and switch B fails in

the second scenario, the communication path between switch A and its controller is broken

but when there is any link failure in the third scenario, there will be at least one communica-

tion path available, which makes it more reliable than the second scenario. The way the

switches are connected to the controller also affects the reliability of the network because, in

the fourth scenario, the switches are placed in exactly the same locations as the third scenario

but this time switch A is controlled by controller 1 in the fourth scenario instead of controller

2. Therefore, this makes the fourth scenario less reliable than the third scenario because when

there is a link failure between switch B and switch C, the communication link from both switch

A and switch B to their controller which is controller 1 will be broken. As regards this observa-

tion, the controllers in the proposed system are placed using the capacitated controller place-

ment algorithm CCPP. The (CCPP) considers the load of the controllers for its placement

algorithm. The aim is to reduce the number of required controllers and analyze the load of

controllers, which is mainly processing packetIn events and delivering the events to the appli-

cations. The CCPP was defined as a variant of the k-center problem and has two phases. In

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0174715

phase one, the lower bound of radius is obtained in binary search and in phase two, the radius

is increased from lower bound until a placement is found The algorithm considers only possi-

ble distances in phase one i.e. the distance between any pair of locations rather than all integers

in a given range that ensures a faster convergence. The binary search converges until the step

is less than 1; it requires more iteration than searching in possible distances because the possi-

ble radius must be one of the distances, searching in possible distances will not omit the result

radius. This ensures that the algorithm always finds the exact location.

6. Proposed architecture

Our proposed architecture is based on distributed controller clustering in SDN that consists

of two different types of controllers; an open source and commercial based controllers. Both

types of controllers having different SDN networks. Each controller is setup within a cluster of

three nodes; the controllers in the each cluster are configured in active mode with one of the

controllers acting as the primary controller as shown in Fig 3. The mode provides load balanc-

ing and sharing; and network consistency among the entire cluster. In our proposed architec-

ture, when a primary controller fails then any other controller among the cluster becomes the

primary controller based on a predefined priority configuration, thus ensuring a highly avail-

able of SDN architecture. The proposed architecture is designed and implemented using

ONOS and HP VAN SDN controllers configured on Amazon EC2 cloud servers. ONOS and

HP VAN SDN controllers are installed and configured on different sets of three Amazon EC2

cloud servers. All servers are running Ubuntu server.

Fig 2. Illustrated controller placement options.

https://doi.org/10.1371/journal.pone.0174715.g002

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0174715.g002
https://doi.org/10.1371/journal.pone.0174715

This research work presents a distributed controller clustering in SDN to address the single

point of failure problem. The proposed method also uses clustering to solve the state distribu-

tion, data sharing and consistency problems of distributed SDN architectures. Fig 3 shows the

architecture of the proposed system which consists of multiple controllers that are grouped in

a cluster. Each controller in a cluster is a “team member” but one controller is assigned as the

team manager (Primary Controller). The clustering is configured on one of the controllers and

it is automatically propagated to the other controllers in the team, regardless of which control-

ler becomes the team manager. Once the clustering configuration is completed, the team man-

ager (Primary Controller) performs the configuration and monitoring of the controllers and

their switches. If the primary controller goes down, the controller with the highest priority in

the cluster becomes the team manager (Primary controller)[35]. When the failed primary con-

troller recovers, it resumes operation only as a team member in the cluster. To configure the

controllers in clusters for the proposed technique, the following requirements are considered:

• A cluster size of at least three controllers

• All controllers in the cluster must be running the same controller version

• An IP address is required for each controller

• An IP address is assigned to the cluster.

In Fig 3, the clustering A used VAN SDN controller that installed on three different Ama-

zon EC2 servers running Ubuntu server edition 14.0 64-bit LTS. The network topology and

environment are designed to meet the requirement defined by HP where there is no looping of

OpenFlow switches and all the switches must be controlled by the controller. The VAN SDN

Fig 3. Proposed distributed controller clustering.

https://doi.org/10.1371/journal.pone.0174715.g003

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0174715.g003
https://doi.org/10.1371/journal.pone.0174715

controller can be installed in two modes: Standalone mode and Team mode. In the proposed

method, the controllers are installed using the Team mode to provide high availability with

automatic failover, resulting in a continuously managed network in the event that one control-

ler in the team goes down. In the B clustering, the ONOS controller is installed on the Amazon

EC2 Ubuntu Server 64-bit 14.0 LTS edition on three separate servers. We used the Rest API

for clustering multiple controllers to share data, network consistency state and manage Open-

Flow switches. The switches are connected to the master controller with the IP addresses indi-

cating the standby controllers for each connected switch. ONOS controllers setup in an equal

mode (Active–Active), the clustered controllers perform load balancing by distributing the

number of connected OpenFlow switches between instances of the controllers in the cluster

7. Experiment setup and evaluation

In order to evaluate our proposed clustered distributed controller architecture. We conducted

two experiments. The first experiment focuses on latency and the second experiment is carried

out to capture the number of dropped packets (i.e. packet loss). In this section, an experimen-

tal step that includes tools and tests configuration for both experiments are detailed.

7.1 Network topology

The research work uses a standard network topology from the Internet topology zoo (ITZ),

which is a store for data of network topologies in graphical descriptions. Network operators

publish information about their networks, such that the Internet topology zoo database con-

tains topologies from AboveNet to Zamren [36]. All topologies are in a graphical format that

uses the extensible markup language (XML) as description basis. The graphical format pro-

vides enough information to build up testbed networks with respect to real world topologies.

Agis Network topology is used in this research work. The network contains twenty-five (25)

switches, twenty-five (25) hosts with thirty (30) connected links. Fig 4 shows the Agis network

topology map with all connected end points. Fig 5 depicts a section of the Agis network topol-

ogy in graphml and the transformed python script of the topology. The mininet will emulate

the network based on the python script of the topology.

Fig 4. Agis network topology map.

https://doi.org/10.1371/journal.pone.0174715.g004

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 9 / 19

https://doi.org/10.1371/journal.pone.0174715.g004
https://doi.org/10.1371/journal.pone.0174715

7.2 Distributed Internet Traffic Generator (D-ITG)

Distributed Internet traffic generator is an application that is capable of generating traffic at

the application, transport and network layers. D-ITG is used as a network measurement tool

to capture the performance metrics such as delay, jitter and packet loss. Fig 6 shows the steps

to generate single-flow traffic between two hosts.

Fig 5. Agis topology in graphml and python script.

https://doi.org/10.1371/journal.pone.0174715.g005

Fig 6. D-ITG single flow traffic.

https://doi.org/10.1371/journal.pone.0174715.g006

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0174715.g005
https://doi.org/10.1371/journal.pone.0174715.g006
https://doi.org/10.1371/journal.pone.0174715

In Fig 6, the ITGRecv feature of the D-ITG is run to open up a listening TCP/UDP socket

for incoming traffic reception requests on the receiver. On the other hand, the ITGSend fea-

ture is run on the sender. In this example, the sender will send one TCP flow with a constant

payload of 100 bytes in size and a constant packet rate of 10 packets per second for 15 seconds

(15000ms).

7.3 Experimental setup for flow setup delay

The flow setup delay (latency) is the time taken for the controller to process a single packet.

The test is carried out using Cbench. Controller bench marker (Cbench) is an application for

testing SDN OpenFlow controllers by generating new flows of packetIn events towards the

controller. Cbench is run in the latency mode using controller clustering of three nodes and

three nodes without having to cluster. Cbench sends a PACKET_IN message to the controller

and waits for the response before sending another packet. In this experiments, we used Agis

Network topology, a standard network topology from the Internet topology zoo (ITZ), Tables

1 and 2 show the controller information that is used to carry out the flow setup delay (latency)

test for the HP VAN SDN controller.

Table 3 shows the test configuration metrics for both controllers. The metric used for the

test is the latency and the test mode is using an incremental number of switches. The test starts

with 25 switches with each switch connected to 20 hosts and subsequently, the switches are

increased by 25 switches per test until maximum limit of 150 switches. The number of hosts

connected to each switch remains as 20. The test duration is 10000 seconds per iteration and

the total number of iteration is counted as 10.

The controllers connect to the switches based on the real network topology from the

Internet topology zoo. The controller IP address is passed to the network topology and trans-

formed it into the python script. Afterwards, Mininet is used as the network emulator to

Table 1. HP VAN SDN controller information.

Controller Information

Controller Name HP VAN SDN

Software builds version 2.5.6

Controllers IP Address 10.0.0.128, 10.0.0.53 and 10.0.0.52

Controller Operating

Mode

Distributed controllers without clustering and distributed controllers with

clustering

Connection Port 6633

Connection Mode TCP

OpenFlow Version 1.0

https://doi.org/10.1371/journal.pone.0174715.t001

Table 2. ONOS controller information.

Controller Information

Controller Name ONOS

Software builds version Cardinal 1.2.0

Controller IP Address 10.0.0.47, 10.0.0.53 and 10.0.0.52

Controller Operating

Mode

Distributed controllers without clustering and distributed controllers with

clustering

Connection Port 6633

Connection Mode TCP

OpenFlow Version 1.0

https://doi.org/10.1371/journal.pone.0174715.t002

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0174715.t001
https://doi.org/10.1371/journal.pone.0174715.t002
https://doi.org/10.1371/journal.pone.0174715

emulate the experiment testing. In our experimental setup, we have used a real topology

from the internet topology zoo. The network topology consists of twenty-five (25) switches

and twenty (20) hosts with thirty (30) links. Cbench will be used as the performance tool to

test the flow setup delay (latency) using a varying number of switches (25, 50, 75, 100, 125

and 100) with each switch connected to 20 hosts. We have conducted each test with a differ-

ent number of iterations to have an optimal average result. The test will run for 10000 sec-

onds, each for 10 iterations.

7.4 Experiment setup for packet loss

This experiment used ONOS and HP VAN SDN controllers configured on Amazon EC2

cloud servers. ONOS and HP VAN SDN controllers are installed and configured on different

sets of three Amazon EC2 cloud servers. All servers are running Ubuntu server edition 14.04

LTS version. The controller will connect to the switches based on the real network topology

from the Internet topology zoo. The controller IP address is passed into the network topology

and transformed into the python script. Then, Mininet will be used as the network emulator to

conduct the experiment testing. The packet loss test is carried out to capture the number of

dropped packets during controller failover test. The test is implemented using the distributed

controller architecture and the proposed controller clustering as well. The Distributed Internet

traffic generator (D-ITG) is used to generate traffic. The controller failover test is carried out

by streaming continuous UDP packets between two end devices using the D-ITG tool. The

total numbers of packets loss are captured during the test. Table 4 shows the two controller’s

setup parameters for the packet loss test. The metric that is used for the test is the packet loss

in % and the test mode is using an incremental number of packets sent. The test starts with

sending 1000 packets with the size of 64KB each and subsequently, increases by 1000 packets

until the maximum of 5000 packets with a total size 320000 KB.

Table 3. Test configuration metrics for both controllers.

Test Configuration

Metric Latency

Number of switches 25, 50, 75, 100, 125, 150

Number of Hosts 20 per switch

Test mode Increment Mode

Test Duration 10000 (s) per iteration

Number of Iteration 10

Flow measurement Packet_out

https://doi.org/10.1371/journal.pone.0174715.t003

Table 4. Packet loss controller setup.

Controller Type ONOS and HP VAN SDN

Number of Cluster Nodes (CN) Three (3)

Redundancy Mode (RM) Active–Active

Number of Switches interconnected 25 OpenFlow Switches

Number of Hosts interconnected 20 hosts

OpenFlow Version 1.0

Channel Type TLS

Type of Packet UDP

Total Packets sent 1000, 2000, 3000, 4000 and 5000

Packet Size (KB) 64

https://doi.org/10.1371/journal.pone.0174715.t004

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0174715.t003
https://doi.org/10.1371/journal.pone.0174715.t004
https://doi.org/10.1371/journal.pone.0174715

We use a standard network topology from the Internet topology zoo (ITZ), which is a store

for data of network topologies in graphical descriptions. Network operators publish informa-

tion about their networks, such that the Internet topology zoo database contains topologies

from AboveNet to Zamren [36]. All topologies are in a graphical format that uses the extensi-

ble markup language (XML) as description basis. The graphical format provides enough infor-

mation to build up testbed networks with respect to real-world topologies. Agis Network

topology is used in this research work. The network contains twenty-five (25) switches,

twenty-five (20) hosts with thirty (30) connected links.

8. Evaluation

In this section, we have evaluated our proposed architecture and discussed its output results in

detail. The tests measure the latency and packet loss using the normally distributed controller

architecture and the proposed controller clustering architecture in SDN. The controller flow

setup delay (latency) test for HP VAN SDN and ONOS controllers are carried out to measure

the time taken by the controllers to setup a flow under distributed controller architecture and

the proposed controller clustering.

Fig 7 shows the performance chart for the HP VAN SDN latency test using distributed con-

troller clustering and without clustering. The results show the distributed controller clustering

is better than distributed controller without having to cluster. However, when the number of

switches is less than 75, the latency of distributed controller clustering is higher than the dis-

tributed controller without clustering. This may be having extra synchronization overhead in

distributed controller clustering. When the numbers of switches increase, the latency of dis-

tributed controller clustering is lesser as compared to distributed controller without having a

clustering. The distributed controller clustering reduces the latency by an average of 8.1%

when the number of switches is more than 75. This may due to clustered controllers operating

Fig 7. HP VAN controller latency result.

https://doi.org/10.1371/journal.pone.0174715.g007

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0174715.g007
https://doi.org/10.1371/journal.pone.0174715

as a single logical controller to the connected switches. With clustering, the processing time for

packetIn messages is reduced.

Fig 8 shows the performance chart for the ONOS controller latency test using distributed

controller clustering and without clustering. When the number of switches is 25, the latency

is 42,309 m for distributed controller clustering as compared to 42,706 for distributed con-

troller without clustering. Similarly, when the number of switches is 150, the latency is

46,249 ms for distributed controller clustering as compared to 46,684 for distributed control-

ler without clustering. This result shows that the distributed controller clustering is better

than distributed controller without clustering. The distributed controller clustering reduces

the latency by an average of 1.6%. This may because have clustered controllers operate in a

coordinated way and each controller is aware of the network state which is shared across

other clustered nodes. Besides, the clustered controllers enable a load balancing function to

redistribute the controller load between different clustered nodes, therefore, offering better

scalability and performance as compared to the distributed controller without clustering.

Fig 9 shows the results of the packet loss test for the HP VAN SDN controllers using the

Fig 8. ONOS controller latency result.

https://doi.org/10.1371/journal.pone.0174715.g008

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 14 / 19

https://doi.org/10.1371/journal.pone.0174715.g008
https://doi.org/10.1371/journal.pone.0174715

distributed controller clustering and without clustering. The results show that the total num-

ber of packets loss increase when the number of packets sent increase. When 5000 UDP

packets with a size of 320000 KB are sent between two end devices, the percentage of packet

loss for distributed controller with clustering is 3.53% as compared to 3.99% for distributed

controller without clustering. The distributed controller clustering is better than distributed

controller without clustering because the proposed clustering method drops fewer packets as

compared to the distributed controller without clustering. This may due to the distributed

controllers having difficulty in handling a coordinated control when there was a controller

failure. The clustered controllers automatically reassign controllers to the switches without

interruptions when a controller fails. This enables SDN-based networks to operate reliably

in the event that a controller fails and reduce the number of packets loss. Fig 10 shows the

results of the packet loss test for the ONOS controllers using the distributed controller clus-

tering and without clustering. The results show that the total number of packets loss increase

when the number of packets sent increase.

Fig 9. HP VAN SDN packet loss.

https://doi.org/10.1371/journal.pone.0174715.g009

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 15 / 19

https://doi.org/10.1371/journal.pone.0174715.g009
https://doi.org/10.1371/journal.pone.0174715

When 1000 UDP packets with a size of 64000 KB is sent between two end devices, no packet

loss for distributed controller with clustering as compared to 0.68% for distributed controller

without clustering. As the number of packets sent is increased to 5000 with a size of 320000

KB, the percentage of packet loss for distributed controller with clustering is 4.15% as com-

pared to 5.22% for distributed controller without clustering.

The distributed controller clustering is better than distributed controller without clustering

because the proposed clustering method drops fewer packets as compared to the distributed

controller without clustering. This may due to the distributed controllers have difficulty in

handling a coordinated control when there was a controller failure. We further validate the

fact that our proposed clustered controller architecture has negligible overheads on the con-

troller’s performance by monitoring CPU usage for 125 seconds. We used sysbench tools to

measure the CPU usage for both controllers i.e., ONOS and HP VAN controller during the

clustering test. The results are presented in Fig 11, at intervals of 25 seconds. We observed that

on an average, the CPU usage did not exceed 18% utilization for ONOS controller, and 21%

for HP VAN controller in the normal operation. Even during the peak of activity, it does not

exceed 35% and 40% utilization reactively.

Fig 10. ONOS packet loss result.

https://doi.org/10.1371/journal.pone.0174715.g010

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 16 / 19

https://doi.org/10.1371/journal.pone.0174715.g010
https://doi.org/10.1371/journal.pone.0174715

9. Conclusion

In this paper, we propose a distributed controller clustering mechanism in SDNs. Multiple dis-

tributed prominent controllers have been configured in a cluster of three nodes in both active

and reactive mode. The controller cluster is placed using the capacitated controller placement

algorithm. The emulation of the proposed clustering mechanism shows promising results. The

result shows that the proposed distributed controller clustering mechanism is able to signifi-

cantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%,

compared to distributed controller without clustering running on HP Virtual Application Net-

work (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. The

result shows that the proposed distributed controller clustering outperforms the existing dis-

tributed controller without clustering in terms of latency, and packet loss with reasonable CPU

utilization. In future, we consider more rigorous experimentation of diverse SDN commercial

controller with different metrics such as flow setup rate (throughput), the number of nodes in

the cluster and various others. Moreover, this research work can be extended to be imple-

mented in commercial SDN-based cloud diverse data-centers infra-structures.

Fig 11. CPU utilization.

https://doi.org/10.1371/journal.pone.0174715.g011

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 17 / 19

https://doi.org/10.1371/journal.pone.0174715.g011
https://doi.org/10.1371/journal.pone.0174715

Author Contributions

Conceptualization: A. Abdelaziz UG.

Formal analysis: SK.

Investigation: A. Abdelaziz.

Methodology: KKRC.

Software: A. Abdelaziz UG.

Supervision: ATF AG.

Validation: ATF.

Visualization: A. Abdelaziz.

Writing – original draft: A. Akhunzada.

Writing – review & editing: HT.

References

1. Khan S, Gani A, Wahab AWA, Abdelaziz A, Ko K, Khan MK, et al. Software-Defined Network Forensics:

Motivation, Potential Locations, Requirements, and Challenges. IEEE Network. 2016; 30(6):6–13.

2. Yazici V, Sunay MO, Ercan AO. Controlling a software-defined network via distributed controllers. arXiv

preprint arXiv:14017651. 2014.

3. Tootoonchian A, Gorbunov S, Ganjali Y, Casado M, Sherwood R, editors. On Controller Performance in

Software-Defined Networks. Presented as part of the 2nd USENIX Workshop on Hot Topics in Manage-

ment of Internet, Cloud, and Enterprise Networks and Services; 2012.

4. Jimenez Y, Cervello-Pastor C, Garcia AJ, editors. On the controller placement for designing a distrib-

uted SDN control layer. Networking Conference, 2014 IFIP; 2014: IEEE.

5. Yang M, Li Y, Jin D, Su L, Zeng L. Opportunistic spectrum sharing in software defined wireless network.

Journal of Systems Engineering and Electronics. 2014; 25(6):934–41.

6. Azodolmolky S. Software Defined Networking with OpenFlow: Packt Publishing Ltd; 2013.

7. Kreutz D, Ramos FM, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S. Software-

defined networking: A comprehensive survey. proceedings of the IEEE. 2015; 103(1):14–76.

8. Khan S, Gani A, Wahab AA, Guizani M, Khan MK. Topology Discovery in Software Defined Networks:

Threats, Taxonomy, and State-of-the-art. IEEE Communications Surveys & Tutorials. 2016.

9. Foukas X, Marina MK, Kontovasilis K. Software Defined Networking Concepts. 2013.

10. Nunes BAA, Mendonca M, Xuan-Nam N, Obraczka K, Turletti T. A Survey of Software-Defined Net-

working: Past, Present, and Future of Programmable Networks. Communications Surveys & Tutorials,

IEEE. 2014; 16(3):1617–34.

11. Urgaonkar R, Kozat UC, Igarashi K, Neely MJ, editors. Dynamic resource allocation and power man-

agement in virtualized data centers. 2010 IEEE Network Operations and Management Symposium-

NOMS 2010; 2010: IEEE.

12. Dixon C, Olshefski D, Jain V, DeCusatis C, Felter W, Carter J, et al. Software defined networking to sup-

port the software defined environment. IBM Journal of Research and Development. 2014;58(2/3):3: 1–

3: 14.

13. Hakiri A, Gokhale A, Berthou P, Schmidt DC, Gayraud T. Software-defined networking: Challenges and

research opportunities for future internet. Computer Networks. 2014; 75:453–71.

14. Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, et al., editors. Onix: A Distributed Con-

trol Platform for Large-scale Production Networks. OSDI; 2010.

15. Tootoonchian A, Ganjali Y, editors. HyperFlow: A distributed control plane for OpenFlow. Proceedings

of the 2010 internet network management conference on Research on enterprise networking; 2010:

USENIX Association.

16. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, et al. NOX: towards an operating system

for networks. ACM SIGCOMM Computer Communication Review. 2008; 38(3):105–10.

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 18 / 19

https://doi.org/10.1371/journal.pone.0174715

17. Stribling J, Sovran Y, Zhang I, Pretzer X, Li J, Kaashoek MF, et al., editors. Flexible, Wide-Area Storage

for Distributed Systems with WheelFS. NSDI; 2009.

18. Hassas Yeganeh S, Ganjali Y, editors. Kandoo: a framework for efficient and scalable offloading of con-

trol applications. Proceedings of the first workshop on Hot topics in software defined networks; 2012:

ACM.

19. Dixit A, Hao F, Mukherjee S, Lakshman T, Kompella R, editors. Towards an elastic distributed SDN con-

troller. ACM SIGCOMM Computer Communication Review; 2013: ACM.

20. Krishnamurthy A, Chandrabose SP, Gember-Jacobson A, editors. Pratyaastha: an efficient elastic dis-

tributed sdn control plane. Proceedings of the third workshop on Hot topics in software defined network-

ing; 2014: ACM.

21. Lee YJ, Riley GF, editors. A workload-based adaptive load-balancing technique for mobile ad hoc net-

works. IEEE Wireless Communications and Networking Conference, 2005; 2005: IEEE.

22. Voellmy A, Wang J, editors. Scalable software defined network controllers. Proceedings of the ACM

SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer

communication; 2012: ACM.

23. Tavakoli A, Casado M, Koponen T, Shenker S, editors. Applying NOX to the Datacenter. HotNets;

2009.

24. Metzler A. Ten Things to Look for in an SDN Controller. 2013.

25. Yu M, Rexford J, Freedman MJ, Wang J. Scalable flow-based networking with DIFANE. ACM SIG-

COMM Computer Communication Review. 2011; 41(4):351–62.

26. Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, Curtis AR, Banerjee S, editors. Devoflow: Cost-

effective flow management for high performance enterprise networks. Proceedings of the 9th ACM SIG-

COMM Workshop on Hot Topics in Networks; 2010: ACM.

27. Lantz B, Heller B, McKeown N, editors. A network in a laptop: rapid prototyping for software-defined net-

works. Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks; 2010: ACM.

28. Hu Y, Wang W, Gong X, Que X, Cheng S. On reliability-optimized controller placement for Software-

Defined Networks. Communications, China. 2014; 11(2):38–54.

29. Feamster N, Rexford J, Zegura E. The road to SDN: an intellectual history of programmable networks.

ACM SIGCOMM Computer Communication Review. 2014; 44(2):87–98.

30. Guan X, Choi B-Y, Song S, editors. Reliability and Scalability Issues in Software Defined Network

Frameworks. Research and Educational Experiment Workshop (GREE), 2013 Second GENI; 2013:

IEEE.

31. HU Y-n, Wang W-d, Gong X-y, Que X-r, Cheng S-d. On the placement of controllers in software-defined

networks. The Journal of China Universities of Posts and Telecommunications. 2012; 19:92–171.

32. Heller B, Sherwood R, McKeown N, editors. The controller placement problem. Proceedings of the first

workshop on Hot topics in software defined networks; 2012: ACM.

33. Beheshti N, Zhang Y, editors. Fast failover for control traffic in software-defined networks. Global Com-

munications Conference (GLOBECOM), 2012 IEEE; 2012: IEEE.

34. Tahaei H, Salleh R, Khan S, Izard R, Choo K-KR, Anuar NB. A multi-objective software defined network

traffic measurement. Measurement. 2017; 95:317–27.

35. Qosmos. http://www.qosmos.com/sdn-nfv/dpi-module-for-vswitch/. [accessed: 22/08/2016]. 2016.

36. Knight S, Nguyen HX, Falkner N, Bowden R, Roughan M. The internet topology zoo. Selected Areas in

Communications, IEEE Journal on. 2011; 29(9):1765–75.

Distributed controller clustering in software defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0174715 April 6, 2017 19 / 19

http://www.qosmos.com/sdn-nfv/dpi-module-for-vswitch/
https://doi.org/10.1371/journal.pone.0174715

