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Here, we present a mouse brain protein atlas that covers
17 surgically distinct neuroanatomical regions of the adult
mouse brain, each less than 1 mm3 in size. The protein
expression levels are determined for 6,500 to 7,500 gene
protein products from each region and over 12,000 gene
protein products for the entire brain, documenting the
physiological repertoire of mouse brain proteins in an
anatomically resolved and comprehensive manner. We
explored the utility of our spatially defined protein profil-
ing methods in a mouse model of Parkinson’s disease. We
compared the proteome from a vulnerable region (sub-
stantia nigra pars compacta) of wild type and parkinso-
nian mice with that of an adjacent, less vulnerable, region
(ventral tegmental area) and identified several proteins
that exhibited both spatiotemporal- and genotype-re-
stricted changes. We validated the most robustly altered
proteins using an alternative profiling method and found
that these modifications may highlight potential new path-
ways for future studies. This proteomic atlas is a valuable
resource that offers a practical framework for investigat-
ing the molecular intricacies of normal brain function as
well as regional vulnerability in neurological diseases. All

of the mouse regional proteome profiling data are pub-
lished on line at http://mbpa.bprc.ac.cn/. Molecular &
Cellular Proteomics 16: 10.1074/mcp.M116.061440, 581–
593, 2017.

Recently, Allen Brain Atlas reported genome-wide gene
expression patterns in the brains of adult and developing mice
using high throughput in situ hybridization (ISH)1 (1, 2), which
provides mRNA expression information on murine brain anat-
omy at the single cell level, and this increased our under-
standing of the brain’s architecture and function. In other
studies, brain-region mRNAs were quantitatively measured by
DNA microarray (3, 4). Because mRNA levels are not neces-
sarily proportional to protein levels (5), transcript profiling
must be cross-validated by protein profiling. Until recently,
several attempts have been made to identify region-specific
distribution of proteins by proteomic profiling (6–8); however,
these studies suffered from inadequate protein coverage with
each covering only 1,000 to 2,000 proteins. In 2015, Sharma
et al. (9) reported a complete mouse cell type and brain
regional proteome that can cover 12,000 gene products in as
short as 4 h of MS instrument running time. This study thus
provided an entry point into brain-wide profiling methodology
and opened the doors for applications related to this profiling.
One particular value of a region-specific proteome stems from
the idea that most known brain disorders are often specific to
a particular brain region. For instance, Parkinson’s disease
(PD) and Huntington’s disease (HD) are both disorders driven
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by abnormal protein accumulation and toxicity, yet in PD,
dopaminergic SNc neurons degenerate, whereas in HD, me-
dium spiny neurons in the striatum degenerate (10). The pro-
teins responsible for such regional and selective neuronal
vulnerability in most cases remain elusive to investigators.
Therefore, proteome profiling of the brain with a spatial reso-
lution that distinguishes surgically distinctive neuroanatomy
relevant to regions most affected by neurological disorders
will provide valuable information about disease pathogenesis
and potentially uncover pathways for therapeutic intervention.
In this study, we set out to test whether miniaturized pro-
teomic profiling is possible in as low as 5 �g of tissue lysate
with 1 mm diameter of spatial resolution and whether we
could use this methodology to glean insight from a mouse
model of Parkinsonism.

EXPERIMENTAL PROCEDURES

Animals—Mice used in this study were housed in a room with a
12-h light/12-h dark cycle with ad libitum access to standard rodent
chow and water. Mouse housing was done in an air-controlled ith
mice housed up to five per cage. All procedures involving mice were
approved by the Institutional Animal Care and Use Committee for
Baylor College of Medicine and Affiliates. The 6–8-week-old C57Bl/6
wild type male mice were used for brain regional proteome profiling
study. For the Parkinson’s disease model, �-synuclein (�-syn) trans-
genic mice (mThy-Syn, line 61) were a generous gift from Dr. Marie-
Françoise Chesselet and Dr. Eliezer Masliah (11, 12). The �-syn
transgenic female mice were used for mating, and males were used
for experimentation due to the insertion of the transgene on the x
chromosome (13). The Parkinsonian mouse model study was carried
out on age- and sex-matched littermates at 3 weeks, 3 months, and
7 months of age as detailed below.

Mouse Brain Sub-structural Region Sample Collection—Mice were
deeply anesthetized using an intraperitoneal injection of ketamine/
xylazine/acepromazine given at 50 mg/kg, 10 mg/kg, and 2 mg/kg
body weight, respectively. Depth of anesthesia was monitored by
absence of withdrawal reflex to strong toe pinch and relaxation of
extremities when placed on the back. To avoid contamination of
mouse brain tissues with mouse blood proteins, mice were treated by
intra-cardiac perfusion with Krebs-Ringer solution containing 20 mM

glucose and 0.2 mM EGTA, pH 7.4, prior to collection of mouse brains.
When the animal was adequately anesthetized, it was pinned to a
corkboard, and the incision site was clipped and cleaned using 70%
ethanol to prevent hair and topical bacteria from contaminating wet
tissue samples. Briefly, incision of the abdominal wall immediately
below the thoracic cavity was followed by incision of the diaphragm
and rib cage. After exposure of the heart, a 2-mm partial-thickness
scalpel incision was made in the left ventricle to allow insertion of a
blunted wide-bore cannula (2-mm internal diameter) into the lumen of
the ascending aorta. After cannulation of the heart, the valve to the
Krebs-Ringer solution reservoir was opened, and a 1- to 2-mm cut
was immediately made in the wall of the right atrium to allow blood
and perfusate to escape. The volume of perfusate required per adult
mouse is �30 ml at 5 ml/min perfusion rate controlled by height of
reservoir. Intact mouse brains were removed and placed on a stain-
less steel adult mouse brain slicer matrix to make 1.0-mm coronal
section slice intervals (Zivic Instruments, BSMAA001-1). A total of 17
selected mouse brain regions were then harvested using a blunt
18-gauge needle (1-mm internal diameter) punch. Chosen samples
were dispersed by pipetting in 10 sample volumes of lysis buffer (50
mM ammonium bicarbonate, 1 mM CaCl2) and then snap-frozen using

liquid nitrogen and thawed at 37 °C three times. Proteins were then
boiled at 95 °C for 3 min. All freeze-thaw denaturation procedures
were repeated twice. Protein concentration was measured using a
Bradford reagent, and 20 �g of proteins were digested with 200 ng of
trypsin (T9600, GenDepot, Houston, TX) overnight at 37 °C. After the
first digestion, an additional 100 ng of trypsin was added to the
samples, which were then incubated for 4 h at 37 °C. Double-di-
gested peptides were extracted by 50% acetonitrile, 2% formic acid,
and peptide supernatant was taken after spin-down at 10,000 � g for
1 min. The remaining pellet was extracted with 80% acetonitrile, 2%
formic acid once again and pooled into previous extract after spin
down. Pooled peptide supernatant was dried using vacuum drier and
stored at �20 °C until further procedure.

High pH C18 Reverse Phase Sample Preparation—Vacuum-dried
peptides were dissolved in pH 10 (10 mM ammonium bicarbonate, pH
10, adjusted by NH4OH) buffer and subjected to pH 10 C18 reverse
phase column chromatography. A micro-pipette tip C18 column was
made from a 200-�l pipette tip by layering 6 mg of C18 matrix
(Reprosil-Pur Basic C18, 3 �m, Dr. Maisch GmbH, Germany) on top
of the C18 disk (3M, EmporeTM C18) plug. Vacuum-dried peptides
were dissolved with 150 �l of pH 10 buffer and loaded on the C18 tip
equilibrated with pH 10 solution. Bounded peptide was eluted with
step gradient of 150 �l of 6, 9, 12, 15, 18, 21, 25, 30, 35% ACN (pH
10) and pooled into 6 pools (6% eluent combined with 25% eluent,
9% plus 30%, and 12% plus 35%) and vacuum-dried for nano-
HPLC-MS/MS.

Nano-HPLC-MS/MS Analysis—Vacuum-dried peptide was dis-
solved in 20 �l of loading solution (5% methanol containing 0.1%
formic acid), and one-fourth of the reconstituted samples were sub-
jected to nano-LC-MS/MS analysis with a nano-LC 1000 (Thermo
Fisher Scientific) coupled to Orbitrap Velos Pro, Orbitrap Elite
or Orbitrap FusionTM TribridTM mass spectrometer (Thermo Fisher
ScientificTM) mass spectrometer with NSI source. From a starting
amount of 20 �g, each subdivision of high pH RP is regarded as
containing 3 �g of peptides. We loaded one-fourth of each pool, so
that 0.7–0.8 �g of peptide was used for one single mass run. The
peptides were loaded onto an in-house Reprosil-Pur Basic C18 (3
�m) trap column, which was 2 cm � 100 �m. Then the trap column
was washed with loading solution and switched in-line with an in-
house 6-cm � 150-�m column packed with Reprosil-Pur Basic C18
(2 �m) equilibrated in 0.1% formic acid/water. The peptides were
separated with a 75-min discontinuous gradient of 2–24, 4–24, or
8–26% acetonitrile, 0.1% formic acid at a flow rate of 800 nl/min.
Separated peptides were directly electro-sprayed into a mass spec-
trometer. A brain region profiling study was done on Thermo Velos
Pro and Thermo Elite. The instrument was operated in the data-de-
pendent mode acquiring fragmentation under direct control of Xcali-
bur software (Thermo Fisher Scientific). Precursor MS spectrum was
scanned at 375–1300 m/z with 240,000 (Elite) or 100,000 (Velos)
resolution at 400 m/z, 2 � 106 AGC target (10 ms maximum injection
time) by Orbitrap. Then, the top 25 strongest ions were fragmented by
collision-induced dissociation with 35 normalized collision energy and
1 m/z isolation width and detected by ion trap with 30 s of dynamic
exclusion time, 1 � 104 AGC target, and 100 ms of maximum injection
time. Parkinson’s disease mouse model profiling was done by
Thermo Fusion Orbitrap. Precursor MS spectrum was scanned at
300–1400 m/z 120,000 resolution at 400 m/z, 5 � 105 AGC target
(50-ms maximum injection time) by Orbitrap. Then, the top 50 strong-
est ions were scanned by Quadrupole with 2 m/z isolation window,
18-s exclusion time (�7 ppm), fragmented by High-energy collisional
dissociation (HCD) with 32 normalized collision energy, and detected
by ion trap with rapid scan range, 5 � 103 AGC target, and 35 ms of
maximum injection time.
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Protein Identification and Label-free Quantification—Obtained
MS/MS spectra were searched against target-decoy Mouse refseq
database (release 2015_06, containing 58,549 entries) in Proteome
Discoverer 1.4 interface (PD1.4, Thermo Fisher Scientific) with Mascot
algorithm (Mascot 2.4, Matrix Science). Dynamic modifications of
acetylation of the N terminus and oxidation of methionine were al-
lowed. The precursor mass tolerance was confined within 20 ppm
with fragment mass tolerance of 0.5 dalton, and a maximum of two
missed cleavages was allowed. Assigned peptides were filtered with
1% false discovery rate (FDR) using percolator validation based on
q-value. iBAQ algorithm was used to calculate protein abundance.
The spectral assignments from PD1.4 were then converted to the
MS-platform independent mzXML format and channeled through an
in-house pipeline for peptide quantification (iPAC) and protein iden-
tification and quantification (grouper, which utilizes iPAC results).
iPAC (integrated Peak Alignment Corrector) is a program to obtain
optimal areas-under-the-curve (AUC) estimates for the detected pep-
tide peaks, which extract candidate peptide information from the
searching result list, including peptide, protein ID, modification,
charge, m/z, retention time (RT), and scan number. These intensity
values can be constructed into extracted ion chromatogram (XIC)
peak for the peptide along the RT axis. The XIC were smoothed by
Savitzky-Golay filter (14), and peak areas were calculated by trape-
zoidal numerical integrate (15). It is positive correlation between the
peak area values and the protein abundance. We built a dynamic
regression function based on those common identified peptides,
according to correlation value R2; our program chose linear or quad-
ratic function. We then calculated RT of corresponding hidden pep-
tides, and checked the existence of the XIC based on the m/z and
calculated RT. Finally, the program evaluated the peak area values of
those existing XICs. These peak area values were considered part of
corresponding proteins. Our previous studies proved this approach
could enhance the accuracy of protein quantification. Grouper is a
program built in-house that assigns detected peptides into gene
products and tags corresponding experimental measurements (sum
spectral counts, sum protein areas, qualitative bins by peptide FDR
and Mascot ion scores, and homology groups by distribution of
unique and shared peptides). The spectral matches were assigned
into eight confidence bins, termed IDGroups, based on a combination
of their Mascot ion scores and Percolator q values. The even
IDGroups have q values of 0.01–0.05, and odd IDGroups have �0.01
q values. Peptide-spectrum match (PSM) IDGroups 1–2 have ion
scores of �30; groups 3–4 have ion scores in 20–30 range, groups
5–6 have 10–20 ion scores, and groups 7–8 have 7–10 ion scores.
The identifications with ion scores of �7 were filtered out. A special
case of IDGroup 9 was given to peptide peaks that were identified by
m/z and RT alignment to different runs but without a spectral match.
The protein identifications (at gene locus level per NCBI GeneIDs)
were assigned into three confidence bins as follows: “strict,” “re-
laxed,” and “all.” These bins were defined based on the shared
peptide distributions and quality of the best PSM as measured by
IDgroups. The protein products that have unique-to-gene peptides
(unambiguous assignments) or have the largest distinct set of shared
peptides were assigned into the strict bin if they had at least one
spectral match with IDGroup �4 and the relaxed bin if the best
spectral evidence has IDGroup 5–6. The rest of possible protein
products (proteins identified by smaller subsets of peptides belonging
to strict and relaxed bins and/or proteins with poor IDGroups of 7–9)
were marked all. The resulting assignments can then be viewed at
three levels, with each level defining the minimal confidence allowed
(e.g. relaxed level included strict and relaxed confidence identifica-
tions). The two main advantages of this program are as follows: 1) it
retains maximum possible gene product assignments while specify-
ing quality of protein identification in a straightforward way, and 2) it

corrects quantification issues associated with shared peptides by
distributing them between proteins according to their corresponding
unique peptide area ratios. Overall, this approach allows researchers
to visualize not only quantitative but also qualitative differences in
protein measurements with ease. It is suitable for relaying informa-
tion-rich results to both experts and clients with minimal training. The
align! displays both qualitative and quantitative parameters for MS
identifications and calculates quantitative ratios for control-paired
datasets. Furthermore, align! allows bioinformatics integration by in-
cluding functional classification for proteins, expression from BioGPS
and protein profiling studies, annotation of significant cancer mutations,
and a function to display protein interaction networks within this pro-
gram. This information is displayed in parallel with experiment-specific
mass spectrometry data, and all parameters are fully searchable.

Parallel Reaction Monitoring (PRM)—To validate regional specific
outlier gene products (region-specific proteins) from 17 regions pro-
filing and outlier or specific target proteins from Parkinson’s disease
model SNc/VTA profiling, we utilized PRM outliers using Orbitrap
FusionTM TribridTM mass spectrometer. Depends on unique peptide
availability, 2 or 3 unique peptides for each target proteins were
selected for PRM analysis. 500 ng of digested peptide were analyzed
at each machine run with 4–24% of acetonitrile gradient for 35 min for
17 regions profiling and 75-min gradients for SNc/VTA profiling of
Parkinson’s disease model. Pre-selected precursor ions were
scanned with a 5–10-min predicted elution window with 120,000 of
resolution and 2.0e5 of AGC targets by Orbitrap and isolated by
quadrupole followed by collision-induced dissociation/MS2 analysis.
Product ions (MS2) were scanned at 350–1400 m/z with 1.0e4 of AGC
target in rapid mode by Ion Trap. For relative quantification, the raw
spectrum file was crunched to .mgf format by PD1.4 and then im-
ported to Skyline with raw data file. We validated each result by
deleting non-identified spectrum and adjusting the AUC range. Fi-
nally, the sum of the area of the three strongest product ions for each
precursor ion (each peptide) was used for the result. In the case of 17
regions profiling/PRM comparison to compare the data between PRM
and Profile, row values (protein groups) were normalized as a percen-
tile of each protein group’s maximum value and visualized by color
scale. The protein list was arranged by descending order of percentile
value from OLF to MY. Briefly, first the protein group list was arranged
by OLF percentile values with descending order, and RSOPs of OLF
were excluded for further procedures. The remaining list was ar-
ranged again by Striatum (STR) values as before and by MY sequen-
tially. The arranged protein group list was used for PRM data arrange-
ment with the same order without any modification.

Clustering—To determine relationship between 17 different re-
gions, all correlation values were clustered by Qlucore Omics Explorer
version 3.1. Euclidean average linkage hierarchical clustering values
were applied without any normalization or filtration.

Comparison of iFOT and ISH—To obtain adult mouse ISH-based
expression data from the Allen Institute for Brain Science projects, we
queried Brain Atlas databases through their Restful Model Access
(RMA) interface. First, we downloaded records for 39,116 section
DataSets in Product ID 1 (“genome-wide high resolution ISH data
detailing gene expression throughout the adult mouse brain”; the
URL was http://www.brain-map.org/api/v2/data/query.xml?criteria�
model::SectionDataSet,rma::criteria,products[id$eq1],rma::include,
genes,rma::options[only$eq’genes.entrez_id’]). Of these, 25,527 da-
tasets had GeneID assignments. To get the structure-unionize ex-
pression energy values for the 12 brain structures in “Mouse-Coarse”
structure dataset (structure-set � 2) for these sectionDataSets, the
following query was used: http://www.brain-map.org/api/v2/
data/query.xml?criteria�model::Structure,rma::criteria,structure_
sets[id$eq2],pipe::list[xstructures$eq‘id’],model::StructureUnionize,
rma::criteria,[structure_id$in$xstructures],rma::include,structure,
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rma::options[only$eq’structure_unionizes.expression_energy,
structure_unionizes.section_data_set_id,structures.acronym’]. This
query resulted in 366,763 structure-unionize expression energy val-
ues. 306,108 of these records matched to the final set of 25,509
section DataSets that had semi-quantitative ISH-based expression-
energy value for all 12 brain structures in Mouse-Coarse structure
dataset. The number of unique gene products in these 25,509 section
DataSets (by entrez-id) in this set was 19,420. Ten brain structures in
the Allen Mouse Brain ISH data match our sectioning schema for
proteomic profiling. Therefore, we were able to perform pairwise
comparison of ISH-based expression and mass spectrometry-based
iFOT protein levels for these 10 brain regions.

To compare proteomic and transcriptomic datasets, the pool of
genes and gene products was reduced to those occurring in both ISH
and FOT, respectively. Extreme outliers (quantile borders of 0.005 and
0.995) were removed from both datasets, and genes without any
abundance value were omitted, leading to two matrices with 5,264
gene products and 12 brain structures. For better comparability, the
ISH dataset was log scaled with a base of 4 and the FOT dataset with
a base of 10. We categorized the genes based on their standard
deviations across brain regions and on the cosine distance between
FOT and ISH.

The cosine distance between the datasets for each gene was
calculated as

arccos� A � B

�A � A � �B � B�� �180
� �

where A and B are the 12 values for one gene in FOT and ISH,
respectively. We selected this distance method because it is
more robust to high absolute values than other correlation
types as it represents the angle between the two vectors A
and B, not their length difference. We added the standard
deviations to the classification criteria because the cosine
distance alone is not always relevant, especially for ubiquitous
genes and genes where either expression level or protein
abundance is constant across brain regions. The standard
deviation borders for “low” and “high” were set as terciles for
each dataset individually (i.e. low is within the 33% lowest
values). The borders for the cosine distance were set to 20°
for low and 60° for high (Fig. 3D). We categorized ubiquitous
(good RNA/protein correlation, expressed highly everywhere),
RNA-regulated (good RNA/protein correlation with differential
expression in brain regions), post-RNA-regulated (similar RNA
signals with differential protein levels), stable protein (similar
protein levels with different RNA staining), and irregular
(strong anti-correlation between expression and protein abun-
dance) as shown in Fig. 3B. Finally, we systematically cate-
gorized RNA and protein abundance levels for each gene and
brain region to note for trends in regulation. From these da-
tasets, we found that each protein could be grouped into
subgroups based on their relative RNA/protein abundance
measurements. We highlighted some of these groups based
on their regression lines. For clarity, we did not include pro-
teins without categories in the plot. For ubiquitous and neg-
atively regulated genes, only one dot represents the gene in all
brain regions (supplemental Fig. 5).

Statistics for RSOP Calculation—Any GPs missed in over 40% of
samples (�40% missingness) was excluded from the calculation. Of

19,246 total proteins, 3,952 were selected for downstream analysis
following this criterion. Next, the remaining missing values in the
filtered dataset were replaced with half of the minimally detected
value in the entire dataset. Following log2 transformation of this
dataset, the differential analysis (t test) was performed comparing one
specific group against all the samples combined. This step was
repeated for all the different experimental groups concerned. The
resulting p values were adjusted using Benjamini-Hochberg method
to correct for multiple hypothesis testing and to obtain a q-value. Any
protein was deemed RSOPs if it has a q-value of �0.05 and greater
than 4 linear fold change.

Experimental Design, Statistical Rationale, and Data Deposition—
For brain regional proteome profiling, three biological samples from the
17 regions were measured with Thermo Orbitrap EliteTM and VelosTM

MS to achieve MS-independent results. Six highly correlated (R �0.8)
measurements from biological and instrumental replicates were taken
(supplemental Fig. 2). The MS data have been deposited to the Proteome-
Xchange Consortium (http://proteomecentral.proteomexchange.
org) via the MASSIVE repository (MSV000079789) with the dataset
identifier PXD004263. For the Parkinsonian mouse model study, three
biological samples from the SNc and VTA region of wild type and
transgenic mouse were measured with Orbitrap Fusion MS. Parkinso-
nian mouse data have been separately deposited to the Proteome-
Xchange Consortium (http://proteomecentral.proteomexchange.org)
via the MASSIVE repository (MSV000080437) with the dataset identifier
PXD005626.

RESULTS

Fast Proteome Profiling—We generated a regionally re-
solved proteome library using 17 brain regions (Fig. 1A). We
used the center position of each of the 13 distinctive brain
regions, and for comparatively larger regions, we included
both medial and lateral portions of the region to account for
diversity of proteome composition. We picked a cylindrical
piece of tissue (�1 mm in diameter and 1 mm thick) to be the
representative of the particular region. We developed a pro-
cedure that allows us to efficiently extract proteins from this
small amount of tissue by digesting the tissue directly with
trypsin without any prior protein extraction process, and then
we extracted the tryptic peptides for further analysis. We
miniaturized a two-dimensional orthogonal pH reverse phase
chromatography (2D sRP-RP) (Fig. 1B) to avoid sample loss
and to increase the detection efficiency. sRP-RP is a newly
established method compared with gel-based protein sepa-
ration system and ensures a high level of reproducibility be-
tween biological replicates (16). The acetonitrile gradient of
the second low pH nano-HPLC was adjusted according to the
hydrophobicity of the high pH eluent to make even distribution
of peptide elution across the entire HPLC elution time to
ensure maximum coverage (Fig. 1C). Mass spectrometry and
peptide identification conditions are highlighted under “Ex-
perimental Procedures.” For label-free quantification fraction
of total (iFOT), an AUC curating program to be more precise
than conventional iBAQ (17) was used. The principle and
details of the iFOT calculation program are also described
under “Experimental Procedures.” The repeatability slope
from a set of technical repeats of label-free quantification was
greatly improved from 0.47 to 0.90 once the iBAQ calculation
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was re-defined with an in-house iFOT correction program
(supplemental Fig. 1). These results indicate the effectiveness
of in-house AUC curating program.

We measured three biological samples from the 17 regions
individually to account for all operational variations. To ac-
count for potential differences between mass spectrometer
(MS) instruments, we measured the same sample with
Thermo Orbitrap EliteTM and VelosTM MS to achieve MS-
independent results. We continued measuring biological re-
peats until we acquired six highly correlated (R � 0.8) meas-
urements from biological and instrumental replicates. Most of
the data were acquired using three mice, some of them used
as many as five mice, and 10 measurements, including the
two MS measurements. The full reproducibility correlation
table is shown in supplemental Fig. 2.

With these improvements, we measured 102 individual pro-
teomes and were able to create a quantitative mouse brain
atlas covering 17 regions of distinct anatomy, revealing pro-
tein distribution ranges using a total of 986 h of MS running
time. The number of gene protein products (GPs) ranged from
6,432 to 7,503 for each region (Fig. 2A). Collectively, 12,000
GPs were identified for the 17 dissected brain regions. The
dynamic range of the relative protein abundance in the pro-
teome from each mouse brain region spanned almost 7 orders
of magnitude (Fig. 2B). Gene ontology analysis showed recov-
ered GPs located in various intra- and extracellular domains
ranging from extracellular matrix to nuclear compartments with
around 50% of coverage from expected genes. Moreover, syn-
apse-specific genes showed a little bit higher recovery rate
(60–70%) as exemplified in the olfactory region (Fig. 2C).

FIG. 1. Sample preparation for regional analysis of proteins. A, 17 surgically distinctive mouse brain regions were isolated using 1-mm
inner diameter punches from coronal section. B, simplified sample preparation method. Mouse brain regional samples were isolated from
1-mm-thick coronal sections followed by in-solution digestion. sRP-RP was used for separate and concentrate-digested peptide. Orbitrap
instrument was used for MS analysis. First dimensional separation is done with high pH reverse phase micro-column using C18 beads.
Stepwise ACN gradient was applied, and eluent was pooled into six fractions depending on ACN concentration before MS/MS. C, different
continuous ACN gradient applied for different high pH eluent pools based on hydrophobicity nature of each pools.
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Characterization of Mouse Brain Region-specific Outlier
Gene Protein Products—We first searched for region-specific
outlier gene products. Outliers were identified based on St-
udent’s t test significance (p value�0.05) and fold change
(�4-fold) of the average value of each region against the
average of all other regions. The example of olfactory outliers
is shown in Fig. 3A. A total of 352 proteins were identified as
RSOPs. The top five RSOPs in each region are shown in Fig.
3B, and the full list is presented as supplemental Table 1. To
test for concordance in a previously published dataset, we
overlaid identified GPs from our data set with those identified
by Sharma et al. (9) in a similarly dissected region, the olfac-
tory, striatum, and cerebellum. We found a high level of con-
cordance of these datasets (R � 0.84, 0.85, and 0.82, respec-
tively, see supplemental Table 2) thus further validating this
in-house pipeline.

To further solidify the definition of RSOPs, we retraced
RSOP abundance with a more accurate targeted MS analysis
method, PRM, using a third type of Orbitrap Fusion TribridTM

mass spectrometer (18). To compare PRM data with pro-
teomic profiling data, we normalized by maximum value at
each protein group over all regions. Profiling data were sorted

in descending order from OLF to MY sequentially, and PRM
data were matched in the same order. As a result of relative
comparison, 69% of RSOP identified by profiling showed
highly correlated concordance (Pearson’s R �0.8) with meas-
urement of PRM (Fig. 3C, supplemental Fig. 3, and supple-
mental Table 3). Together, these data add another level of
confidence to this streamlined procedure for label-free quan-
titative proteome profiling.

Brain regions widely differ in their cellular identities and
firing properties. One way to cluster these has been via tran-
scriptomic signatures (1, 19, 20). However, whether these
transcriptomic signatures directly correlate to protein abun-
dance remains unclear. To address general trends in correla-
tion between mRNA and corresponding protein products, we
compared our proteomics profiling toolkit to the Allen Mouse
Brain Atlas (1). Although we acknowledge differences in quan-
titation methods and sample collection scheme between
these two studies, we were able to perform pairwise compar-
isons for 10 regions (supplemental Fig. 4 and supplemental
Table 4). This comparison was not expected to be quantita-
tive, because ISH-based expression energy values (referred
to as “ISH values” herein) for RNA expression across a brain

FIG. 2. Proteome coverage. A, total GP numbers recovered from each brain region after six repeatable analyses. B, normalized protein
abundances (FOT) from the highest to the lowest in olfactory sample. C, proportions of olfactory GPs annotated to various cellular
compartments according to Gene Ontology.
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section are inherently semi-quantitative. This analysis was
rather a qualitative comparison method to test to generaliz-
ability of concordance between RNA and protein levels. We
performed pairwise comparison of 5,264 gene products found
both in our profiling results and Allen Brain Atlas ISH. We
based the classification boundaries on the standard deviation
of ISH and iFOT value distributions and on their correlation,
accepting that not all genes can be categorized. We found
that 27% of RSOPs showed tight correlation trends between
ISH and proteins (supplemental Table 4). However, the ma-
jority of RSOPs had lower correlation (R �0.8), indicating a
discordance between RNA expression and protein abun-
dance for region-specific proteins. In addition to RSOPs,
around 40% of all, unfiltered, proteins from our datasets
correlate with Allen Brain Atlas’s ISH data upon pairwise
comparisons (supplemental Fig. 5). We found that expression
and abundance of proteins strongly occur throughout the
whole range of mRNA expression levels, suggesting that the
levels of their mRNA directly regulate many proteins. How-
ever, certain gene products observed differential regulation as

categorized in Fig. 3D. We found that these differentially reg-
ulated gene products followed trends that were directly pro-
portional to their transcript expression or their protein abun-
dance. By separating each transcript-gene product pairs
according to their abundance, we found that each could be
classified into five broad categories as follows: ubiquitous;
RNA-regulated; post-RNA-regulated; stable proteins, and
negative RNA-regulated. These are summarized in Fig. 3D,
and an example of each is highlighted in supplemental Fig. 5.
Notably, although the classification schema did not depend
directly on absolute expression level or protein abundance,
gene products of different categories clearly accumulate in
specific regions as shown in supplemental Fig. 5. As ex-
pected, ubiquitous proteins of constant abundance and ex-
pression occur mostly at high expression values. The oppo-
site group with irregular abundances is generally of low RNA
and protein levels. This may be due to technical noise asso-
ciated with the low value measurements.

Functional Analysis of Brain Region-specific Outlier Gene
Protein Products—In calculating the correlation of protein

FIG. 3. Statistical analysis, confirmation of RSOPs, and comparison of GP level with RNA expression level. A, example of RSOP
calculation in olfactory bulb region. GPs show over a 4-fold increase and Student’s t test p value lower than 0.05 compared with all other
regions considered as RSOP (red rectangles). B, top five of RSOP listed. Total number of ROSP from each region is in parentheses. C,
validation of profiling quantification data for RSOP by PRM. D, five distinctive categories of ISH and GP correlation.
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abundance across the 17 regions, we found that relative
protein abundance clustered in an anatomical order, reflecting
the rostro-caudal development of these regions (Fig. 4A).
Specifically, we found the following three distinct clusters,
which roughly correspond to the brain regions observed in
vertebrate CNS development (21): the proencephalon (telen-
cephalon and diencephalon), the mesencephalon, and the
rhombencephalon (metencephalon and myelencephalon).
The remarkable conservation of proteomic content in the
clusters clearly reflects the developmental origins of the sam-
pled brain regions. Moreover, we found that the nature of
region-specific proteins was tightly coupled to cellular iden-
tity and function (Fig. 4B). For example, genes that regulate
dopaminergic synapses (22) and genes implicated in move-
ment disorders (23) were highly represented by the RSOPs
identified in the striatum punches (Fig. 4C). Moreover, cell
type-specific markers such as Ppp1r1b (DARPP-32) cor-

rectly identified the main resident cell type found in the
striatum, medium spiny neurons (23), and also identified
proteins that are enriched at dopaminergic termini, a major
synaptic input to the striatum, such as Slc6A3(DAT1), Ddc
(AADC), and Th (22). Similar observations could be made in
the context of cerebellar outliers, where Purkinje cells (24)
and cerebellar granule cells (25) are well represented by
several markers (Fig. 4D). Finally, the hypothalamic RSOPs
were predominantly characterized as proteins involved in
hormone regulation and control of feeding behavior and
thus confirm the functional concordance of these RSOPs
to different anatomical regions (26, 27). Taken together,
RSOPs can be used as a proteomic signature that allows for
faster and more insightful sample-to-sample comparisons
and may ultimately serve as a foundation through which
RSOP-based sub-typing of anatomical regions may be
possible.

FIG. 4. Functional annotation of RSOP. A, Pearson correlation of total gene protein product distribution was compared with brain
anatomical boundaries. B, list of RSOP related with region-specific cellular identity and function. C, dopaminergic specific gene products found
in striatum RSOP shown in red in blue shapes. D, cerebellum RSOP identified major glutamate receptor signaling molecules, here shown in
red and pink shapes.
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Validation of Proteome Profiling Platform in a Model of
Parkinson’s Disease—To test the utility of our dataset, we set
out to determine specific anatomically resolved proteomes for
an established mouse model of Parkinson’s disease. We
chose �-syn transgenic mice (�-syn TG, mThy1-Syn “line 61”)
as a model as they display progressive accumulation of �-syn
and age-dependent motor abnormalities (12). Furthermore,
we focused on the substantia nigra pars compacta (SNc) as
the target “susceptible” region to examine, due to its vulner-
ability in human PD. Moreover, given its close proximity and

neurochemical similarity to the SNc, we chose the VTA as a
control region, which is largely spared in PD (Fig. 5A) (28). To
have a proper handle on the temporal nature of proteomic
changes between brain regions in these transgenic mice, we
performed proteomic profiling on mice aged 3 weeks, 3
months, and 7 months of age. We picked these time points as
early-, mid-, and end-stage disease models to test whether
we could identify the incipient protein changes that may be
mediated by aberrant �-syn overexpression. Profiling of the
SNc and VTA was done by Thermo Orbitrap Fusion and

FIG. 5. Comparative deep proteome analysis between the SNc and the VTA of �-syn transgenic mice. A, isolation of the SNc from
2-mm-thick coronal section containing midbrain (right). B, Snca iFOT distribution of SNc regions from Snca wild type and transgenic mouse.
C, numbers and summarized GO term biological function of SNc-specific proteins regulated by �-syn overexpression compared with VTA. D,
normal wild type SNc and VTA site-specific proteins age-dependent abundancy changes.
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revealed �7,500–9,500 GPs per tissue punch when using a
high stringency peptide identification filter (supplemental Fig.
6). We found that transgene overexpression at different ages
corresponded to a 5–6-fold �-syn enrichment in the SNc,
consistent with previous reports using alternative methods
(Fig. 5B) (13). Overall, gene protein product quantification
correlation was very high between �-syn TG and WT mice at
all time points tested, which suggesting that overexpression
of �-syn induces only subtle changes in the overall protein
distribution pattern (supplemental Fig. 7). However, we did
find a larger dysregulation of up-regulated gene products in
the Parkinsonian mice at later time points (375 and 355 GPs
enriched in the TGs at 3 months and 7 months, respectively)
compared with the early time point (168 GPs enriched in the
TGs at 3 weeks) consistent with larger global alterations
following transgene expression (Fig. 5C and supplemental
Table 5).

We next explored the �-syn overexpression driven contri-
butions in a spatiotemporal context. First, we looked at the
regional differences between two neurochemically similar

regions, the SNc and the VTA. Although several proteomic
changes were observed at all time points, we were intrigued
to find a strong enrichment for membrane-signaling proteins
such as GnaI, Pde10a, and Itpr1 in the SNc compared with
the VTA in all tested ages (Fig. 5D).To confirm the validity of
these findings, we further validated a subset of these GPs
using PRM and noticed a high validation rate and degree of
concordance between our results (validation rate �92%;
r � 0.74, comparing profiling with PRM values) (Fig. 5D).

We next looked at the genotype-specific differences ob-
served between mice overexpressing �-syn over time and
their wild type littermates. We found that gene ontology cat-
egories varied substantially between different time points sug-
gesting that the effects of �-syn-mediated toxicity are highly
dynamic (Fig. 5C). However, we especially found that �-syn
TG mice largely showed increased markers of extracellular
matrix remodeling and inflammation (i.e. Hspg2, Lama5, and
Lamb2) specifically at a late stage of disease (7 months) (Fig.
6A). These findings, also validated using PRM, would be
consistent with the accumulation of inflammatory glial cell

FIG. 6. Age-dependent changes of Snca transgenic dependent RSOP. A, plot of relative quantification change of proteins depending
on �-syn overexpression in 7-month-old mouse, a few outliers of relevance to PD pathogenesis are highlighted (yellow triangles). GPs
show over 4-fold increase (red circle) or decrease (blue circle), and Student’s t test p value lower than 0.05 is also indicated. B, PRM
confirmation of 7-month SNc regional Snca transgenic mouse RSOPs. C, age-dependent relative quantification change for several
representative RSOPs.
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processes that occur in these mice over the course of their life
span (Fig. 6B) (29, 30).

Finally, we looked to see whether we could combine our
newly acquired tridimensional data (genotype, time, and
anatomical location) to identify targets that may be impor-
tant for disease pathogenesis. We first looked for GPs that
may be contributing to the disease process in the SNc
region of the �-syn transgenic mice over time. We found
that gliomedin (Gldn) and necdin (Ndn) followed trends
where their relative levels specifically increased in the SNc
over time in the context of �-syn overexpression (Fig. 6C
and supplemental Fig. 8). We next looked to see whether
resident neuroprotective genes may exist in the SNc and
VTA but are disturbed upon �-syn overexpression. In this
case, we found that GPs such as Arrdc3, Adam3, and
Serpinb10 observed trends where they are highly expressed
in the WT mice but are lost in cases of �-syn overexpression
and aging (Fig. 6C and supplemental Fig. 8). Altogether,
these findings suggest that there are tightly controlled spa-
tiotemporal changes that occur following �-syn overexpres-
sion in mice and that the earliest events may be worth
pursuing as novel pathways for the earliest events contrib-
uting to �-syn-mediated toxicity.

DISCUSSION

In this study, we generated a spatially defined proteomic
map of the mouse brain and used this tool to glean insight into
biology and disease. We streamlined the 2D sRP-RP-MS
procedure, allowing for proteome profiling in fewer than 8 h of
mass spectrometer running time to detect 6,500 to 7,500
gene protein products from one brain sample (Fig. 2A, sup-
plemental Table 7). During the writing of this paper we learned
of a study that looked at cell type- and brain region-resolved
mouse brain proteome (9). In that paper (9), they dissected the
mouse brain into 10 surgically distinct parts and used these
parts as a whole for protein profiling. They report relative
quantification of around 12,000 proteins per each brain re-
gion. Building on their findings, we generated maps of 17
distinct brain regions and confirmed the concordance be-
tween our two studies. The throughput of one proteome per
machine per day for triple bio-repeats makes large scale
measurement feasible. In addition to high throughput capac-
ity, our label-free proteome-profiling platform has a high sen-
sitivity that requires as little as 5 �g of tissue lysate. The high
sensitivity of this system allows for proteome profiling of small
samples from highly organized and structurally complex re-
gions, where sample collection amount is limited. Indeed, we
found that the dynamic range of the proteins we identified
spanned nearly 7 orders of magnitude (Fig. 2B). This range
corresponds well with most of the previously published pro-
teome profiling experiments reporting 7 orders of dynamic
range of proteome with various organisms (31, 32). This indi-
cates our method has no limitation to detect proteins of a
wide range of abundance. Gene ontology enrichment search

for the cellular component also shows our method has no
limitation to detect proteins from various cellular compart-
ments, outer membrane to nucleus and chromatin (Fig. 2C).
Because our protein extraction procedure was mild com-
pared with typical approaches using detergents (9), it is
important to check recovery of integral membrane proteins.
We found �75% (983 of 1,296) of Surfaceome Protein list
from the Cell Surface Protein Atlas (33). Most of the previ-
ously reported membrane-bound proteins could be identi-
fied using this approach (supplemental Table 6). This finding
indicates that our system has no problem to recover mem-
brane proteins. With this in mind, the generation of a spa-
tially restricted matrix-based map of the entire mouse brain
(in 0.5 or 1 mm size increments) could be feasible in the
foreseeable future (29, 30). The remarkable conservation of
proteomic content in the clusters clearly reflects the devel-
opmental origins of the bulk of the brain regions sampled in
this study. Our approach therefore provides an accurate
and efficient way to identify proteins that are region-specific
and tightly coupled to cellular identity and function (Fig. 4B).
The utility of the mouse brain proteome can also be seen in
light of its similarities and differences to brain-wide RNA
datasets such as the ones generated by the Allen Brain
Atlas. Coupled to large RNA expression-based datasets,
our RSOPs reveal both correlated and non-correlated RNA-
protein findings. Indeed, the top RSOPs identified in our
platform include the following: 1) some that were not pre-
viously found in the same brain region by RNA profiling; 2)
some that are expressed by major resident cell types; 3)
some that perform known functions of the resident cells of
that particular region; and 4) some that are associated with
disease in the queried brain region. Thus, these comple-
mentary approaches offer new insight as well as further val-
idation of the role of a particular gene product in the context
of neurobiology and disease.

Finally, we adapted our approach to answer the long-asked
biological question. Why are two adjacent brain regions dif-
ferentially susceptible to neurotoxicity in disease? Given our
success in miniaturization and spatial resolution, we decided
to compare the proteome between two spatially confined and
neurochemically similar (both are dopaminergic and have sim-
ilar cellular morphology) regions that are differentially suscep-
tible in Parkinson’s disease, the SNc and the VTA. Moreover,
given the rapid output of this approach, we were able to
provide a temporal dimension to this anatomical dissection by
testing animals at three stages of disease. With this multidi-
mensional workflow, we were able to pinpoint several com-
pelling groups of proteins whose abundance was aberrantly
altered specifically in the SNc over the VTA. At the same time,
we could internally control for dissection efficiency by looking
at markers of dopaminergic neurons such as TH and DAT
(Slc6a1). The identified “hits” thus serve as a promising re-
source to the PD field and a good entry point for hypothesis-
driven research in the context of selective neuronal vulnera-
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bility in PD. Looking first at spatiotemporal changes in gene
products between the SNc and the VTA, we found that mem-
brane-bound signaling proteins such as G-protein-coupled
receptor subunits/effectors and calcium-dependent signaling
mediators were altered at an early stage. These are consistent
with the idea that �-syn is primarily associated with mem-
branes, and thus the first proteins to sense a change in its
overexpression may indeed be associated there (34). Interest-
ingly, these “mis-expressed” proteins remained unaltered in
the VTA and could therefore be a sensitizing factor in disease
progression. Follow-up studies that directly target a subset of
these altered membrane proteins will surely shed insight into
the first steps of disease pathogenesis. When we next looked
at genotype-specific differences, we found that �-syn-driven
proteomic changes were highly dynamic. Indeed, gene ontol-
ogy revealed differential category enrichment over time (Fig.
5C). With regard to a later stage of disease pathogenesis, we
found that �-syn overexpression promoted the accumulation
of immune and extracellular matrix proteins at the level of the
SNc. This is consistent with the large role played by the
immune system and the extracellular matrix in the context of
age-dependent neurodegeneration. Indeed, a recent report
suggested that one of the top misregulated proteins in our
dataset, Hspg2, abnormally accumulates in another neurode-
generative disease, Alzheimer’s disease, and accelerates the
aggregation of its primary driver of pathology, �-amyloid (35,
36). Finally, we combined all measurements to identify GPs
that may be contributing to PD pathogenesis in a spatiotem-
poral and genetic manner. We found that Gldn and Ndn could
serve as contributing factors as they exhibited an �-syn-de-
pendent increase in the SNc over time, whereas Arrdc3,
Adam3, and Serpinb10 could serve as neuroprotective factors
as they exhibited an �-syn-dependent decrease in the SNc
over time. Although the function of these proteins in the
context of PD are not clear at this point, careful examination
of their role in neuronal function in the context of aging will
surely shed light onto mechanisms of �-syn toxicity in the
context of PD.

Taken together, our mouse brain proteome opens the
gates for further investigation into individual proteins or
groups of aberrantly regulated gene products to elucidate
new disease pathways for therapeutic intervention. Profiling
of individual candidate genes that are differentially ex-
pressed in specific brain regions could in turn provide in-
sight into the selective vulnerability of neurons in models of
neurological disease.
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