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Purpose: Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of
radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep
learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its perfor-
mance against state-of-the-art automated segmentation algorithms, commercial software, and interob-
server variability.
Methods: Convolutional neural networks (CNNs)—a concept from the field of deep learning—were
used to study consistent intensity patterns of OARs from training CT images and to segment the OAR
in a previously unseen test CT image. For CNN training, we extracted a representative number of posi-
tive intensity patches around voxels that belong to the OAR of interest in training CT images, and neg-
ative intensity patches around voxels that belong to the surrounding structures. These patches then
passed through a sequence of CNN layers that captured local image features such as corners, end-
points, and edges, and combined them into more complex high-order features that can efficiently
describe the OAR. The trained network was applied to classify voxels in a region of interest in the test
image where the corresponding OAR is expected to be located. We then smoothed the obtained classi-
fication results by using Markov random fields algorithm. We finally extracted the largest connected
component of the smoothed voxels classified as the OAR by CNN, performed dilate–erode operations
to remove cavities of the component, which resulted in segmentation of the OAR in the test image.
Results: The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid
glands, submandibular glands, larynx, pharynx, eye globes, optic nerves, and optic chiasm using 50
CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm
to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and
commercial software reported in the literature, and observed that CNNs demonstrate similar or supe-
rior performance on segmentation of spinal cord, mandible, parotid glands, larynx, pharynx, eye
globes, and optic nerves, but inferior performance on segmentation of submandibular glands and
optic chiasm.
Conclusion: We concluded that convolution neural networks can accurately segment most of OARs
using a representative database of 50 HaN CT images. At the same time, inclusion of additional infor-
mation, for example, MR images, may be beneficial to some OARs with poorly visible boundaries.
© 2016 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12045]
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1. INTRODUCTION

Head and neck (HaN) cancer including oral cavity, salivary
glands, paranasal sinuses, and nasal cavity, nasopharynx,
oropharynx, hypopharynx, and larynx cancers is among the
most prevalent cancer types worldwide.1 In the last decades,
high-precision radiation therapy such as intensity-modulated
radiation therapy (IMRT), volumetric-modulated radiation
therapy (VMAT), and proton therapy have been widely used
for HaN cancer treatment due to their ability for highly con-
formal dose delivery. To minimize post-treatment complica-
tions, organs-at-risks (OARs), such as brainstem, spinal cord,
mandible, larynx, pharynx, parotid, and submandibular
glands, and, in the case of nasopharyngeal cancer, eyes, optic
nerves, and chiasm, must be accurately delineated. The

complexity of OARs morphology and imperfection of imag-
ing devices make manual delineation prone to errors and time
consuming.2 There is therefore a great demand for more
accurate OAR delineation and for considerable reduction in
the amount of manual labor in HaN treatment planning.3

Computed tomography (CT)-based treatment planning
remains to be the mainstay in current clinical practice for its
high acquisition speed, high spatial accuracy and resolution,
and the ability to provide relative electron density informa-
tion. However, CT images have low contrast of soft tissues
and are usually corrupted by metallic artifacts which limit
applicability of intensity-based segmentation algorithms. As
the general appearance of OARs and surrounding tissues
remains similar among CT images of different patients, there
is a certain confidence that previously analyzed training
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images can be used to segment a new test image. The most
straightforward approach is to align, that is, register, training
images, so-called atlases, to the test image and correspond-
ingly propagate the training OAR annotations. Such atlasing
has been receiving considerable attention in the literature on
HaN segmentation.3 Nonrigid registration of three-dimen-
sional (3D) images is a relatively slow procedure, therefore
early HaN segmentation methods registered a single atlas
with annotation to the test image.4–6 This atlas was usually
defined using an arbitrary training image, which negatively
affected registration performance if the selected image was
not representative.4,6,7 Such bias can be reduced when the
atlas is defined using an artificial image with standard anat-
omy8,9 or the average image constructed by merging several
training images.5,10,11 It is also possible to choose a new atlas
image for every segmentation according to its similarity to
the test image.12 A single atlas, however, cannot guarantee
accurate segmentation results in the presence of pathologies
and tumors when the morphology of OARs is not similar
enough between the atlas and test image. Multiatlas segmen-
tation is less sensitive to interpatient anatomy variability and
produces more accurate segmentation results if a high num-
ber of atlas images are used.13–15 The registrations for all
atlases are usually combined with simultaneous truth and per-
formance level estimation (STAPLE),16 similarity and truth
estimation (STEPS)16 and joint-weighted voting17 techniques.
When validated on HaN muscles, lymph nodes, spinal cord,
and brainstem, multiatlas segmentation was shown to be
slower but more accurate than single atlas segmenation.12

Apart from atlas selection, the results strongly depend on the
parameters of the applied registration algorithm. In the litera-
ture, registration of two HaN images was based on simple
intensity-,18 mutual information-,4,15,19–21 and Gaussian local
correlation coefficient-based4 similarly measures, and optical
flow,8 consistent volumes,22 scale-invariant features,23 locally
affine block matching,5,10,16 demons,24 fluid dynamics25

radial basis function26, and B-splines11,13,15,20 for controlling
registration transformations. It was also concluded that HaN
registration convergence improves considerably when anchor
landmarks located at anatomically relevant regions such as
vertebrae and mandible corners are used.20,27,28 Landmark-
assisted atlasing demonstrated better performance in compar-
ison to standard atlasing on segmentation of lymph nodes,20

brainstem,27 and individual tongue muscles.28

Alternative HaN segmentation approaches applied fast
marching,29 mass springs for lymph nodes modeling30 para-
metrical shapes for eye globes and optical nerve modeling,31

active contours,32 deformable meshes,24,33 principal compo-
nent-based shapes,11,19 graph cut,13,17 and superpixels.15 In
general, shape-based approaches demonstrated exceptional
performance on segmentation of heart34 and spine,35–37 and
annotation of X-ray head images.38,39 Researchers also stud-
ied the performance of machine learning algorithms such as
k-nearest neighbors and support vector machines trained on
intensity, gradient, texture contrast, texture homogeneity,
texture energy, cluster tendency, Gabor and Sobel fea-
tures.21,24 The above mentioned algorithms covered the

complete set of OARs in the HaN region including brain-
stem,4,7–12,14,16–18,24–27,40,41 cerebellum,9,13,14,17,25,41 spinal
cord,4,13,16,18,40,41 mandible,4,10,18,24,42–45 parotid glan-
ds,4,7,10,11,15,16,18,21,24,33,40,44,46 submandibular glands,4,24,46

pituitary gland,9 thyroid,13,41,47 eye globes,9,13,14,17,31,40,41 eye
lenses,13,14,16,17,41 optic nerves,5,9,14,26,31,41 optic chi-
asm,5,9,16,26,31 larynx,40,46 pharyngeal constrictor mus-
cle,46,48 pterygoid muscles,4 tongue muscles,28 and lymph
nodes.4,6,12,18–20,24,25,29,30,32,49 Despite the considerable
attention, the demonstrated results are still not satisfactory
for the clinical usage and automated methods cannot accu-
rately segment OARs in the presence of tumors and severe
pathologies.

In the work, we propose the first deep learning-based algo-
rithm for HaN CT image segmentation. Deep learning tech-
niques such as convolutional neural networks (CNNs) have
demonstrated impressive performance in computer vision
and medical image analysis applications.50 Being supervised,
CNNs first study the appearance of objects of interest in a
training set of segmented images. When a previously unseen
test image arrives, CNNs mark the voxels that have an appear-
ance similar to the corresponding OARs. The performance of
CNNs was validated on segmentation of spinal cord, mand-
ible, parotid glands, submandibular glands, larynx, pharynx,
eye globes, optic nerves, and optic chiasm. The paper is orga-
nized as follows.

Section 2 presents the theoretical concept of CNNs and
the way we used CNNs for image segmentation. In Section 3,
we described a validation database of HaN CT images and
the results of CNN-based segmentation. We compared the
results with state-of-the-art in Section 4, and concluded in
Section 5.

2. METHODS

2.A. Convolutional neural networks

Convolutional neural network is a special kind of mul-
tilevel perceptron architecture, where an input image
passes through a sequence of classification tests that can
extract and recognize its consistent intensity patterns and
finally make a prediction about the image according to
these patterns. In contrast to alternative machine learning-
based algorithms, CNNs take spatial information into
account so that neighboring pixels are analyzed together.
This behavior combined with abilities for generalization
makes CNNs superior to other approaches on a number
of computer vision applications, such as handwritten text
recognition, face detection and object classification.51 A
CNN is organized as a set of different layers, where out-
put of a current layer is used as an input for the next
layer. A convolution layer—the main component of CNNs
—serves to generate a predefined number of rectangular
features computed from the output of the previous layer
or the original image, if this convolution layer is posi-
tioned at the beginning of a CNN. As a result, convolu-
tion layers extract elementary features of the input such
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as edges and corners, which after passing through next
layers are combined into more complex high-order fea-
tures. A convolutional layer is usually followed by a recti-
fied linear units (ReLU), hyperbolic tangent, or sigmoid
layer that introduces nonlinearity to the convolution layer
response and reduces overfitting and vanishing or explod-
ing gradient effects. A pooling layer then partitions the
input into nonoverlapping rectangles and returns the maxi-
mum or average value of each rectangle. This makes
CNNs more robust against local transformations of the
input as pooling layers are invariant to small shift, rota-
tion and scaling. Moreover, pooling considerably reduces
the input size and consequently the number of network
parameters, and therefore prevents CNN overfitting. Stan-
dard networks composed of convolution-ReLU-pooling
layer sets are sometimes sensitive to initialization and
require fine parameters tuning in order to avoid gradient
explosions. The recent study has demonstrated that batch-
based normalization (bNorm) of each convolution layer
makes networks less sensitive to input parameter initializa-
tion and increases network convergence more than 14
times.52 Finally, the robustness of the network can be
improved by random removal of some neurons, which is
performed using dropout layers.53 After a sequence of
convolution-bNorm-ReLU-dropout-pooling layer sets, the
input image shrinks into a small set of high-order features
and finally passes through fully connected layers that gen-
erate the network output (Fig. 1).

In order to use CNNs for image annotation, let us have a
training set T of 3D images with an object (objects) of interest
annotated. An image patch of each voxel that belongs to the
object of interest contains some intensity patterns that make
it distinguishable from the patches of other voxels in the
image. The goal of a CNN is to correctly capture these pat-
terns, and use them to identify object voxels in unseen
images. As it was shown in the recent studies, CNNs trained
on a set of tri-planar patches, that is, square intensity neigh-
borhoods extracted at three orthogonal cross-sections and
centered at the target voxel, exhibit similar segmentation per-
formance but dramatic acceleration in comparison to CNNs
trained on 3D patches.54 We therefore designed a tri-planar
patch-based network with three sets of convolution-bNorm-
ReLU-dropout-pooling layers, a fully connected layer and a

softmax layer that converts network output into classification
prediction values (Fig. 1).

2.B. Detection of organs-at-risks

In the training set T of HaN CT images, experienced clini-
cians defined objects of interest as OARs including spinal
cord, mandible, parotid glands, submandibular glands, eye
globes, optic nerves, optic chiasm, larynx, and pharynx. The
goal is to detect and segment these OARs in a previously
unseen target image. Although initial OAR detection is not
mandatory, it considerably reduces segmentation computa-
tional costs as only voxels that may geometrically belong to
OARs are analyzed. For this aim, we automatically detect the
patient’s head, which is used as a reference point for approxi-
mation of OAR positions. Following the geometry of the
human head, we observe that the image gradients computed
at skull boundaries are, in general, oriented toward the brain
center, which allow us to apply the existing algorithm devel-
oped for detection of spherical structures, such as femoral
heads.55 For every voxel x with gradient magnitude jrIxj
above a certain threshold, indicating that voxel x may belong
to skull surface, we compute both positiverIx and negative
�rIx gradient vectors. A high number of these gradient vec-
tors intersect around the center of the skull, as a high number
of gradients rIx and �rIx are oriented toward the head cen-
ter (Fig. 2). We therefore search for the reference voxel where
the number of intersected gradients is the highest, and define
it as the head center. The regions of interest for each OAR are
approximated according to this center point.

2.C. CNN-based segmentation of head and neck CT
images

To segment each object on a previously unseen test image,
the corresponding CNN must be trained to recognize the
intensity appearance of voxels that belong to the object and
distinguish it from the intensity appearance of surrounding
background voxels. During the network training phase for a
selected object of interest S, we extracted a set Pþ

I of j voxels
randomly sampled with repetitions from the set of voxels that
belong to the binary mask that represents object S in image

FIG. 1. A schematic illustration of the convolutional neural network architecture. Three orthogonal cross-sections around target voxel define the input of the net-
work that consists of three stacks of convolution, ReLU, max-pooling layer, and dropout layers, fully connected and softmax layers. [Color figure can be viewed
at wileyonlinelibrary.com]
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I 2 T . A set P�
I of the same cardinality of j voxels is ran-

domly sampled with repetitions from voxels that do not
belong to object S but are located not closer than r mm from
the nearest object voxel in image I 2 T . We do not consider
voxels that are located further than R mm from object S

because its position is restricted according to the patient anat-
omy and imaging protocol, and very distant voxels will there-
fore not be analyzed during segmentation and cannot enrich
the corresponding CNN. For each voxel from Pþ

I ðP�
I Þ, we

extract tree orthogonal patches from image I that define a
positive (negative) training sample. A complete set of j � jT j
positive and j � jT j negative training samples, generated for
all images from T , is used by CNN for modeling the intensity
appearance pattern that separates object S from background56

(Fig. 3). The trained network is next applied to classify vox-
els in the region of interest of the test image where the corre-
sponding OARs are expected to be located. The classification
result of the network computed for a voxel x passes through
the softmax layer to obtain the probability PS

x that voxel x
belongs to object S.

2.D. Markov random fields and segmentation
postprocessing

Segmentation with CNNs usually produces smooth proba-
bilities PS

x because voxels located close to each other have a
similar intensity appearance. However, CNNs do not explic-
itly incorporate voxel connectivity information and the mor-
phology of OARs. As the morphology of OARs strongly
depends on the location of the tumor and is often poorly
predictable, we rely on connectivity information and apply
Markov random fields (MRF) to improve CNN results.
According to the MRF formulation, the target 3D image can
be described as a graph G ¼ fV; eg, where vertices V corre-
spond to image voxels, and edges e connect vertices that cor-
respond to neighboring voxels. For each object S, each vertex

can be assigned label 1 if it belongs to S, and assigned 0
otherwise. The label of a voxel depends on its similarity to
object S, that is, probability PS

x, and similarity to object S of
its neighbors:

LS ¼ argmin
lx

X
x2V

/ðPS
x; lxÞ þ

X
ðx;yÞ2e

wx;yDðlx; lyÞ
0
@

1
A;

where function / PS
x; lx

� �
¼ lx ¼¼ 1ð Þ?1� PS

x : P
S
x defines

the cost of assigning label 1 to voxel x as 1� PS
x , and the cost

of assigning label 0 to voxel x as PS
x . Function

wx;y ¼ expð� ðPS
x�PS

yÞ2
2r2 Þ measures similarity between probabil-

ities PS
x and PS

y of voxels x and y, respectively, and Dðlx; lyÞ is
an indicator function that equals 0 if labels lx ¼¼ ly, and
equals 1 otherwise. The first term of Equation 1 tries to

assign voxel labels according to the probabilities PS
x com-

puted by the CNN, whereas the second term tries to make
labels of all neighboring voxels, that is, labels of all voxels in
the image, the same. Searching for the equilibrium between
these two terms usually makes the resulting label mask
smooth and suppresses both small groups of voxels with high

probabilities PS
x surrounded by voxels with low probabilities

PS
x , and vice versa. For solving this MRF, we used a publicly

available software FastPD, which can find the optimal MRF-
based labeling almost in real time.57

Despite its effectiveness, MRF approach cannot suppress
large groups of isolated voxels, and fill large cavities in
resulting label maps LS. However, we know in advance that
OARs represent solid connected structures with smooth
boundaries, and should not be separated into several compo-
nents and do not have internal cavities. We therefore extract
the largest connected component of voxels LS so that noise
voxel groups with probability lx [ 0:5 are removed. A

FIG. 2. The strongest gradients of the target CT image (first raw) intersect around the center of the patient’s skull (second raw).
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sequence of dilation operations is then used to fill all the cav-
ities in the obtained largest component. The same number of
erosion operations compensate for the overexpansion of the
dilated component, which finally defines segmentation of
object S in the test image. After performing CNN-based voxel
classification, MRF-based smoothing, small component
removal, and dilate–erode operations for all objects of inter-
est, segmentation of the test image is complete.

3. EXPERIMENTS AND RESULTS

3.A. Image database

We collected 3D CT images of 50 patients scheduled for
head and neck radiotherapy. All images were axially recon-
structed and had an in-plane resolution between 0.781 and
1.310 mm with the scan matrix of 512 9 512, whereas the
slice thickness varied between 1.5 and 2.5 mm. Experienced
radiologists annotated mandible in 48 images; optic nerves
and right eye globe in 47 images; left parotid, left eye globe,
and chiasm in 46 images; spinal cord, right parotid, and lar-
ynx in 45 images; pharynx in 39 images; and both sub-
mandibular glands in 31 images, which rounds to 563 objects
to segment. Inclusion of certain OARs into the treatment
planning procedure depended on the position of the tumor
and image field of view.

3.B. Validation

We performed a five-fold cross-validation, where, for
example, for segmenting the image with number 15, images

with numbers 1–10 and 21–50 were used for CNN training.
During the training phase, all voxels thatbelong to the refer-
ence segmentations of OARs were extracted. For each OAR
mask and its surrounding structures, we randomly subsam-
pled j ¼ 25000 positive and j ¼ 25000 negative patches of
27 9 27 9 3 size, that is, axial, sagittal, and coronal patches
of 27 9 27 mm, that formed the training set of samples for
the corresponding image. The negative samples were located
not closer than r ¼ 2 mm and not further than R ¼ 40 mm
from the surface of the corresponding OARs. According to
the positive and negative samples from all training images,
the networks were optimized using the stochastic gradient
descent scheme, initialized with a learning rate of 0.0005 and
momentum of 0.9. An additional gradient clipping procedure
is used to prevent gradient explosions, which sometimes
occur during CNN training. The training samples were sepa-
rated into batches with 250 samples each, and all batches
were analyzed in 25 epochs, that is, training procedure runs
25 times through all training samples. The binary masks
obtained after performing CNN-based voxel classification,
small component removal, and dilate–erode operations were
compared to reference segmentation masks by computing the
true positive (TP) rate that is the number voxels classified as
the target OAR in both reference and automated segmenta-
tion, and the false positive (FP) rate that is the number of vox-
els misclassified as the target OAR by automated
segmentation, and false negative (FN) rate that is the number
of OAR voxels misclassified as background by automated
segmentation. In the case of spinal cord segmentation, we did
not consider automatic segmentation on the slices depicting
thoracic spine where the spinal cord is not segmented by the

// CNTK commands:

// repeat these instructions for all three orthogonal patches

convX_1 = ConvBNReLULayer(CT_imageX, 20, inWCount1, width=5, height=5, 1, 1, 1, 1, 1, 1)

convX_1d = Dropout(convX_1)

poolX_1 = MaxPooling(convX_1d, width=2, height=2, 2, 2)

convX_2 = ConvBNReLULayer(poolX_1, 50, inWCount2, width=5, height=5, 1, 1, 1, 1, 1, 1)

convX_2d = Dropout(convX_2)

poolX_2 = MaxPooling(convX_2d, width=2, height=2, 2, 2)

convX_3 = ConvBNReLULayer(poolX_2, 50, inWCount3, width=3, height=3, 1, 1, 1, 1, 1, 1)

// end of repeating

conv_Final = RowStack(convX_3, convY_3, convZ_3);

h_final = DNNImageReLULayer(3, 1, cMap3, 100, conv_Final, 1, 1)

o_final = DNNLastLayer(100, labelDim, h_final, 1, 1)

ce = CrossEntropyWithSoftmax(labels, o_final)

FIG. 3. A schematic set of parameters and commands used to define convolutional neural network for segmentation of organ-at-risks in head-and-neck CT
images. The parameters in bold correspond to the size of convolution and pooling layers.
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clinicians. The intuition is that the reference segmentation of
spinal cord does not continue through the whole vertebral
column, and stops at the slice where the cord is not affected
anymore during the treatment. At the same time, automatic
segmentation continues segmenting the spinal cord beyond
this slice, which does not harm the treatment planning and
shall not be straightforwardly considered as an error. The seg-
mentation error was numerically measured using Dice coeffi-
cient (DSC) ¼ 2TP=ð2TPþ FN þ FPÞ. The mean DSC
varied from 37.4% for chiasm segmentation to 89.5% for
mandible segmentation (Table I and Figs. 4 and 5).

3.C. Computation performance

The proposed algorithm uses two publicly available tool-
boxes: Computational Network Toolkit (CNTK)56 and
FastPD,57 and a set of functions for pre- and postprocessing,
which we implemented in C++ and executed on a personal
computer with Intel Core i7 processor at 4.0 GHz and
32 GB of memory. A graphical processing unit (GPU) was
used by CNTK for deep learning-based segmentation. The
training of the networks took 30 min per OARs, which
rounds to 6.5 h for training 13 networks for all OARs. The
analysis of one image took around 4 min, where only
1.5 min were used for deep learning classification of testing
patches, 2.5 min were used for reading-writing of images and
samples, OARs detection, image transformation, and postpro-
cessing operations, whereas MRF refinement required less
than a second.

4. DISCUSSION

We presented the first attempt to use CNNs for segmen-
tation of OARs from HaN CT images. As a number of
automated and semiautomated methods have been

proposed to address this problem, we compared our results
with the current state-of-the-art and devised conclusions
about the potential of using CNN for HaN radiotherapy
planning. Segmentation of an OAR strongly depends on its
size, shape, clarity of boundaries, presence of pathologies,
and overall visibility in the CT image modality. The com-
prehensive comparison should be based not only on the
results of existing automated segmentation methods but
also on the performance of commercially available soft-
ware and interobserver variability. We summarize research
published on the topic of HaN OARs segmentations, com-
pare the reported results with the proposed framework per-
formance and identify baselines and milestones for
individual OARs. We also present the interobserver vari-
ability for some OARs reported in the literature, which is
important for the estimation of the complexity of the seg-
mentation problem. However, it is important to mention
that this is not the direct comparison obtained on the same
database, but the results of alternative automated methods,
commercial software, and human performance reported on
different databases.

4.A. Spinal cord segmentation

Radiation therapy can cause toxicity to the nervous sys-
tem, if spinal cord is affected during the treatment. This
can lead to self-limited transient or progressive myelopathy,
or, in rare cases, to lower motor neuron syndrome. As the
spinal cord is poorly visible in CT images, clinicians usu-
ally segment the region encompassed by vertebral foramens
that ensures some safe margins for spinal cord. Although
the surface of cervical vertebrae is a guide for segmenta-
tion, identification of the exact boundaries of spinal cord in
the test CT image is a challenging task. Existing automated
segmentation methods reported Dice coefficient of 62%,16

75%,16 76%,41 78%,4 83%,18 and 85%.13 La Macchia

TABLE I. Results of convolutional neural network-based segmentation of
organs-at-risks in head and neck CT images, given in terms of mean (� stan-
dard deviation) Dice coefficient (DSC).

Organ DSC (%)

Spinal cord 87.0 � 3.2

Mandible 89.5 � 3.6

Parotid left 76.6 � 6.1

Parotid right 77.9 � 5.4

Submandibular left 69.7 � 13.3

Submandibular right 73.0 � 9.2

Larynx 85.6 � 4.2

Pharynx 69.3 � 6.3

Eye globe left 88.4 � 2.7

Eye globe right 87.7 � 3.7

Optic nerve left 63.9 � 6.9

Optic nerve right 64.5 � 7.5

Chiasm 37.4 � 13.4

FIG. 4. Box plot results of convolutional neural network-based segmentation
of organs-at-risks in head and neck CT images reported in terms of Dice
coefficient. [Color figure can be viewed at wileyonlinelibrary.com]
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et al.45 measured the performance of commercial software
on spinal cord segmentation and obtained Dice coefficient
of 70%, 81%, and 78% for VelocityAI 2.6.2, MIM 5.1.1,
and ABAS 2.0 systems, respectively. To objectively esti-
mate the complexity of the problem, it is important to men-
tion that interobserver variability was reported to be of
77%,48 79%,40,41 80%58 DSC, 60%59 in terms of confor-
mity level, and 78%,60 and 89%61 in terms of maximal vol-
ume difference. We can therefore conclude that the
proposed CNN-based spinal cord segmentation result of
87.0 � 3.2% DSC compares favorably against the existing
segmentation algorithms, commercial software, and interob-
server variability (Fig. 5). This achievement can be
explained by the fact that spinal cord has a very consistent
intensity pattern that can be accurately modeled by
machine learning approaches such as CNNs. On the other
hand, atlas-based algorithms are often too restricted by the
registration regularization, so that the resulting transforma-
tion field is smooth and not distorted but, at the same time,
atlasing cannot perfectly capture variable curvature of the
spine, cervical vertebra sizes, etc.

4.B. Mandible segmentation

Irradiation of dental area can cause dental decay, postex-
traction osteoradionecrosis, and implant failure, therefore,
the mandible has to be spared during the HaN radiotherapy
procedure.43 Mandible identification is facilitated by its rel-
atively large size and rigid shape, whereas the fact that
mandible has a better contrast in CT images in comparison
to the surrounding soft structures simplifies its segmenta-
tion. The main challenge is the presence of severe image
artifacts around the teeth due to metallic dental restorations.

These artifacts hamper correct identification of mandible
borders and often corrupt the appearance of the surround-
ing structures such as tongue, parotid, and submandibular
glands. These artifacts were, in general, excluded from
mandible segmentation, as CNNs were able to correctly
model the composition of dark and bright voxel groups that
usually characterize dental artifacts in CT images. More-
over, the teeth region where dental artifacts are manifested
was not included into manual segmentation, which addi-
tionally supported automated segmentation. Automated
mandible segmentation has received considerable attention
in the research community, and the obtained results mea-
sured in terms of Dice coefficient were of 78%,62 80%,4

82%,10,44 86%,18 90%,10 and 93%24,42, whereas existing
commercial VelocityAI 2.6.2, MIM 5.1.1, and ABAS 2.0
software systems demonstrated Dice coefficient of 84%,
86%, and 89%, respectively. The proposed CNN-based
algorithm segmented mandible with 89.5 � 3.6% DSC,
which is comparable with the best performing segmentation
algorithms (Fig. 5, 2nd and 3rd rows). Moreover, the
demonstrated results are similar to the semiautomatic seg-
mentations with 89%45 DSC, and interobserver variability
of 87%58 and 89%40 DSC.

4.C. Parotid and submandibular gland
segmentation

Xerostomia—changes in volume, consistency, and pH of
saliva—is one of the main complications after HaN radia-
tion therapy.63 As around 60% and 30% of saliva is pro-
duced by parotid or submandibular glands, xerostomia is
usually manifested when these glands are irradiated during
treatment.63 Segmentation of parotid or submandibular

FIG. 5. Segmentation results for three (a–c) selected head and neck CT image, shown in four axial cross-sections. The reference segmentations are depicted in
green and convolution neural network-based segmentations are depicted in red. [Color figure can be viewed at wileyonlinelibrary.com]
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glands in CT images is challenging due to their irregular
shapes and poorly visible boundaries that are additionally
corrupted by dental artifacts. According to literature over-
view, automated segmentation results of 57%,16 65%,16

68%,10 72%,7 77%,33 79%,40,44 80%,4,18,46 83%,4,15,24

84%,11 85%10 DSC for parotid glands, and 70%,4 80%,46

and 83%24 DSC for submandibular glands were reported.
At the same time, VelocityAI 2.6.2, MIM 5.1.1, and ABAS
2.0 software systems demonstrated parotid gland segmenta-
tion performance of 73%, 79%, and 79% DSC, respec-
tively.45 The agreement among radiologists is slightly
better than between automated and manual segmentation
and is reported to be of 76%,58 79%,40 85%,33 and 90%46

DSC, and 77%61 volume difference for parotid glands, and
91%46 DSC and 77%60 volume difference of submandibu-
lar glands. The results of the proposed algorithm are of
77.3 � 5.8% DSC for both parotid glands, which is com-
parable with the average results of the existing segmenta-
tion methods and above average in comparison to the
performance of the commercial software (Fig. 5). Manual
segmentation results indicate that parotid glands may be
challenging to annotate even for a human. Moreover, paro-
tid glands are often affected by pathologies, which consid-
erably reduces the reliability of segmentation. The results
of the proposed algorithm are of 71.4 � 11.6% DSC for
submandibular glands, which is lower than the average per-
formance of existing algorithms, and commercial software
(Fig. 4, 2nd and 3rd rows). There are two reasons why
CNNs are not as effective as atlas-based segmentation for
submandibular glands. First, the glands do not have very
distinguishable intensity features that would make them dif-
ferent from the surrounding structures in contrast to spinal
cord and mandible. Second, atlasing deformation is rela-
tively restricted, and therefore, even if a gland cannot be
perfectly recognized, atlasing can still roughly identify the
gland positioning. At the same time, CNN relies purely on
image intensities around glands, and therefore may some-
times get confused. The positive consequence of this prop-
erty is that segmentation of abnormal submandibular gland
is going to be more challenging for atlasing, as it cannot
efficiently incorporate the tumor position. We also observe
that submandibular gland segmentation accuracy strongly
depends on the particular image database, and even human
performance can vary dramatically.

4.D. Larynx and pharynx

Dysphagia or swallowing dysfunction is considered to
be the second most commonly occurring complication of
the HaN radiation therapy.63 The manifestation of dyspha-
gia has been shown to be consistently caused by irradia-
tion of supraglottic larynx and pharyngeal constrictor
muscles.63 Although segmentation of larynx and pharynx
is often required for treatment planning, automated seg-
mentation of them has not been receiving as much atten-
tion as segmentation of spinal cord, mandible, and
glands, due to highly variable intensity of larynx and

poorly defined boundaries and complex shape of pharynx
in CT images. To the best of our knowledge, the existing
studies on the topic reported automated segmentation
results of 58%46 and 73%48 DSC for larynx and 50%46

and 64%48 DSC for pharyngeal constrictor muscles.
Commercial VelocityAI 2.6.2, MIM 5.1.1, and ABAS 2.0
software systems demonstrated better performance of
81%, 83%, and 84% DSC, respectively, on larynx seg-
mentation, and 63%, 66%, and 65% DSC, respectively,
on pharynx segmentation.45 Clinicians demonstrated an
agreement of 60%48 and 83%40 DSC for larynx segmen-
tation. We obtained segmentation results of 85.6 � 4.2%
DSC for larynx and 69.3 � 6.3% DSC for pharynx that
is superior or comparable to the best performing auto-
mated segmentation and interobserver variability (Fig. 5,
2nd–4th rows). Designed CNNs were therefore able to cor-
rectly capture the appearance of laryngeal cartilages and
pharyngeal area that is surrounded by cervical spine and
airways.

4.E. Eyes, optical nerves and chiasm

In the case of nasopharyngeal cancer, tumors can be
located in the close proximity to human vision system, irra-
diation of which can cause serious complications such as
radiation-induced optic neuropathy.64 Modern HaN radio-
therapy protocols therefore require preoperative annotation
of eye globes, optical nerves, and chiasm. Eyes have well-
defined spherical shape and, despite poor visibility of the
globe surface in CT images, can be accurately segmented
with 80%13,41 and 81%9 DSC using atlas- and model-based
algorithms. The optic nerves, which are thin elongated
structures that start at the eyes and meet below the
hypothalamus, can be automatically segmented with 38%,9

58%,41 42%,13 and 61%13 DSC. The optic nerve intersec-
tion, that is, optic chiasm, has a very small size and poorly
visible boundaries and can be segmented automatically
with relatively low accuracy of 39%26 and 41%9 DSC.
Similar to the results of automated segmentation, interob-
server agreement is higher for eye globes, namely 86%26,41

and 89%40 DSC, lower for optic nerves, namely 51%,26

57%,48 and 60%41 DSC, and the lowest for optic chiasm,
namely 38%48 and 41%26 DSC. The proposed CNN-based
algorithm with 88.0 � 3.2% DSC outperforms the existing
state-of-the-art algorithms for eye globe segmentation, with
64.2 � 7.2% DSC similar to the best performing algo-
rithm13 for optic nerve segmentation, but with
37.4 � 13.4% DSC, which is worse than the existing algo-
rithms for chiasm segmentation (Fig. 5, 1st row).

4.F. Methodological comparison

As a supervised technique, CNNs considerably relie on
the quality and representativeness of the training data. The
richer the training dataset is, the more accurate and reliable
segmentation is, which, however, does not affect computa-
tional time of CNN-based segmentation. In contrast, the
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computational complexity of multi-image atlasing linearly
increases with the number of training images so that the tar-
get image may require hours to be segmented. The training
phase of CNNs is relatively lengthy but happens only once
and therefore does not affect segmentations of individual tar-
get images. For both CNNs and atlasing, segmentation accu-
racy is often lower for OARs located close to tumors. Indeed,
the tumor presence changes the appearance and morphology
of the OARs and the consistent appearance patterns learned
by CNNs become less representative. This issue is more pro-
nounced in the case of atlasing, as registering an image with
no tumor at a specific location to an image with tumor at this
location is extremely challenging. On the other hand, image
artifacts and local intensity inhomogeneity are more destruc-
tive for CNNs than for atlasing. Similarly, as in the case of
tumor positioning, patterns learned by CNNs become less
representative, whereas artifacts and intensity inhomogeneity
does not affect the morphology of OARs, and therefore altas-
ing is still able to perform registration.

Finally, we want to estimate the contribution of the MRF-
based smoothing on framework performance. Having CNN-
based classifications, MRF smoothen the surface of the
resulting binary masks and remove isolated misclassified
voxels or groups of voxels. The performance improvement
was therefore lower for objects with clearly visible bound-
aries, for example, mandible segmentation was improved by
0.24 Dice, and well-defined shape, for example, left and right
eye globe segmentations were improved by 0.45 and 0.03
Dice, respectively. At the same time, CNNs produced irregu-
lar segmentation for poorly visible left and right submandibu-
lar glands, therefore, the contribution of MRF was
considerable and resulted in segmentation improvement by
3.73 and 3.93 Dice respectively. On average, MRF increased
the Dice coefficient by 0.91 for all OARs and visually
improved segmentation boundaries.

5. CONCLUSION

In this paper, we presented the first attempt of using
deep learning concept of convolutional neural networks for
segmentation of OARs in the head and neck CT images.
We observed that CNNs demonstrated performance supe-
rior or comparable to the state-of-the-art on segmentation
of spinal cord, mandible, larynx, pharynx, eye globes, and
optic nerves, and inferior performance on segmentation of
parotid glands, submandibular glands, and optic chiasm.
These results confirm that CNNs well-generalize the inten-
sity appearance of objects with recognizable boundaries,
for example, spinal cord, mandible, pharynx, and eye
globes. For the objects with poorly recognizable bound-
aries, for example, submandibular glands and optic chi-
asm, additional information may be required for CNN-
based segmentation. Following the clinical procedure,
magnetic resonance images, which have better image con-
trast of soft tissues than CT image, can be included as an
information source. However, this inclusion requires accu-
rate multimodal registration of magnetic resonance to CT

images, which is a very nontrivial task when images have
different fields of view and resolution. Combining CT and
magnetic resonance images may have potential but is not
straightforward. In general, we confirm a high potential of
deep learning for HaN image segmentation.
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