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Abstract

Functional connectivity (FC) – the study of the statistical association between time series from 

anatomically distinct regions [6, 7] – has become one of the primary areas of research in the field 

surrounding resting state functional magnetic resonance imaging (rs-fMRI). Although for many 

years researchers have implicitly assumed that FC was stationary across time in rs-fMRI, it has 

recently become increasingly clear that this is not the case and the ability to assess dynamic 

changes in FC is critical for better understanding of the inner workings of the human brain [10, 2]. 

Currently, the most common strategy for estimating these dynamic changes is to use the sliding-

window technique. However, its greatest shortcoming is the inherent variation present in the 

estimate, even for null data, which is easily confused with true time-varying changes in 

connectivity [16]. This can have serious consequences as even spurious fluctuations caused by 

noise can easily be confused with an important signal. For these reasons, assessment of uncertainty 

in the sliding-window correlation estimates is of critical importance. Here we propose a new 

approach that combines the multivariate linear process bootstrap (MLPB) method and a sliding-

window technique to assess the uncertainty in a dynamic FC estimate by providing its confidence 

bands. Both numerical results and an application to rs-fMRI study are presented, showing the 

efficacy of the proposed method.
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1 Introduction

Functional connectivity (FC), the study of the statistical association between two or more 

anatomically distinct time-series ([6],[7]), has become one of the primary areas of research 

in the field surrounding functional magnetic resonance imaging (fMRI). Although 

researchers implicitly assumed that FC was stationary across time, particularly in resting-

state fMRI (rs-fMRI), it has recently become increasingly clear that the ability to assess 

dynamic changes in FC is critical for a better understanding of the inner workings of the 

human brain [10, 2]. The association between changes in connectivity and various diseases 

has been described in a number of studies [5], and the hope is that this will provide the 

beginning of a new and deeper understanding of neurodegenerative diseases and 

neuropsychiatric disorders, such as Alzheimer’s disease [12] or autism [18]. The results also 

support the belief that changes in neural activity patterns associated with dynamically 

changing FC can provide greater understanding of the fundamental properties of brain 

networks in both healthy subjects and patients suffering from various mental disorders.

Despite the increased attention, the results of dynamic FC analyses are often difficult to 

interpret. This is due in part to the inherent low signal-to-noise ratio in the data, 

physiological artifacts, and variation over time in both the mean and variance of the blood-

oxygen-level dependent (BOLD) signal. These issues conspire together to create problems 

with the interpretation of transient fluctuations in FC [10], and it is often difficult to 

determine whether they are in fact due to neuronal activity or simply a byproduct of random 

noise [16, 9]. In addition, a lack of clear analytical strategy and guidelines for proper 

interpretation of the results further contribute to this ambiguity. As a consequence, 

significant research and methodological developments are necessary to move the field 

forward.

A number of approaches have been proposed to assess dynamic FC in resting-state fMRI 

data, including independent component analysis, time-frequency coherence analysis [2], 

time series models [16], and change-point detection methods [3, 4, 19]. To date, the so-

called sliding-window approach [1, 2, 8] has been the most common analysis strategy, and it 

is the focus of this work. This approach has a number of benefits, including the fact that it is 

appealingly simple in both application and intuition. However, in spite of these benefits, the 

approach has several drawbacks. These include the arbitrary choice of window length and 

the fact that all observations within the window are weighted equally [16]. However, its 

greatest shortcoming is possibly the inherent variation present in the estimate, even for null 

data, which is easily confused with true time-varying changes in connectivity [16, 9]. This 

can have serious consequences as even spurious fluctuations caused by noise can easily be 

confused with important signal.

For these reasons, the ability to assess the level of uncertainty in sliding-window correlation 

estimates is of critical importance. In particular, the introduction of confidence intervals for 

the correlation estimates could help identify, and screen for, changes in connectivity that are 

driven purely by random noise. One possible approach towards obtaining such intervals is to 

use the bootstrap procedure. Standard bootstrap methods are not readably applicable to time 

series data due to the dependence structure [13]. For this reason, in the past few years, new 
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techniques have been proposed for bootstrapping dependent and stationary time series data 

(see [13] for a summary of these methods). To date, this work has primarily focused on 

estimation of the sample mean and does not consider statistics of order higher than two. To 

circumvent this problem, Jentsch and Politis [11] introduced the multivariate linear process 

bootstrap (MLPB) method. They employ a tapered covariance matrix estimator, which gives 

higher weights to observations in a close proximity and lower weights to observations 

farther apart. Application of this procedure results in a stable and consistent estimator of the 

covariance matrix arising from multivariate time series. These properties of an estimator are 

critical for accurate estimation of dynamic FC, and standard bootstrap methods do not share 

them.

In this work, we propose a new non-parametric model-free approach that combines the 

MLPB and a sliding-window technique in order to assess the uncertainty in dynamic FC 

estimates by providing confidence bands. Specifically, we divide time series into adjacent 

blocks. We use data within each block to generate bivariate time series bootstrap samples. 

We combine generated data from adjacent blocks into time series. Next, we define a moving 

time window of size w and use data within that window to calculate the correlation 

coefficient. Subsequently, the window is moved forward step-wise through time, and the 

procedure is repeated for each shift. As a result, a time-varying measure of correlation 

between brain regions is obtained as well as dynamically changing confidence bands. Our 

algorithm, denoted Dynamic Connectivity Bootstrap Confidence Bands (DCBootCB), 

provides a valid estimate of the confidence band for the sliding-window estimator of the 

correlation coefficient.

The properties of the proposed estimator are studied in a series of simulation studies. Our 

simulations provide evidence that the MLPB approach to bootstrapping correlated time 

series gives valid model-free time-varying connectivity estimates together with their 

associated confidence bands. In addition, they show that the theoretical properties of the 

proposed approach are supported by empirical evidence. We conclude by applying the 

DCBootCB algorithm to resting state fMRI data.

The article is organized as follows: Section 2 introduces a statistical framework of our 

problem; Section 3 presents our approach for estimating the time-varying functional 

connectivity and its confidence bands; Section 4 provides the description and the results of 

the simulation study; Section 5 presents an application of our method to rs-fMRI data; and 

Section 6 contains conclusions and a discussion.

2 Statistical framework

Our work is concerned with the principled estimation of confidence bands for the time-

varying functional connectivity between two time series measured at uniformly sampled 

time points t = 1, . . . , T. Let a two dimensional time series be denoted by {y(t), t = 1, . . . , 
T} with y(t) = (y1(t), y2(t))⊤, where ⊤ means transpose. Further, assume that:

(1)
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where μ(t) is the mean of y(t) conditioned on all observations obtained up to time t, defined 

by E(y(t)|y(1), . . . , y(t − 1)), and ε(t) is the error term at time t with mean zero and 

covariance matrix also conditioned on all observations obtained up to time t given by:

(2)

The diagonal terms of the matrix Σ(t) are the time-varying variances of the two time series 

y1(t), y2(t). The off-diagonal term is the covariance between the two time series y1(t), y2(t). 
All of these terms are conditioned on all observations obtained till time t. Equivalently, the 

conditional covariance matrix can be expressed as:

(3)

where the conditional standard deviations of time series are represented in the diagonal 

matrix D(t); R(t) is the correlation matrix conditioned on all observations obtained till time t, 
and ρ(t) is the correlation coefficient conditioned on the observations collected up to time t, 
which is defined as:

(4)

The main goal of this paper is to estimate the confidence bands for ρ(t) by applying a 

modified sliding-window technique. The general idea behind the basic sliding-window 

technique is based on calculating the correlation coefficient from the data contained within a 

window of fixed length w. By moving the window, the correlation coefficient can be 

computed at each time point. This can be expressed as follows:

(5)

There are a number of potential drawbacks of using the sliding-window approach directly, 

including its inability to handle sudden changes, the equal weighting of all observations 

within a window, and the arbitrary selection of window length [16]. Due to these 

shortcomings, it is important to be able to critically evaluate the uncertainty present in the 

sliding-window estimate. However, the sliding-window technique does not provide valid and 

straightforward non-parametric estimates for the confidence bands. The most commonly 

used approach for computing the confidence interval for the correlation estimator is to use a 

parametric, asymptotic Fisher approximation for the correlation coefficient. However, as we 
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show in this paper, this approach has a number of shortcomings in practice and is not valid 

for correlated time series.

3 Estimation of time-varying functional connectivity and its confidence 

bands

In this section, we introduce the DCBootCB algorithm for estimating the time-varying 

correlation coefficient and its confidence bands. In order to understand the DCBootCB 

algorithm, we begin by giving a brief summary of statistical concepts used in our study and 

the MLPB method proposed by Jentsch and Politis (2015) [11].

We start by providing short overview of a number of statistical concepts. A confidence 
interval at a given confidence level, for example 95%, implies that if the same population is 

sampled on many occasions and interval estimates are calculated each time, the resulting 

intervals would include the true population parameter in approximately 95 % of the cases.

The coverage probability is used to assess the empirical performance of a method that has 

been shown to behave well in theory. Specifically, in the simulation studies we estimate it by 

counting the number of timepoints in which the true parameter value is contained within the 

confidence interval. For example in the case of a 95% confidence interval, we expect that on 

average in 95% of the simulations the true parameter will be within the confidence interval 

limits. In our simulation study, for each time point, we calculate the percentage of times that 

the confidence interval covers the true parameter. A final estimate of the coverage 

probability over the whole time domain is calculated by averaging the pointwise coverage 

probabilities.

Finally, we introduce the terms non-zero coverage and non-static coverage to indicate the 

percentage of time when the confidence interval does not contain zero and a constant 

correlation value, respectively. Specifically, large non-zero coverage percentage signifies 

that the dFC is frequently significantly different from zero, whereas large non-static 

coverage percentage signifies that the dFC is frequently significantly different from the static 

correlation. The latter indicates that an assumption of static (non-time varying) correlation 

between two brain regions fails to account for a dynamically changing association between 

them.

Next we present a short overview of MLPB method. MLPB is a general bootstrap method 

that gives consistent estimates for statistics of orders two and higher, with both the sample 

autocovariance and the sample autocorrelation being special cases.

We begin by defining functions used in the MLPB algorithm, including the flat-top kernels 

and the tapered covariance matrix. The flat-top kernels are the tapered weight functions used 

in the covariance matrix estimation. They leave the diagonal elements unchanged and 

progressively decrease the impact on the covariance estimation of observations located 

farther away from the off-diagonal. McMurry and Politis (2010) [17] defined them formally 

as follows:
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Definition 1—The tapered weight function κ is given by

(6)

where g(·) is a function satisfying |g(x)| < 1 and ck a constant satisfying ck ≥ 1.

A trapezoid function, which is used in our approach, is an example of a tapered kernel 

function which meets the requirements of Definition 1. We follow the definition in [11]:

(7)

Jentsch and Politis [11] in their approach proposed to use a l-scale version of a flat top 

kernel, which is defined as  for some value of l > 0 [17]. In our approach, 

following the example presented in Jentsch and Politis [11] and the author’s guidelines on 

the selection of tuning parameters [11], we set l = 1. However, for consistency in notation 

with the original paper [11] we kept l as an index in the tapered covariance matrix estimator.

We next describe the use of the tapered covariance matrix estimator. Let X = {X1, ..., Xdn}⊤ 

be a dn-long vectorized version of the (d × n) data matrix, where n is the number of time 

points and d the number of time series (brain regions), in our case d = 2. Let Γdn be the 

covariance matrix of X, where Γdn(i, j) is the covariance between the ith and jth entry of X. 

We estimate Γdn using the sample autocovariance function 

. Following the work of [11] the estimator of 

Γdn can then be defined as:

Jentsch and Politis[11] point out that an estimator in this form is not consistent. As a 

consequence, they proposed to instead use the tapered covariance matrix estimator defined 

as Γ̂κ,l = (κl(i − j)Ĉ (i − j); i, j = 1, . . . , n) = (Γ̂κ,l(i, j); i, j = 1, . . . , dn), where κl was 

specified in equation 7. To ensure positive definiteness of the obtained estimator of Γdn, 

Jentsch and Politis[11] first represented Γ̂κ,l as a product of the variance and correlation 

matrices, and then decomposed the correlation matrix using its spectral factorization. To 

guarantee positive semidefinitness of Γ̂κ,l matrix, they replaced the negative eigenvalues by a 

small positive constant and showed that the resulting estimate affects the convergence of the 

estimator only slightly. The procedure can be summarized by the following formula [11]: 

, where V̂ is the diagonal matrix of sample variances,  is 
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a correlation matrix with adjusted values, S is a (dn × dn) orthogonal matrix containing 

eigenvectors, and  is a diagonal matrix of eigenvalues of , where 

negative diagonal entries are adjusted according to the formula  with β and 

ε representing two tuning parameters. McMurry and Politis [17] found in simulation studies 

that β = 1 and ε = 1 perform well and affect the MLPB results only slightly. In our work, we 

made the same assumptions regarding the values of β and ε. Full description and further 

details of how to obtain estimator  of covariance matrix Γdn can be found in [11].

Up to this point, we have discussed how to obtain a proper estimate of the covariance matrix, 

which is needed in the MLPB algorithm. Next, the inverse Cholesky decomposition of the 

estimated covariance matrix is used to decorrelate the constructed vector X. The 

decorrelated vector is further centered and standardized. This newly constructed residual 

vector can be assumed to be independent and identically distributed (i.i.d.) with zero mean 

and unit variance. By randomly selecting these residuals with replacement, bootstrap 

samples are created. To obtain a bootstrap sample with covariance that is approximately the 

same as the covariance structure of the original data, the vector of (i.i.d.) residuals is 

multiplied by the Cholesky matrix itself. Formal description of the algorithm, originally 

presented in [11], is provided below.

MLPB bootstrap algorithm

Step 1. Let X be the (d×n) data matrix consisting of ℝd-valued time series data 

X1, . . . , Xn of sample size n. Compute the centered observations Yt = Xt − X̄, where 

, let Y be the corresponding (d × n) matrix of centered observations 

and define Y = vec(Y) to be the dn-dimensional vectorized version of Y.

Step 2. Compute , where  denotes the lower left triangular 

matrix L of the Cholesky decomposition .

Step 3. Let Z be the standardized version of W, that is, , i = 1, . . ., dn where 

 and .

Step 4. Generate  by performing i.i.d. resampling from {Z1, . . . , 
Zdn}.

Step 5. Compute  and let Y* be the matrix obtained by placing this 

vector column-wise into a (d × n) matrix with columns denoted by . 

Define X* to be a (d × n) matrix consisting of columns 

Next, we extend this algorithm to estimate the time-varying FC confidence bands. We 

begin by giving an intuitive description before providing the full DCBootCB 

algorithm.

In the first step, each time series of length n is divided into k adjacent blocks of length v (n = 

kv). Within each of the k blocks, we generate MLPB bootstrap samples as described above. 
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Subsequently, adjacent blocks of bootstrap samples are combined into a single time series of 

length n, forming a bootstrap sample of the original time series. In the second step, we apply 

the sliding-window technique to the obtained bootstrap sample to estimate the dynamically 

changing correlation. Further, we use a kernel smoothing technique based on a Gaussian 

kernel to smooth its trajectory. The bootstrapping procedure is repeated B times, producing 

B estimates of the dynamically changing correlation coefficient trajectory. In the third step, 

we compute the 95% confidence bands using the empirical quantiles of the entire set of 

smoothed trajectories. Using the quantiles gives us simultaneous confidence bands, and we 

do not rely on the selection of constants or pointwise standard error estimation as is 

commonly done in parametric approaches to confidence band estimation.

The formal steps of the proposed algorithm are presented below. We use the following 

notation, X is a (2 × n) data matrix consisting of vectors X1, X2 of size n representing the 

fMRI time series from two ROIs, and v is an integer-valued block length.

DCBootCB algorithm

Step 1. Partition the matrix X into (2 × k) adjacent blocks, where .

Step 2. Apply MLPB to draw a bootstrap sample within each adjacent block to obtain 

a single 2 × v bootstrap sample. Combine k adjacent blocks of bootstrap samples into 

a single (2 × n) data matrix X*.

Step 3. Let Xi,v be a 2 × v bootstrap block of v consecutive observations starting at 

time index i from matrix X*. For each Xi,v estimate the correlation at time index i.

Step 4. Use a Gaussian kernel smoothing technique to obtain the estimated 

correlation trajectories.

Step 5. Repeat steps 2 and 3 B times.

Step 6. Calculate the empirical quantiles at each time point to get 95% confidence 

bands.

We evaluate the properties of the DCBootCB algorithm in a series of simulation studies 

presented in Section 4 and apply it to resting-state fMRI data in Section 5.

4 Simulation study

In the following sections, we present in detail the data generating mechanism used in the 

simulations and summarize the obtained results.

4.1 Data generation

We generated a two-dimensional time series y(t) = (y1(t), y2(t))⊤ of length T from a bivariate 

normal distribution with mean zero and covariance matrix defined in equation (3) with the 

correlation term ρ(t) varying over time. We achieved it by generating the random numbers 

using the statistical computing and graphics software R (http://www.r-project.org). We used 

the function mvrnorm() from the library MASS to generate the data from a multivariate 

normal distribution with the user-specified mean vectors and covariance matrices.
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To investigate the empirical properties of the DCBootCB method, we considered five 

scenarios. In Scenarios 1, 4, and 5, we set the variance of time series y1(t), y2(t) equal to 

one, whereas in Scenarios 2 and 3, we assumed that the variances were equal to 2 and 3, 

respectively. The values of the time-varying correlation term ρ(t) and the length of the time 

series T were set as follows:

Scenarios

S1 The correlation is equal to zero for t = 1, . . . , T, which implies that the two time 

series are uncorrelated across time. Here the total number of time points T was 

allowed to vary between the values 150, 300 and 600.

S2 The correlation changes according to the function  for  and k = 

1, . . . , 4. This function represents a slowly varying periodic change in 

correlation. Here the total number of time points T equals 1000.

S3 The correlation changes according to a Gaussian kernel with mean μ = 300 and 

standard deviation σ = 25 * k for k = 1, . . . , 4. This function represents a short-

lived non-zero correlation. Here the total number of time points T equals 1000.

S4 The correlation changes in 0.1 increments from 0 to 0.5 and back to 0 at times t 
= m * (l − 1) + 1, . . . , m * l, where l = 1, . . . , 11 and m = 50, 100, 200. Here 

the total number of time points T was allowed to take the values 550, 1100, and 

2200.

S5 The correlation changes from 0 to 0.6 and back to 0.2 at times t = m*(l
−1)+1, . . . , m*l, where l = 1, . . . , 3 and m = 50, 100, 200. Here the total 

number of time points T was allowed to take the values 150, 300, and 600.

For each scenario and setting, the simulations were repeated 250 times. For each simulated 

data set, we generated B = 1000 bootstrap samples. The width of the adjacent blocks for 

bootstrap samples was selected to equal 30 in order to increase the stability of the covariance 

matrix estimation. In each generated data set, we applied the sliding-window technique 

using two different window lengths, namely w = 30 and w = 45 time points. It allowed us to 

observe how sensitive our approach is to the selection of this parameter among commonly 

used window lengths. We based this choice on empirical studies, as well as analytical results 

presented in Leonardi et al. [15] which showed that the choice of window lengths should be 

between 30 and 60 seconds. When selecting the length of the sliding-window, it is important 

to choose a window which is not too large because it might diminish true signal in the data 

and not too small because it might introduce spurious fluctuations as shown by Leonardi et 

al. [15] and Lindquist et al. [16]. In the literature, there are other data-driven methods for 

selecting the length of the window, for example methods which are based on a time-

frequency analysis[10], however, the price for data-driven selection is a higher 

computational cost. In this article, comparison of the length of the moving windows was not 

our main interest.

For each simulation, we calculated the proportion of time that the confidence interval 

contained the true value of correlation. We took an average over these proportions and 
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obtained the average coverage of the true correlation function. We used this value as a 

summary of the results of each simulation scenario.

In addition, kernel smoothing is applied with a bandwidth equal to 30 to create functional 

estimates of the dynamic correlations. This choice of a bandwidth can be optimized, but in 

practice it has no major effect on the coverage probability.

To assess the uncertainty of the dynamic FC estimates obtained using the DCBootCB 

method, we created the empirical 95% confidence intervals and assessed their coverage of 

the true parameter across time for each simulation. In addition, we compared the 

performance of the proposed algorithm to the Fisher z-transformation approach. To the best 

of our knowledge, confidence intervals based on the Fisher z-transformation have not been 

used in neuroimaging studies. Details of the Fisher z-transformation are presented in Section 

4.2 and the results of the simulation study in Section 4.3.

4.2 Fisher z-transformation

Fisher z-transformation is used to transform the estimated correlation coefficient r, defined 

in Eq. 5, using function f(·) such that f(r) is asymptotically normally distributed. We obtain 

the confidence intervals for the transformed quantity, f(r), and use an inverse transformation 

to arrive at the confidence intervals for the true correlation coefficient ρ. Fisher z-

transformation of a sample correlation coefficient r is expressed as:

(8)

Its asymptotic standard error is , where N is the number of time points. Using 

this information, we can provide the 95% confidence interval for the transformed correlation 

coefficient zρ as (zr − 1.96 * SEzr, zr + 1.96 * SEzr). Through simple calculations, we can 

convert the zr estimate back to the correlation scale using the formula:

(9)

As a result the confidence interval for the correlation coefficient is:

(10)

In our simulation study, we use the number of time points within each window to obtain 

standard errors for the pointwise confidence intervals of the estimated correlation 

coefficient, i.e. N = w.
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4.3 Simulations results

Here we summarize the results for each of the simulation scenarios. These range from the 

null correlation assumption (Scenario 1), through the smoothly varying correlation function 

(Scenarios 2 and 3), to the correlation function with jumps (Scenarios 4 and 5).

Scenario 1—Time series were generated to be uncorrelated over time. As a consequence, 

the estimated dynamic correlation is expected to fluctuate around zero. The top left panel of 

Figure 1 shows a sample result for a single simulation run. The DCBootCB-estimated 

confidence bands cover zero for most of the domain. The average coverage of the true 

correlation function for 150, 300, and 600 time points is 95.57%, 95.1%, and 95.6%, 

respectively, for a window size 30; and 95.6%, 96.1%, and 96.08%, respectively, for window 

size 45 (Table 1). Fisher’s approximation gives an average coverage of the true function of 

99.4%, 99.7%, and 99.5% for window size 30; and 98.7%, 98.5%, and 98.8% for window 

size 45 (Table 1). Clearly, the average coverage estimated using the Fisher approximation is 

higher than the nominal level, indicating it is overly conservative in this setting. Thus, our 

results provide a lower bound.

Scenario 2—Time series were generated so that the correlation varied slowly in a periodic 

fashion at four different frequencies. The top middle panel and top right panel of Figure 1 

show the results for a single simulation run for (1) a low frequency sine function (k = 1); and 

(2) a high frequency sine function (k = 4). The average coverage of the true correlation 

function for increasing frequencies is 95.1%, 95.1%, 94.2%, and 92.5% for window size 30; 

and 96%, 95.9%, 94.1%, and 88.9% for window size 45 (Table 2). The coverage for a high 

frequency sine function (k = 4) is lower than the nominal 95% for two reasons; first, fast-

changing nature of the true association; and second, the oversmoothing caused by the length 

of the moving window. Fisher’s approximation gives an average coverage of 99.4%, 99.4%, 

99.2%, and 95.7% for a window size 30; 99%, 98.9%, 98.1%, and 95.7% for a window size 

45 (Table 2). Average coverage calculated using Fisher’s approximation is again much 

higher than the nominal level, showing that this method tends to be too conservative and 

thus, our results provide a lower bound. DCBootCB coverage is much closer to the nominal 

level.

Scenario 3—Time series were generated with the correlation changing according to the 

shape of a Gaussian kernel with four different standard deviation values. The correlation 

coefficient is different from zero in an interval located within approximately ± 3 standard 

deviations of t = 300. The left bottom panel of Figure 1 shows the results for a single 

simulation run for Gaussian kernel with high standard deviation. The average coverage for 

increasing value of standard deviation is 94.2%, 94.6%, 94.8%, and 94.9% for window size 

30; and 94.1%, 95%, 95.5%, and 95.6% for window size 45 (Table 2). The average coverage 

calculated using DCBootCB is very close to the nominal level. Fisher’s approximation 

provides an average coverage of 99.3%, 99.4%, 99.5%, and 99.5% for window size 30; 

97.9%, 98.5%, 98.8%, and 98.9% for window size 45 (Table 2). The average coverage 

calculated using Fisher’s approximation is again significantly higher than the nominal level.
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Scenario 4—Time series were generated with the correlation changing at each eleventh 

time point by 0.1 starting from ρ = 0 to 0.5 and back to 0, i.e. in a piecewise constant 

pyramid shape function. The bottom middle panel of Figure 1 shows the results for a single 

simulation run. Sudden jumps cause higher fluctuations around the jumps edges. As a result 

DCBootCB-generated confidence intervals cover the true correlation curve along the 

constant parts and lie away from it at the jump points. This is expected, as we are 

approximating a discontinuous function with a smooth estimate. The average coverage of a 

true correlation function for 550, 1100, and 2200 time points is 87.6%, 87%, and 85.6%, 

respectively, for window size 30; and 88.1%, 88.7%, and 86.2%, respectively, for window 

size 45 (Table 3). Fisher’s approximation gives an average coverage of the true parameter of 

94.4%, 92.5%, and 91% for window size 30; and 93.8%, 92.8%, and 90.4% for window size 

45 (Table 3). The average coverage calculated using Fisher’s approximation is closer to the 

nominal level, but the confidence intervals are significantly wider.

Scenario 5—Time series were generated with the correlation function changing in a 

piecewise constant manner. The correlation was equal to zero for the first third of the signal, 

0.6 for the middle third, and 0.2 for the last third. The bottom right panel of Figure 1 shows 

the results for a single simulation run. As in Scenario 4, the DCBootBC-generated 

confidence intervals covers the true correlation along the constant parts and performs worse 

at jump points. Again, this is expected as we are approximating discontinuous function with 

a smooth estimate. The average coverage for the setting consisting of 150, 300, and 600 time 

points is 69.6%, 84.4%, and 90.7%, respectively, for window size 30; and 45.3%, 77.5%, 

and 87.2%, respectively, for window size 45 (Table 4). The coverage is better for a longer 

time series, since the overlap of the discontinuity and the sliding-window is proportionally 

smaller than for the short time series. Fisher’s approximation gives an average coverage of a 

true parameter of 83.8%, 93%, and 96.4% for window size 30; and 54.2%, 81.5%, and 

91.4% for window size 45 (Table 4). The average coverage calculated using Fisher’s 

approximation is closer to the nominal level, but again the confidence intervals are much 

wider.

Widths of the confidence intervals—Figure 2 displays the average width of 

DCBootCB confidence intervals (black curve) and Fisher’s approximation confidence 

intervals (red curves) for Scenarios 1, 3, and 5, respectively. The shape of the average width 

is similar for all three scenarios. The main difference between the curves is the width of 

coverage. DCBootCB confidence intervals are on average narrower. It is worth noticing that 

the confidence intervals are wider at the beginning and at the end of the estimated dFC. This 

feature is not uncommon in kernel smoothing, as the number of points within a kernel 

window is smaller than in the middle of the interval. In the smoothing literature this effect is 

commonly known as a “boundary effect”. The average width of the Fisher’s approximation 

confidence intervals is approximately 25% greater than the width of the DCBootCB 

confidence intervals. For Scenario 3 (middle panel of Figure 2), the average width of the 

confidence interval decreases as the value of correlation function increases. This result is 

expected and follows the theoretical properties of the correlation coefficient. Similar 

dependency can be observed on the right panel of Figure 2.
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Estimation Accuracy—To assess the estimation accuracy of the DCBootCB approach 

and the regular sliding-window method, we measured the mean square error (MSE) between 

estimated dynamically changing correlation and the true value of the correlation for both 

methods. Although the main interest of the paper is to provide an algorithm to estimate 

confidence intervals for the sliding-window estimate of dFC, the estimate of dFC which we 

get as a result of applying DCBootCB algorithm has a smaller MSE compared to the sliding-

window method. Results for each scenario are presented in Figures 3 to 7.

Summary—For the majority of the simulation scenarios considered, the DCBootCB 

method provides appropriate coverage of the true correlation function. The empirical 

coverage is very close to the nominal value. However, the proposed algorithm does not 

perform well in the case of step functions. This behavior was expected, as we are attempting 

to estimate the discontinuous function using smooth estimates. Fisher’s approximation does 

a better job in terms of coverage in the discontinuous correlation function case, at the cost of 

a significant increase in the width of the confidence interval. In addition, in Scenarios 1, 2 

and 3, Fisher’s approximation gives an average coverage as great as 99.5%, illustrating that 

Fisher’s approximation tends to be overtly conservative.

5 Kirby 21 data application

We applied the DCBootCB algorithm to the “Multimodal MRI Reproducibility Resource” 

study [14], also known as the Kirby 21 dataset (http://www.nitrc.org/projects/multimodal). A 

detailed description of the study and data preprocessing steps can be found in Lindquist et 

al.[16]. Here, we use two repeated resting-state fMRI scans separated by a short break from 

20 healthy adult volunteers. Each scan lasted 7 minutes resulting in 210 observations per 

subject per scanning session. Data was extracted from the six regions of interest defined in 

Chang and Glover [2], including the posterior cingulate cortex (PCC), the parietal cortex 

(Region 1), the frontal operculum (Region 2), the temporal cortex (Region 3), the 

orbitofrontal cortex (Region 4), and the anterior cingulate cortex (Region 5). The latter five 

regions were chosen due to the fact they showed high variability with the PCC during resting 

state. In Figure 8, we show examples of the original time series (left panels) and the dynamic 

connectivity estimates (right panels). The blue line depicts the estimate of dFC, the green 

line depicts the static correlation, and the red lines represent the confidence intervals. 

Specifically, we present the data from the PCC and the right interior frontal operculum for 

subject 2 during scan 2 and for subject 16 during scan 2, respectively. The dFC for subject 2 

shows small changes across time, while the dFC for subject 16 shows higher variability 

across time. To summarize the dynamic behavior of FC for each subject, region, and scan, 

we calculated the non-static coverage, which is the percentage of time when the confidence 

interval does not contain the static correlation. When the CI covers the static correlation 

there is less evidence that the correlation coefficient changes dynamically over time. The 

results are shown in Figure 9 for each subject, region, and scan. The non-static coverage in 

Figure 9 exhibits high variability across subjects, regions, and scans, indicating that the 

assumption of a static correlation is not viable. In addition, we calculated the non-zero 

coverage(the proportion of the time points where the 95% CI does not contain zero), which 

indicates a significant association between two brain regions. Due to the dynamic nature of 
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connectivity, the significance of association between two brain regions may vary across 

time. This property can be observed in Figure 10, where two heatmaps show the proportion 

of the non-zero coverage for each subject, region, and scan. For a number of pairwise 

associations, the value is high (dark blue) indicating that the assumption of a constant zero 

correlation is not appropriate. We also note high non-zero coverage variability across 

subjects, regions, and scans.

As a further illustration, we present results from the second scan for subjects 2 and 16 (see 

Figures 9 and 10). For subject 2, the non-static coverage between the PCC and each of the 

five other regions implied by a 95% CI is equal to 0%. This implies that a static correlation 

is sufficient to describe their associations. In contrast, the non-zero coverage is on average 

equal to 56% and varies between 22.10% and 98.9%. For example, the non-zero coverage 

between PCC and the right inferior frontal operculum (ROI2) is 47% and between PCC and 

the right inferior orbitofrontal cortex (ROI4) is 98.9%.

For subject 16, the results were quite different. Here the non-static coverage is on average 

equal to 18.3% and varies between 0% and 56.9%. For example, the non-static coverage 

between PCC and the right inferior frontal operculum (ROI2) is 56.9% and between PCC 

and the right inferior orbitofrontal cortex (ROI4) is 15.5%. Hence, a static correlation is not 

sufficient to describe the association between these two particular brain regions. The 

nonzero coverage is on average equal to 23.6% and varies between 0% and 48.6%. For 

example, the non-zero coverage between PCC and the right inferior frontal operculum 

(ROI2) is 47.5% and between PCC and the right inferior orbitofrontal cortex (ROI4) is 

48.6%.

Application of DCBootCB to the Kirby 21 data set demonstrates that the estimated dynamic 

correlation is extremely variable and that providing only point estimates of the correlation 

can be misleading. Uncertainty estimation enables us to decrease the chance of making false 

positive statements about either non-zero association or static behavior of the connectivity.

6 Discussion

The most common approach towards assessing the dynamic nature of FC has been the 

sliding-window technique. In this paper, we studied the properties of this method. Our main 

contribution was to introduce a method for obtaining non-parametric estimation of the 

confidence bands for the dynamically changing correlation coefficient. To do so, we utilized 

the MLPB method, which was designed specifically to generate valid bootstrap samples for 

multivariate correlated time series. We computed the confidence intervals to determine if 

there was evidence of a time-varying statistical association between two brain regions and to 

provide a summary measure of the degree to which it varies. To the best of our knowledge, 

such an approach has never been implemented in a study of connectivity using fMRI data.

The DCBootCB method requires specification of three tuning parameters: (1) the number of 

sampling points used for the correlation estimation; (2) the size of the smoothing window; 

and (3) the width of the adjacent blocks in the bootstrap algorithm. We based our choice of 

the sliding-window size on published empirical results. The most common width of the 

Kudela et al. Page 14

Neuroimage. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



window was either 30 or 45 time points, and it has been shown that application of the much 

larger window length does not appropriately capture the dynamically changing signal. 

Similarly, the smoothing window size was selected to be 30 time points. The width of the 

adjacent blocks was equal to 30 time points in the bootstrap algorithm to guarantee the 

stability of the covariance matrix estimation. In future work, we will explore the effect of 

different block sizes.

In a series of simulation studies, we showed that the proposed confidence bands behave well. 

We considered situations of no association between the two time-series, gradually changing 

association, and step-wise constant association. Our simulation results lead us to conclude 

that the MLPB approach to bootstrapping correlated time series provides a valid model-free, 

time-varying connectivity estimates together with associated confidence bands. We showed 

that point estimates for the correlation coefficient alone are not sufficient to assess 

connectivity, and it is necessary to also include uncertainty measures. In addition, our 

simulation studies show that the theoretical results are supported by empirical evidence. It is 

expected that when the correlation goes up, the width of confidence intervals will get 

narrower.

We compared confidence bands obtained by the DCBootCB algorithm with the Fisher 

asymptotic results. The precision of coverage of a true correlation coefficient was much 

better for the DCBootCB algorithm. We found that the Fisher asymptotic approximation 

tends to overestimate the coverage of confidence bands for dynamically changing 

correlation. The proposed algorithm has some difficulties with discontinuous functions. This 

is illustrated in simulation Scenarios 4 and 5. The main problem appears on the boundaries 

between the step-wise constant pieces. Even though this is a limitation of the DCBootCB 

algorithm, in practice, resting state dynamic correlation tends to change gradually, which 

was mimicked in simulation Scenarios 2 and 3.

We applied the DCBootCB algorithm to the Kirby-21 resting state data. We focused on 

assessing dynamic correlation between the PCC located in the default-mode network, and 5 

ROIs known from the literature to display a high degree of variability with the PCC across 

time. On the one hand, results obtained in the analysis of the Kirby-21 data confirmed the 

high variability between regions and subjects in the same scan. On the other hand, we found 

high variability between scans performed on the same subject casting doubt on the 

reproducibility of the intra-subject dynamic correlation patterns.

In conclusion, we addressed one of the main issues associated with applying the sliding-

window technique to estimate functional connectivity – the lack of assessment of 

uncertainty. Unfortunately, much of the functional connectivity research is focused 

exclusively on the connectivity estimation without proper confidence band estimation. The 

introduced DCBootCB algorithm provides a mechanism to estimate the uncertainty using 

confidence bands that are not readily available in other cases. We also showed in a 

simulation study that the properties of the proposed algorithm are better in terms of coverage 

than Fisher’s asymptotic approach.
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Figure 1. 
Results for a single simulation run of the time-varying functional connectivity for different 

scenarios. Blue line represents the true correlation between the two time series, black line 

the estimated correlation, the red lines the 95% confidence intervals based on the bootstrap 

samples (gray curves) and the green lines the 95% confidence intervals based on the Fisher 

approximation.
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Figure 2. 
Average width of the time varying confidence interval for DCBootCB (black curve) and 

Fisher’s approximation(red curve), when: the left panel - the true correlation coefficient 

equals zero(Scenario 1); the middle panel - the true correlation coefficient is Gaussian 

kernelshaped (Scenario 3); the right panel - the true correlation coefficient is pyramid-

shaped (Scenario 4).
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Figure 3. 
Boxplots of the MSE between estimated dFC and the true value of correlation for dFC 

calculated using DCBootCB algorithm and regular sliding-window technique for Scenario 1 

- constant correlation across time.
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Figure 4. 
Boxplots of the MSE between estimated dFC and the true value of correlation for dFC 

calculated using DCBootCB algorithm and regular sliding-window technique for Scenario 2 

- sine function.
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Figure 5. 
Boxplots of the MSE between estimated dFC and the true value of correlation for dFC 

calculated using DCBootCB algorithm and regular sliding-window technique for Scenario 3 

- Gaussian kernel.
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Figure 6. 
Boxplots of the MSE between estimated dFC and the true value of correlation for dFC 

calculated using DCBootCB algorithm and regular sliding-window technique for Scenario 4 

- step-wise constant correlation across time.
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Figure 7. 
Boxplots of the MSE between estimated dFC and the true value of correlation for dFC 

calculated using DCBootCB algorithm and regular sliding-window technique for Scenario 5 

- piecewise constant pyramid.
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Figure 8. 
Left panels show raw time series and right panels estimated dynamic correlations between 

the PCC and the right interior parietal cortex for subject 2 undergoing scan 2 (small changes 

in FC) and for subject 16 undergoing scan 2 (large changes in FC). The green line on the 

right panel represents the static correlation.
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Figure 9. 
The proportion of the time interval where the dynamic correlations 95% CI does not cover 

the static correlation between the PCC and 5 ROIs for each subject, region and scan.
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Figure 10. 
The proportion of the time interval where the dynamic correlations 95% CI does not cover 

the zero correlation between the PCC and 5 ROIs for each subject, region and scan.
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Table 1

Summary statistics of empirical coverage of the nominal 95% confidence interval for a true correlation 

coefficient for simulation study Scenario 1-correlation equal to zero across time.

SIM. 1 window T=150
aveg. (Q1, Q2, Q3)

T=300
aveg. (Q1, Q2, Q3)

T=600
aveg. (Q1, Q2, Q3)

DCBootCB
30 95.57 (99.38, 100, 100) 95.10 (91.51, 100, 100) 95.60 (92.65, 96.76, 100)

45 95.61 (100, 100, 100) 96.13 (95.12, 100, 100) 96.09 (93.52, 99.19, 100)

Fisher approx.
30 99.42 (100, 100, 100) 99.74 (100, 100, 100) 99.45 (100, 100, 100)

45 98.69 (100, 100, 100) 99.01(100, 100, 100) 98.82 (100, 100, 100)
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Table 2

Summary statistics of empirical coverage of the nominal 95% confidence interval for a true correlation 

coefficient for simulation study Scenarios 2 and 3.

ρ function k window size Coverage in percent our method aveg. (Q1, Q2, 
Q3)

Coverage in percent Fisher aveg. (Q1, Q2, Q3)

sine

k=1
30 95.14 (92.99, 95.62, 97.58) 99.42 (99.28, 100, 100)

45 96.02 (93.51, 96.65, 99.90) 99.03 (98.43, 100, 100)

k=2
30 95.11 (92.89, 95.46, 98.14) 99.39 (99.59, 100, 100)

45 95.91 (93.43, 96.75, 99.90) 98.92 (98.43, 100, 100)

k=3
30 94.23 (91.78, 95.05, 97.32) 99.25(98.76, 100, 100)

45 94.08 (90.99, 95.08, 98.19) 98.11 (96.47, 100, 100)

k=4
30 92.55 (89.41, 93.09, 96.49) 98.76 (97.94, 100, 100)

45 88.86 (84.50, 89.32, 94.24) 95.72 (93.32, 96.54, 99.63)

Gaussian

k=1
30 94.21 (91.48, 94.64, 97.19) 99.28 (98.87, 100, 100)

45 94.16 (91.84, 94.87, 97.15) 97.92 (96.57, 98.33, 100)

k=2
30 94.62 (92.38, 95.42, 97.43) 99.45 (99.38, 100, 100)

45 95.02 (92.31, 95.61, 98.20) 98.54 (97.41, 100, 100)

k=3
30 94.76 (92.74, 95.62, 97.53) 99.46 (99.38, 100, 100)

45 95.47 (92.89, 95.97, 99.14) 98.80 (97.91, 100, 100)

k=4
30 94.89 (92.69, 95.73, 97.84) 99.46 (99.38, 100, 100)

45 95.60 (93.44, 96.18, 99.48) 98.89 (97.91, 100, 100)
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Table 3

Summary statistics of empirical coverage of the nominal 95% confidence interval for a true correlation 

coefficient for simulation study Scenario 4.

SIM. 4 window T=550
aveg. (Q1, Q2, Q3)

T=1100
aveg. (Q1, Q2, Q3)

T=2200
aveg. (Q1, Q2, Q3)

DCBootCB
30 87.59 (89.30, 95.59, 95.97) 87.00 (85.74, 90.62, 93.37) 85.61 (83.53, 87.82, 90.64)

45 88.11 (88.93, 98.72, 98.81) 88.66 (87.55, 92.95, 94.70) 86.20 (83.49, 88.75, 91.74)

Fisher approx.
30 94.39 (95.97, 95.97, 95.97) 92.54(93.37, 93.37, 93.37) 91.00 (91.02, 92.12, 92.12)

45 93.83 (97.33, 98.81, 98.81) 92.86 (93.68, 94.7, 94.7) 90.38 (90.27, 92.53, 92.76)
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Table 4

Summary statistics of empirical coverage of the nominal 95% confidence interval for a true correlation 

coefficient for Scenario 5.

SIM. 5 window T=150
aveg. (Q1, Q2, Q3)

T=300
aveg. (Q1, Q2, Q3)

T=600
aveg. (Q1, Q2, Q3)

DCBootCB
30 69.58 (59.50,71.90, 80.17 ) 84.35 (80.90, 86.72, 90.41) 90.71 (88.79, 91.86, 94.40)

45 45.33 (33.96, 45.28, 55.42) 75.45 (70.70, 77.73, 82.71) 87.21 (84.89, 88.85, 91.19 )

Fisher approx.
30 83.78 (77.69, 85.54, 91.74) 92.97 (90.77, 93.36, 96.31) 96.44 (95.27, 96.85, 98.42)

45 54.24 (45.28, 53.77, 64.15) 81.45 (77.34, 83.01, 87.11) 91.44 (89.97, 92.09, 94.24)
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	Definition 1—The tapered weight function κ is given by(6)where g(·) is a function satisfying |g(x)| < 1 and ck a constant satisfying ck ≥ 1.A trapezoid function, which is used in our approach, is an example of a tapered kernel function which meets the requirements of Definition 1. We follow the definition in [11]:(7)Jentsch and Politis [11] in their approach proposed to use a l-scale version of a flat top kernel, which is defined as  for some value of l > 0 [17]. In our approach, following the example presented in Jentsch and Politis [11] and the author’s guidelines on the selection of tuning parameters [11], we set l = 1. However, for consistency in notation with the original paper [11] we kept l as an index in the tapered covariance matrix estimator.We next describe the use of the tapered covariance matrix estimator. Let X = {X1, ..., Xdn}⊤ be a dn-long vectorized version of the (d × n) data matrix, where n is the number of time points and d the number of time series (brain regions), in our case d = 2. Let Γdn be the covariance matrix of X, where Γdn(i, j) is the covariance between the ith and jth entry of X. We estimate Γdn using the sample autocovariance function . Following the work of [11] the estimator of Γdn can then be defined as:Jentsch and Politis[11] point out that an estimator in this form is not consistent. As a consequence, they proposed to instead use the tapered covariance matrix estimator defined as Γ̂κ,l = (κl(i − j)Ĉ (i − j); i, j = 1, . . . , n) = (Γ̂κ,l(i, j); i, j = 1, . . . , dn), where κl was specified in equation 7. To ensure positive definiteness of the obtained estimator of Γdn, Jentsch and Politis[11] first represented Γ̂κ,l as a product of the variance and correlation matrices, and then decomposed the correlation matrix using its spectral factorization. To guarantee positive semidefinitness of Γ̂κ,l matrix, they replaced the negative eigenvalues by a small positive constant and showed that the resulting estimate affects the convergence of the estimator only slightly. The procedure can be summarized by the following formula [11]: , where V̂ is the diagonal matrix of sample variances,  is a correlation matrix with adjusted values, S is a (dn × dn) orthogonal matrix containing eigenvectors, and  is a diagonal matrix of eigenvalues of , where negative diagonal entries are adjusted according to the formula  with β and ε representing two tuning parameters. McMurry and Politis [17] found in simulation studies that β = 1 and ε = 1 perform well and affect the MLPB results only slightly. In our work, we made the same assumptions regarding the values of β and ε. Full description and further details of how to obtain estimator  of covariance matrix Γdn can be found in [11].Up to this point, we have discussed how to obtain a proper estimate of the covariance matrix, which is needed in the MLPB algorithm. Next, the inverse Cholesky decomposition of the estimated covariance matrix is used to decorrelate the constructed vector X. The decorrelated vector is further centered and standardized. This newly constructed residual vector can be assumed to be independent and identically distributed (i.i.d.) with zero mean and unit variance. By randomly selecting these residuals with replacement, bootstrap samples are created. To obtain a bootstrap sample with covariance that is approximately the same as the covariance structure of the original data, the vector of (i.i.d.) residuals is multiplied by the Cholesky matrix itself. Formal description of the algorithm, originally presented in [11], is provided below.MLPB bootstrap algorithmStep 1. Let X be the (d×n) data matrix consisting of ℝd-valued time series data X1, . . . , Xn of sample size n. Compute the centered observations Yt = Xt − X̄, where , let Y be the corresponding (d × n) matrix of centered observations and define Y = vec(Y) to be the dn-dimensional vectorized version of Y.Step 2. Compute , where  denotes the lower left triangular matrix L of the Cholesky decomposition .Step 3. Let Z be the standardized version of W, that is, , i = 1, . . ., dn where  and .Step 4. Generate  by performing i.i.d. resampling from {Z1, . . . , Zdn}.Step 5. Compute  and let Y* be the matrix obtained by placing this vector column-wise into a (d × n) matrix with columns denoted by . Define X* to be a (d × n) matrix consisting of columns Next, we extend this algorithm to estimate the time-varying FC confidence bands. We begin by giving an intuitive description before providing the full DCBootCB algorithm.In the first step, each time series of length n is divided into k adjacent blocks of length v (n = kv). Within each of the k blocks, we generate MLPB bootstrap samples as described above. Subsequently, adjacent blocks of bootstrap samples are combined into a single time series of length n, forming a bootstrap sample of the original time series. In the second step, we apply the sliding-window technique to the obtained bootstrap sample to estimate the dynamically changing correlation. Further, we use a kernel smoothing technique based on a Gaussian kernel to smooth its trajectory. The bootstrapping procedure is repeated B times, producing B estimates of the dynamically changing correlation coefficient trajectory. In the third step, we compute the 95% confidence bands using the empirical quantiles of the entire set of smoothed trajectories. Using the quantiles gives us simultaneous confidence bands, and we do not rely on the selection of constants or pointwise standard error estimation as is commonly done in parametric approaches to confidence band estimation.The formal steps of the proposed algorithm are presented below. We use the following notation, X is a (2 × n) data matrix consisting of vectors X1, X2 of size n representing the fMRI time series from two ROIs, and v is an integer-valued block length.DCBootCB algorithmStep 1. Partition the matrix X into (2 × k) adjacent blocks, where .Step 2. Apply MLPB to draw a bootstrap sample within each adjacent block to obtain a single 2 × v bootstrap sample. Combine k adjacent blocks of bootstrap samples into a single (2 × n) data matrix X*.Step 3. Let Xi,v be a 2 × v bootstrap block of v consecutive observations starting at time index i from matrix X*. For each Xi,v estimate the correlation at time index i.Step 4. Use a Gaussian kernel smoothing technique to obtain the estimated correlation trajectories.Step 5. Repeat steps 2 and 3 B times.Step 6. Calculate the empirical quantiles at each time point to get 95% confidence bands.We evaluate the properties of the DCBootCB algorithm in a series of simulation studies presented in Section 4 and apply it to resting-state fMRI data in Section 5.
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