
rsos.royalsocietypublishing.org

Research
Cite this article: Aleta A, Hisi ANS, Meloni S,
Poletto C, Colizza V, Moreno Y. 2017 Human
mobility networks and persistence of rapidly
mutating pathogens. R. Soc. open sci.
4: 160914.
http://dx.doi.org/10.1098/rsos.160914

Received: 16 November 2016
Accepted: 10 February 2017

Subject Category:
Biology (whole organism)

Subject Areas:
mathematical modelling/theoretical
biology/computer modelling and simulation

Keywords:
pathogen persistence, spatial epidemic
spread, metapopulation model,
susceptible-infected-recovered-susceptible,
waning of immunity

Author for correspondence:
Chiara Poletto
e-mail: chiara.poletto@inserm.fr

†These authors contributed equally to this
study.
‡Present address: 91, AvenueduGénéral Leclerc
92340, Bourg la Reine, France

Human mobility networks
and persistence of rapidly
mutating pathogens
Alberto Aleta1,†, Andreia N. S. Hisi3,†,‡, Sandro

Meloni1,2, Chiara Poletto3, Vittoria Colizza3,4

and Yamir Moreno1,2,4

1Institute for Biocomputation and Physics of Complex Systems, and 2 Department of
Theoretical Physics, University of Zaragoza, Zaragoza, Spain
3Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis
d′Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
4ISI Foundation, Turin, Italy

SM, 0000-0001-6202-3302; CP, 0000-0002-4051-1716

Rapidly mutating pathogens may be able to persist in
the population and reach an endemic equilibrium by
escaping hosts’ acquired immunity. For such diseases, multiple
biological, environmental and population-level mechanisms
determine the dynamics of the outbreak, including pathogen’s
epidemiological traits (e.g. transmissibility, infectious period
and duration of immunity), seasonality, interaction with other
circulating strains and hosts’ mixing and spatial fragmentation.
Here, we study a susceptible-infected-recovered-susceptible
model on a metapopulation where individuals are distributed
in sub-populations connected via a network of mobility flows.
Through extensive numerical simulations, we explore the
phase space of pathogen’s persistence and map the dynamical
regimes of the pathogen following emergence. Our results
show that spatial fragmentation and mobility play a key role
in the persistence of the disease whose maximum is reached
at intermediate mobility values. We describe the occurrence of
different phenomena including local extinction and emergence
of epidemic waves, and assess the conditions for large-scale
spreading. Findings are highlighted in reference to previous
studies and to real scenarios. Our work uncovers the crucial
role of hosts’ mobility on the ecological dynamics of rapidly
mutating pathogens, opening the path for further studies on
disease ecology in the presence of a complex and heterogeneous
environment.

1. Introduction
Many pathogens are able to persist in a host population
by repeatedly reinfecting individuals who lose the immunity
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acquired during infection [1]. This mechanism is particularly important for the case of rapidly mutating
pathogens when mutation is associated with antigenic drift—e.g. for influenza virus [2] and respiratory
syncytial virus [3]. The probability of pathogen persistence is then determined by the interplay between
the transmissibility and infection time scales (i.e. duration of infection and immunity period), along with
ecological factors like seasonality, interaction with other circulating pathogens, mixing patterns among
individuals, their spatial distribution and mobility.

Waning of immunity and partial immunization have been accounted for by several modelling
studies [4–9] addressing detailed immunological mechanisms [10], interaction with other strains [7,
11], human contact structure [6], environmental factors [12], seasonality and temporal variation in
transmission [13–15]. The fate of an emerging pathogen in terms of persistence/extinction was also
studied, both as a theoretical problem [8,9] and through applications to the emergence of a novel
influenza strain [2,16]. However, the vast majority of studies on waning of immunity and persistence
have disregarded spatial structure so far.

Recently, it has been shown that the geographical distribution of the host population and the rate
of travelling among distant locations determine the time scale of human mixing, hence affecting the
probability of having large-scale epidemic spread [17–20] and the incidence profile [21–24]. For the case
of childhood diseases (e.g. measles), previous studies showed that these dynamical effects may impact
disease persistence and alter the critical community size [25–31], i.e. the population threshold above
which a disease is able to persist [25]. Results reported so far, however, suggest that the persistence
probability is determined by the interplay between the different spatial ingredients—e.g. distance and
frequency of travels, environmental influences on transmission—in a non-trivial way. Indeed, different
contrasting hypotheses have been suggested, with persistence maximized for intermediate levels of
spatial coupling [28,30], for maximum levels of coupling [31] or either of the two depending of the level
of spatial heterogeneity in transmission [29].

The spatial structure of human population could have important and non-trivial effects on the
spreading of diseases also when waning of immunity is at work, affecting the possible dynamical regimes
following an outbreak. In this paper, we address this problem by means of a stochastic discrete spatially
explicit metapopulation model. We reconstruct the dynamics of an emerging infection through extensive
numerical simulations. We characterize the role played by the spatial fragmentation, the coupling,
and the structure of the mobility network through which individuals travel from one sub-population
to another. We focus on the regime of parameters that best describes influenza-like infections. Our
metapopulation framework realistically reproduces the statistical properties of the human population,
i.e. strong heterogeneities and correlations in the population distribution and mobility. We perform a
detailed analysis of the mechanisms shaping the probability of pathogen persistence and the spatial
dynamics following emergence in the short and long term. Our approach offers the theoretical and
computational framework to further explore the effects of other features not taken into account here (e.g.
multiple strains, seasonality and others) in order to gain a full understanding of pathogens’ persistence
and be able to perform realistic data-driven simulations.

2. Material and methods
We use a stochastic individual-based metapopulation model [32–34], where mobility and infection of
individuals are explicitly accounted for as discrete-time processes. Individuals mix homogeneously
within the local communities (also called sub-populations, patches or nodes of the metapopulation
system), whereas at the global level the coupling between these sub-populations is introduced by
individuals that travel along mobility connections (figure 1). The model is thus represented in terms
of a network of links, i.e. mobility flows, connecting different nodes representing local populations.

Massive data and extensive research studies have uncovered the statistical properties of the
distribution of human populations and their associated mobility, pointing out their network structure,
characterized by large variabilities and non-trivial correlations [35–38]. In particular, the population of
urban areas and the number of connections between locations (considering e.g. air-transportation or
commuting) span several orders of magnitude, and more-populated centres are also often the hubs of
the mobility network. We account for these properties by assuming a power law distribution for the
patches’ connectivity and a linear relationship between connectivity and population. Specifically, we
considered a network of V patches, each of them (node i of the network) characterized by a population
of size Ni, and a degree ki that represents the number of sub-populations through which node i is linked
via mobility connections. The nodes’ degree distribution is assumed to be of the form P(k) ∼ k−γ with
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Figure 1. Schematic representation of the stochastic metapopulation model. Panel (a) represents the disease dynamics that follows a
SIRS scheme,where individuals change stateswith given transition probabilities (Susceptible (S), Infected (I), Recovered (R) and back to S
when the acquired immunity is lost). Panel (b) illustrates the structure of themetapopulation network,which consists of sub-populations
that are connected by individuals travelling from one to another through a mobility network.

no degree–degree correlation present; a random network with these characteristics was generated by
means of the uncorrelated configuration model [39] with γ = 3.0. Mobility fluxes are assigned to each
link by assuming that, in each sub-population, individuals may travel at each time step to neighbouring
sub-populations with a probability p. Departing individuals from node i choose at random one of
the available ki links, so that the probability of travelling along a connection is given by p/ki. This
process yields a population distribution that at equilibrium is proportional to the number of connections,
namely, Ni = ki〈N〉/〈k〉; where 〈N〉 and 〈k〉 are the average population per node and average degree of the
metapopulation network, respectively [20].

The infection dynamics is implemented through the Susceptible-Infected-Recovered-Susceptible
(SIRS) compartmental scheme [4]. The evolution of the dynamics results from the following transition
rules iterated at each time step, corresponding to 1 day:

(i) Susceptible individuals within each sub-population i may be infected with probability Γi = 1 −
(1 − β/Ni)Ii , where β represents the transmission probability, and Ni and Ii denote, respectively,
the total population and the number of infected individuals in node i;

(ii) Infected individuals enter with probability μ the recovered compartment, that represents a state
in which individuals are immune to the disease; here immunity is assumed to be complete;

(iii) Eventually, recovered individuals lose their immunity and get back to the susceptible state.
This occurs with probability λ, that is the inverse of the average immunity period, L.

Infection transition rules combined with travelling can be summarized, for each sub-population,
by the following discrete master equations:

Si(t + dt) − Si(t) = (1 − p)[λRi(t) − Γi(t)Si(t)] − pSi(t) +
∑

j∈υi

p
kj

[Sj(t) + λRj(t) − Γj(t)Sj(t)]

Ii(t + dt) − Ii(t) = (1 − p)[Γi(t)Si(t) − μIi(t)] − pIi(t) +
∑

j∈υi

p
kj

[Ij(t)(1 − μ) + Γj(t)Sj(t)]
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Ri(t + dt) − Ri(t) = (1 − p)[μIi(t) − λRi(t)] − pRi(t) +

∑

j∈υi

p
kj

[Rj(t)(1 − λ) + μIj(t)],

where υi represents the set of neighbouring patches of i. The described process disregards vital dynamics.
This choice simplifies the dynamical characterization of the model and it is motivated by our interest
in diseases with durations of both infection and immunity periods much shorter than the average life
duration (e.g. influenza). Starting with a fully susceptible population, the disease is seeded in a randomly
chosen node by infecting 0.5% of its population, in such a way that stochastic runs differ for both the
initial seed and the stochastic realization of the dynamics. The disease may then propagate inside the
local population and spread to neighbouring populations due to host movements. Progression of the
disease and host movements are stochastic events that are numerically modelled through multinomial
processes. For each scenario considered, 103 independent epidemics are simulated starting from different
seeded sub-populations.

We consider influenza-like infections spreading in space as a prototypical example for our study.
We fix the duration of infection μ−1 = 2.5 days and the basic reproductive number R0 = β/μ = 2.0. The
population is assumed to be composed of 108 individuals divided in V patches. We explored scenarios
characterized by: (i) different spatial fragmentation of the host population, considering V = 102, 103, 104;
(ii) a varying coupling between patches expressed by host mobility, considering p ∈ [10−6, 1];
(iii) different topological structures of mobility connections, comparing the heterogeneous network
described by a power-law degree distribution to a homogeneous Erdős–Rényi graph [40] described by
a Poisson degree distribution with the same average value; (iv) a varying immunity period, considering
L ∈ [1, 800] days.

For each set of parameters, we numerically monitor the global prevalence (i.e. the total fraction of
infectious individuals) and the number of infected patches D(t) in time. We also estimate the probability
that the pathogen persists in the population at the global level, Pgl, by computing the fraction of
stochastic runs for which the epidemic reaches the endemic state, once a given set of parameter values
is considered. The same quantity can be defined at the local level to measure the probability of local
persistence Ploc. This can be computed considering a closed population, or a population integrated into
a metapopulation framework, thus open to incoming and outgoing fluxes of individuals. At the local
level, we also define an outbreak as a single epidemic (infecting at least 0.1% of the population) that
continuously persists in the population. Repeated outbreaks instead are considered as distinct waves
following local extinction. These behaviours are characterized for the different scenarios explored, in
order to provide a coherent picture of the mechanisms for virus persistence and endemic equilibrium
in the spatially structured population.

3. Results and discussion
In the following, we present first the results regarding the persistence of the pathogen in the population
and the mechanisms behind it, followed by a detailed characterization of the spatial dynamics across the
scenarios explored.

3.1. Persistence

3.1.1. Interplay between waning of immunity and mobility

The probability of persistence is found to be very high and equal to 1 for short immunity periods; once
immunity becomes longer, a reduction of the probability of persistence is observed (figure 2a). This
behaviour is common to all host mobility rates explored. When the waning of immunity is very fast,
there is a high rate of renewal of susceptible individuals that can be newly infected by the pathogen, thus
ensuring its survival in the population. A slower rate of renewal makes persistence less likely and the
specific behaviour of the decrease in persistence probability depends on the coupling between patches.
Reduction may occur through a drop to zero persistence (e.g. p = 10−6, 10−5, etc. and p = 10−2, 10−1, etc.),
or a drop to an intermediate positive value of persistence probability that is maintained for a large range
of immunity period, before reaching Pgl = 0 (e.g. p = 10−4, 2 × 10−4, etc.).

The dependence of persistence drop on mobility is highlighted in figure 2b. Our results show that it is
possible to distinguish three mobility regimes—namely, low mobility (cyan), intermediate mobility (light
blue) and high mobility (purple). These regimes are approximately delimited by p < 4.5 × 10−5, p ∈ [4.5 ×
10−5, 2.0 × 10−3] and p > 2.0 × 10−3 (referring to the profile of 5% persistence probability), respectively.
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Figure 2. (a) Persistence probability Pgl as a function of the duration of immunity L for several values of the travelling probability p.
Three different regions can be distinguished: low mobility 10−6 ≤ p≤ 4.5 × 10−5 (cyan), intermediate values 4.5 × 10−5 ≤ p≤
10−3 (light blue) and high mobility 2 × 10−3 ≤ p≤ 1 (purple). (b) Colour map of Pgl in the (p,L) plane. Black curves highlight the
contours with Pgl = 5% and Pgl = 95% as indicated in the figure. The red arrow indicates the value of the global invasion threshold for
the mobility network and disease parameters here considered,μR20/[2〈N〉(R0 − 1)2]〈k〉2/(〈k2〉 − 〈k〉)= 4.5 × 10−5. Both panels
show results obtained with V = 104, 〈N〉 = 104 and power law degree distribution.

In the low mobility regime, persistence at the global level is mainly determined by the probability
that the pathogen would persist locally in the seeded population. If p is low enough so that no
infectious individual travels out of the infected patch during the first wave of the epidemic, pathogen
survival following the first wave depends on the length of the immunity period. A long enough
immunity period prevents the replenishment of healthy individuals in the short term, thus leading to
the extinction of the epidemic in the seeded patch, with no chances for global spread. If the availability
of new susceptible hosts is instead provided fast enough by a short immunity period, the epidemic
can survive the first wave in the seeded population, reaching a local endemic equilibrium. This, in
its turn, can slowly seed the epidemic in neighbouring patches even when small mobility rates are
considered, thanks to the local equilibrium condition. This same process is then occurring in each newly
seeded patch, so that propagation unfolds at the global level and a high probability of persistence is
observed.

The condition distinguishing between an epidemic trapped locally in a patch and one that spreads at
the global level has been quantified in previous studies in terms of the global invasion threshold [17,20,
41–45]. Its analytical expression, provided in [20], provides an upper bound for the low mobility regime

p <
1

〈N〉
〈k〉2

〈k2〉 − 〈k〉
μR2

0
2(R0 − 1)2 . (3.1)
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Once informed with the demographic and topological features of our spatially structured population,
this condition is found to provide a good approximation to the limit of the low mobility regime (red
arrow in figure 2b).

The spatial structure of the population becomes less important once the system is found in the
high mobility regime. In this case, the probability of moving from one patch to another is so high as
to largely increasing the opportunity of mixing of the populations belonging to different patches. The
system behaves effectively as a single population of the size of the full metapopulation (i.e. in our case
108 individuals) affected by a SIRS dynamics. The conditions for global persistence are therefore those
described before for the seeded population in the low mobility regime. Differently from before, here local
persistence is equivalent to global persistence, due to the large degree of mixing across space. The values
of the immunity period at which a given persistence probability is observed (e.g. L � 300 for Pgl = 5%)
differ from the case of low mobility regime (L � 100), because of the difference in the population size, i.e.
a single patch in the low mobility regime and effectively the full metapopulation size in the high mobility
regime.

The intermediate mobility regime displays a higher persistence probability for a given duration of
the immunity period, compared with low and high mobility regimes (figure 2b). The contour line at a
fixed Pgl (e.g. Pgl = 5% or 95%) exhibits a maximum for intermediate values of the travelling probability
p that is reached for high values of L. In addition, a smoother variation of the persistence probability
is observed by varying L for a given p, compared with the faster transitions recovered in the low and
high mobility regimes. The intermediate degree of mixing provided by intermediate mobility seems
to enhance stochastic effects responsible for local extinction, thus having an important impact on the
persistence at the global level.

Maximum persistence for intermediate level of coupling was also reported in the context of
childhood diseases, where SIR models with continuous external introduction of the infection were
considered [28,30]. No consensus was, however, found in this context, with other studies reporting
different findings. For instance, Hagenaars et al. found an increase in the persistence with increasing
levels of the coupling among sub-populations [31]. Rozhnova et al. confirmed this finding when
homogeneous transmission across patches is considered, and additionally showed that heterogeneity
in transmission among patches selects dynamical regimes with different spatial effects [29]. Different
results obtained from different models show how the detailed mechanism of susceptible replenishment,
together with infectious transmission and recovery, and spatial mixing, have an impact on the resulting
persistence. Prompted by this, we assess in the following the role played by the spatial fragmentation
of the population and by the mobility network on our model where the replenishment of individuals is
obtained through immunity waning.

3.1.2. Role of spatial fragmentation and mobility network

Spatial fragmentation is explored by subdividing the total population of N = 108 hosts into V =
102, 103, 104 patches. Global persistence in the three scenarios shows the same qualitative behaviour
described in the previous section (figure 3a). The separation between different mobility regimes,
however, depends on the number of patches considered. More precisely, it is a demographic effect due to
a varying average population size per patch. Referring to the transition from low mobility to intermediate
mobility regime, we have indeed that the estimate expressed in equation (3.1) depends on 〈N〉. Increasing
the number of patches from V = 102 to V = 103, 104, the average size of the population in a given patch
decreases by one and two orders of magnitude, respectively, thus inducing a corresponding increase in
the mobility value of the transition from low to intermediate regimes. As a result, the maximum of the
global persistence is obtained for correspondingly increasing values of the travelling probability.

It is interesting to note that the behaviour observed in the high mobility regime is the same across the
three scenarios. This confirms that the resulting dynamics when p is high enough corresponds effectively
to the local persistence dynamics of a single population of 108 individuals, as discussed in the previous
subsection.

If the topological structure connecting the patches via mobility links is altered and homogenized, we
find that higher values of mobility need to be reached for the transition from low to intermediate mobility
to occur (figure 3b). As expected, heterogeneous mobility patterns (as the ones adopted in figure 2) favour
hosts’ mobility resulting in a larger global persistence for lower travelling probabilities. This is consistent
with what is predicted by the global invasion of equation (3.1) as shown by the arrow in figure 3b. At high
mobility regimes, the structure connecting the links does not play any role, and global persistence is the
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Figure 3. (a) Fragmentation analysis. Curves represent Pgl = 5% for three values for the number of patches V = 102, 103 and 104

sub-populations. In all the cases, the total population has been kept constant Ntot = 108 ending up with an average population per sub-
population of 〈N〉 = 106, 105 and 104, respectively. Other parameters as in figure 2. (b) Impact of network topology. Curves represent
Pgl = 5% for homogeneous (Erdös–Rényi graph [40], green line) and heterogeneous (power low distribution, blue line) mobility
networks. Both networks have the same number of patches V = 104 and similar average degree 〈k〉. Other parameters as in figure 2.

same. Mixing is high enough so that the structured population behaves effectively as a single population
regardless of the topology through which such mixing occurs.

3.2. Spatial dynamics
In this section, we go more in depth into the understanding of the spatial dynamics following the
emergence of a pathogen in the fully susceptible and spatially structured population. Starting from
the global persistence diagram reported in figure 2, we characterize the epidemic diffusion in space
considering a single value of reference for p in each of the three mobility regimes (p = 3 × 10−5 in the
low, p = 6 × 10−4 in the intermediate, and p = 10−2 in the high mobility regime), associated with different
values of the immunity period L (figure 4).

3.2.1. Lowmobility coupling

We first analyse the low mobility regime, by characterizing the spatial epidemic dynamics obtained for
p = 3 × 10−5 and L = 30 leading to Pgl = 1.0 (figure 4g), and p = 3 × 10−5 and L = 80 leading to Pgl = 0.50
(figure 4d). As discussed previously, global persistence is determined by local persistence of the disease at
the patch level. The very high persistence observed for p = 3 × 10−5 and L = 30 is ensured by an endemic
equilibrium that is reached in all patches after a given time, as signalled by 100% of patches experiencing
an outbreak (i.e. D(t)/V = 1 after a given t). Even with a low probability of moving from one patch to
another, the initially seeded population is able to transfer infected hosts to neighbouring populations in
the long time limit thanks to the endemic equilibrium reached. In their turn, newly infected patches can
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Figure 4. Spatial dynamics. The external panels show the time evolution of the fraction of infected sub-populations D(t)/V for different
values of the duration of immunity L and travelling probability p. The central panel shows the different regions where each value of L and
p has been chosen. In each panel, curves corresponding to 102 runs with different initial conditions are shown. To facilitate visualization,
90% of them are smoothed.

further propagate to the infection reaching all patches of the system, thus achieving a high probability of
persistence of the pathogen at the global level, fuelled by each endemic dynamics.

The same travelling probability leads to lower Pgl once the immunity period increases, from L = 30
to L = 80 (figure 4d). Here, a similar mechanism of local persistence and spatial diffusion ensured by the
endemic equilibrium is at play, but it does not occur in all patches. At the end of our simulations, we find
indeed that only a fraction of patches is experiencing an outbreak (D/V � 80%). The different dynamics
occurring across patches depends on the patch population size. For a fixed value of the immunity period
L, there exists a minimum population Nmin needed in order to achieve a certain probability of local
persistence (figure 5) [8,25,46,47]. The population size of the patch of our system varies approximately
in the range [5 × 103, 2.7 × 105], due to the heterogeneous topology connecting the patches. If L = 30, we
find that all population values are above the minimum population needed to achieve local persistence
and mobility can act as spatial spreader to reach global persistence. If L = 80, we find that a portion
of the patches do not have enough population to achieve local persistence. In particular, to obtain a
local persistence probability higher than 95% the minimum population size is 5 × 104. The epidemic is
able to spread at the global scale; however, smaller peripheral patches do not meet the condition for
local endemic equilibrium. This results in a slower spatial spread, compared with the case of L = 30
(as displayed by the time axis in figure 4d,g), and an epidemic that is not able to endemically reach all
sub-populations (D/V < 1).

The dynamics for the L = 80 case reflects a spatial hierarchy similar to the one studied in the context
of childhood diseases—notably, for measles epidemics in the UK [23,24,48]. At equilibrium, highly
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connected and populated patches are steadily infected, while the peripheral ones experience repeated
outbreaks on the rare occasions in which infectious travellers arrive from the hubs and find enough
susceptible individuals to induce a local outbreak. To characterize this hierarchy, we analyse how
local persistence changes across classes of patches and quantify the number of outbreaks each class
experiences throughout the duration of the simulated epidemic. Classes of patches are defined by their
connectivity, i.e. we focus on nodes having the same number k of neighbouring sub-populations. Owing
to the correlation between degree of a patch and its population size, these connectivity classes correspond
effectively to population classes. Increasing degree leads therefore to higher local persistence, because of
the relation to the population size (figure 6a for the low mobility regime). Ploc reaches 1 in high-degree
nodes for small enough values of the immunity period (i.e. up to L = 100 days among the cases shown
in the figure 6a). In addition, we find that in these conditions hubs consistently experience only one
outbreak (figure 6b), corresponding to an epidemic that persists in the population after the first seeding
event. Low-degree nodes instead experience repeated outbreaks seeded from neighbouring nodes
interspersed with local extinctions. For higher values of L (e.g. L = 150), the maximum local persistence
achieved even in highly connected nodes is smaller than 1 and global persistence is approximately
Pgl = 0.03. Our results show that when disease persistence occurs, it is driven by repeated outbreaks
taking place in different locations. Patches with intermediate degrees have the highest turnover of
consecutive epidemics (about three outbreaks measured in the explored timeframe; figure 6b). Hubs
present fewer outbreaks, as these last longer because of their larger population size and due to the
continuous reseeding from neighbouring patches that lead to multiple consecutive waves. Peripheral
nodes instead have less outbreaks because, being less reachable, they are not frequently reseeded after
local extinctions by other nodes.

3.2.2. Intermediate mobility coupling

For intermediate values of the travelling probability p, the spatial dynamics displays multiple waves
followed by an endemic behaviour, if the probability of global persistence is larger than 5% (figure 4b,c,h).
For smaller persistence (e.g. Pgl = 0.01, figure 4a), the epidemic goes extinct after an initial wave.
Interestingly, the amplitude of the initial wave is determined only by the mobility, regardless of the
final persistence or extinction outcome. We explain this by noticing that the first wave refers to the
process of spatial invasion from the initially seeded patch, that can be quantified by the global invasion
threshold [20]:

R∗ = (R0 − 1)
〈k2〉 − 〈k〉

〈k〉2
2(R0 − 1)2

μR2
0

p〈N〉, (3.2)
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Figure 6. (a,c,e) Probability of local persistence in patches with degree k for different values of the immunity period L at p= 3 × 10−5

(top row), 6 × 10−4 (central row) and 10−2 (bottom row). The probability is computed as the fraction of outbreaks occurring in a node
of degree k lasting at least 2000 time-steps. (b,d,f ) Average number of distinct outbreaks experienced during a simulation by a node
of degree k for different values of the immunity period L at p= 3 × 10−5 (top row), 6 × 10−4 (central row) and 10−2 (bottom row).
Statistics is limited to runs where global persistence occurs. All measurements have been performed after a transient time of 2000 steps
to focus on the endemic dynamics.

measuring the number of neighbouring patch that a seeded patch can infect. This is the analogue of
the basic reproductive number at the sub-population level. Though this estimate was obtained for a
SIR dynamics, we consider it here as we focus on the initial spatial invasion following the seeding,
before the mechanism of immunity waning becomes important. The invasion condition R∗ > 1 indeed
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already proved to be a good approximation to define the upper bound of the low mobility regime in
equation (3.1). Exploring different points in the intermediate mobility regime characterized by the same
value of p (p = 6 × 10−4 for figure 4a,b,c,h), we find indeed the same initial invasion, regardless of the
duration of the immunity period.

Following the initial wave, dampened oscillations in the number of infected patches are observed at
the spatial level, for large enough persistence probability. At the local level, oscillations in the incidence
are caused by the waning of immunity and have a frequency that decreases with L and the patch
population size, as predicted by the SIRS theory [4]. These local oscillations then interact at the spatial
level because of the mobility coupling, translating in multiple waves in the spatial propagation. Those
may be the result of travelling waves departing from well-connected nodes [23,24,48,49]. Figure 6c indeed
shows that if the pathogen is able to persist in the population, after the initial transient, the epidemic has
more chances to persist in highly connected nodes. The more peripheral patches experience a sequence of
sporadic outbreaks, similarly to the low mobility case (figure 6d). Differently from before, here the local
persistence is enhanced by the spatial coupling provided by the intermediate mobility. The continuous
reseeding by infectious individuals travelling between sub-populations, in a situation of low level of
synchronization between local epidemics, fuel the circulation of the infection, hence allowing for a
non-zero persistence even at high values of L, corresponding to the maximum discussed in §3.1.
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This rescue effect was previously introduced in the context of childhood diseases [26–28]. Here, we find

that it is driven by the increase in local persistence in highly connected nodes as illustrated in figures 5
and 6. In figure 5, the comparison of this mobility regime with the low mobility one shows that the rescue
effect lowers the population threshold needed to have persistence Pgl ≥ 0.05 and Pgl ≥ 0.95. Moreover,
comparing the intermediate and low mobility regimes (blue curves in figure 6a,c) for the case L = 150, we
see that while local persistence is not achieved when patches are fairly isolated, this is not the case for a
large class of nodes as soon as mobility increases.

3.2.3. High mobility coupling

To characterize the unfolding of the epidemic in the high mobility regime, we consider two points
of figure 4e having the same travelling probability p = 10−2, and different lengths of the immunity
period, namely L = 150 and L = 250, corresponding to Pgl = 1.0 and Pgl = 0.60, respectively. The epidemic
dynamics in these cases shows an oscillatory behaviour followed by an endemic equilibrium (figure 4f,i),
similar to what was previously discussed in the intermediate mobility regime. Here, frequencies of
oscillations are, however, higher. This may be induced by an increase in synchronization among patches,
enabled by the stronger level of spatial coupling [31]. Larger travelling fluxes lead, indeed, to almost
all patches being infected during the first wave (e.g. D/V � 1 for p = 10−2, figure 4i, compared with
D/V � 0.6 for p = 6 × 10−4, figure 4h, for the same value of L). Over time, these fluxes guarantee a
large degree of seeding across patches along with increased mixing. For L � 360 and in a situation
of global persistence, local persistence is found to be much higher across degree classes compared
with intermediate mobility—see e.g. curves in figure 6e versus figure 6c for the same value of L and
consistently the values of Nmin in figure 5 corresponding to the p = 10−2 case. Spatial heterogeneities
are therefore progressively reduced, with a larger number of patches behaving similarly and epidemic
differences across patches almost disappearing.

If persistence is enhanced locally for all patches, the resulting more synchronized system is, however,
more prone to extinction of the epidemic for large enough immunity periods. This is the same type
of phenomenon observed for measles in [26–28], i.e. a decrease in spatial heterogeneity reduces the
effectiveness of the rescue effect by enhancing the level of synchronization. To test this hypothesis, we
compared the local and importation dynamics occurring in the most connected patch in the intermediate
and high mobility regimes. We considered a single stochastic run to highlight the critical role of stochastic
effects within this mechanism (figure 7). Immunity is maintained equal in both scenarios, for comparison.
When p = 6 × 10−4 (intermediate mobility, figure 7a), importation of cases from neighbouring patches,
desynchronized with respect to the local dynamics, allows the epidemic to survive the first wave and
then quickly reach an endemic equilibrium, i.e. the rescue effect referred to before. If mobility is higher
(p = 0.01, figure 7b), importations are synchronized with the local dynamics, i.e. a peak of importations
is occurring during the peak of the local epidemic wave, and both profiles fade out at the same time. In
this way, there is no importation from outside the patch that could help sustain or relaunch the outbreak
in the patch, and the epidemic goes extinct.

4. Conclusion
As has been previously discussed in the literature, the epidemiological mechanism of waning of
immunity alters the fate of an emerging infection and its chance to persist in the population. Here, we
have characterized in depth this effect once a spatially structured population with varying coupling
is considered. By using a stochastic individual-based metapopulation model that explicitly accounts
for travelling fluxes among sub-populations, we have found that there are three distinct mobility
regimes. Our results show that, when mobility is low, the persistence conditions for the disease in
the metapopulation system are the same as if the patches were isolated. When mobility is very high
the epidemic behaves as if the whole metapopulation were well mixed. Eventually, at intermediate
levels of mobility, the coupling between sub-populations creates rescue effects due to non-synchronized
epidemics ongoing in the patches that maximize disease persistence. These effects are able to reseed the
epidemics locally once it became extinct.

Different persistence outcomes are associated with a variety of short-term dynamical behaviours.
These are due to the interplay between local replenishment of susceptible individuals and the
level of epidemic synchronization across patches. For a very rapid waning of immunity, persistence
occurs regardless of the level of mobility coupling, with local endemic equilibria allowing for the
epidemic to propagate from one patch to another even at very low travelling probabilities. For longer
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durations of the immunity period, the probability of having local persistence is shaped by the high
heterogeneity in the population distribution (large patches may be above the critical size needed for local
persistence, while small ones may not) and the rescue effect. These two mechanisms are important at
intermediate levels of travelling coupling and are responsible for the peak of persistence observed in this
regime.

Our findings are similar in many aspects to the ones obtained for the case of measles and, more in
general, for an SIR model with vital dynamics and external introductions [23,24,27,28,30,31,48,50–52].
This exemplifies that different mechanisms of susceptible replenishment can lead to common dynamical
features. Distinct and apparently contradicting behaviours have been shown in previous studies [28–
31], highlighting the important role that mobility can have in triggering these mechanisms. Here, we
have provided a detailed description of the epidemic dynamics for the case of a rapidly spreading acute
infection with waning of immunity, where the main statistical features of human space distribution and
mobility are accounted for in a realistic way. We showed that the main result, i.e. that persistence is
maximized at intermediate mobility couplings, is valid for different levels of spatial fragmentation and
also for a homogeneous distribution of population and connectivity.

In order to better focus the analysis on the interplay between mobility and time scale of waning
of immunity, we considered throughout the manuscript a single value of R0. We expect different
values of R0 yielding the same qualitative picture with an increase in the parameter determining
a shift of the persistence peak toward smaller values of p as predicted by equation (3.1). We also
disregarded ingredients known to impact infectious disease dynamics in many real cases. In particular,
we assumed no seasonality in transmission and no multi-strain interference. These two ingredients
are known to alter the spread of diseases like influenza and respiratory syncytial virus, thus they
are usually included in realistic data-driven modelling of these infections [2,7,53]. The inclusion of
seasonality in the studies of childhood diseases and its interplay with demography showed the
emergence of annual and biannual cycles in the dynamics of the disease [23,24,51]. In the systematic
exploration conducted here for the SIRS case, accounting for these ingredients would be complicated
by the large increase in the complexity of the dynamics, the number of parameters and the variety of
possible outcomes in terms of persistence, transient dynamics and equilibrium state [21,22,29,54–56],
thus hindering a clear theoretical understanding. The chosen approximations may, however, limit the
applicability of our work directly to real-case situations, such as the case of the emerging influenza
strains [2,57–59].

Other aspects could alter the results, such as human response and intervention to the epidemic—
e.g. vaccination, case isolation and travel restrictions. In particular, phenomena like travel bans or
spontaneous reductions of travel often occur during the initial stage of an outbreak as a consequence
of the public concern about the emerging infection. They were shown, however, to have limited impact
on the early stage invasion [19], given that reductions of orders of magnitude needed to significantly
affect spatial spread are unfeasible in reality [60,61]. For the same reason we argue that their effect
would be minimal also on pathogen persistence, unless the system is in the intermediate mobility
regime, where probability of persistence is more sensitive to the level of spatial coupling (figure 2).
Vaccination, on the other hand, by boosting the level of immunity in the population increases the chance
of pathogen extinction and may profoundly alter the spreading dynamics, affecting the frequency of
epidemic waves [23]. For the case of rapidly mutating pathogens the quantification of vaccine efficacy
and its impact on disease eradication is complicated by the fact that immunity caused by vaccination
also decays in time when novel virus variants emerge, and vaccine match with the circulating pathogen
is often compromised due to the difficulty in anticipating virus mutation in the vaccine design and
production [58].

Starting from the complete characterization of the epidemic dynamics proposed here, we plan to
address these points in the future in order to better understand the epidemic dynamics resulting from a
complex interplay of different factors.
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