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Abstract: Neuronal and neuroendocrine L-type calcium channels (Cav1.2, Cav1.3) open readily at 

relatively low membrane potentials and allow Ca
2+

 to enter the cells near resting potentials. In this 

way, Cav1.2 and Cav1.3 shape the action potential waveform, contribute to gene expression, synaptic 

plasticity, neuronal differentiation, hormone secretion and pacemaker activity. In the chromaffin cells 

(CCs) of the adrenal medulla, Cav1.3 is highly expressed and is shown to support most of the 

pacemaking current that sustains action potential (AP) firings and part of the catecholamine secretion. 

Cav1.3 forms Ca
2+

-nanodomains with the fast inactivating BK channels and drives the resting SK 

currents. These latter set the inter-spike interval duration between consecutive spikes during spontaneous firing and the 

rate of spike adaptation during sustained depolarizations. Cav1.3 plays also a primary role in the switch from “tonic” to 

“burst” firing that occurs in mouse CCs when either the availability of voltage-gated Na channels (Nav) is reduced or the 

2 subunit featuring the fast inactivating BK channels is deleted. Here, we discuss the functional role of these “neuron-

like” firing modes in CCs and how Cav1.3 contributes to them. The open issue is to understand how these novel firing 

patterns are adapted to regulate the quantity of circulating catecholamines during resting condition or in response to acute 

and chronic stress. 

Keywords: BK and SK currents, exocytosis, L-type channels, Nav1.3 and Nav1.7 channels, tonic and burst firing. 

INTRODUCTION 

 The chromaffin cells (CCs) of the adrenal medulla are the 
major source of circulating adrenaline that mobilize the body 
response to situations of fear, stress and danger [1]. In adult 
animals the release of adrenaline from CCs is strictly 
controlled by the sympathetic nervous system (neurogenic 
control) [2]. Upon splanchnic nerve discharge, repeated 
quantal release of acetylcholine (ACh) leads to the activation 
of nicotinic and muscarinic receptors, sustained CC 
depolarizations and increased firing frequency [3-5]. This 
causes voltage-gated Ca

2+
 channel openings, increased Ca

2+
-

entry and robust exocytosis of catecholamine-containing 
vesicles [5-8]. Adrenaline release is finely regulated by all 
types of the voltage-gated Ca

2+
 channels (Cav) that are 

expressed in CCs (Cav1, Cav2 and Cav3; L-, N-, P/Q-, R- 
and T-type). These channels open readily during membrane 
depolarization and warrant rapid Ca

2+
-fluxes of variable size 

and time course in response to the broad range of membrane 
potentials (-50 to +40 mV) spanned during an action 
potential (AP) waveform. 

 Given the strong Ca
2+

-dependence of catecholamines 
secretion and the effective voltage-sensitivity of Cav  
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channels it is obvious that CCs activity is strictly conditioned 

by the effective AP firing patterns driving the cell. CCs fire 

at frequencies that change from 0.2-1 Hz at rest to 20-30 Hz 

during stress-mimicking conditions. In order to do so, CCs 

are endowed with a broad array of Na
+
, Ca

2+
 and K

+
 

channels that warrant suitably shaped APs and carefully 

adjusted Ca
2+

 influx depending on the cell needs [9]. 

Although neurogenically controlled, a variable fraction of 

bovine, rat, mouse, and human adrenal chromaffin cells fire 

spontaneously when cultured in vitro [10-20] or prepared in 

slices of the adrenal medulla [21-23]. Firing occurs either in 

form of “tonic irregular” sequences of single action 

potentials [9] or in form of burst firings where a series of 

APs ride on top of a depolarizing slow-wave plateau 

potential [16, 21, 22, 24, 25]. In this latter case, slightly 

depolarized plateau potentials of 100-300 ms can drive large 

Ca
2+

 influx. This in turn produces enhanced catecholamine 

release, as proved in isolated rat CCs (RCCs) where 

secretion induced by repeated bursts is remarkably enhanced 

if compared to the release induced by single APs of 

increasing frequency [26]. In this view, there is strong 

parallelism between stimulus-secretion coupling of CCs and 

neurons possessing comparable slow firing rates (0.2–2 Hz) 

such as midbrain dopaminergic neurons [9, 27, 28]. In these 

neurons burst firing is twice as potent in triggering secretion 

as compared to trains of regularly spaced APs, possessing 

the same average frequency [29]. Switching from tonic to 

burst firing is thus a common mechanism that neurons and 
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neuroendocrine cells adopt to boost stimulus-secretion 
coupling when required. 

 The strong dependence of neurotransmitter release on 
AP-shape, frequency and firing patterns (tonic vs. bursts) 
demands for a detailed analysis of the gating properties of 
the different ion channel types that contribute to the size and 
time course of pacemaking currents. Past and recent studies 
in mouse and rat CCs have highlighted the orchestrated role 
that Ca

2+
, Na

+
 and K

+
 channels play in shaping the 

pacemaker current and sustaining the firing modes of CCs 
under different physiological conditions. Variations of one or 
more of these components may explain the firing changes 
that occur under extreme physiological conditions when, for 
instance, the levels of released neurotransmitters, 
extracellular pH, extracellular K

+
 concentration, NO and 

hormones are significantly altered. This would be even more 
critical in neonatal CCs where the control of catecholamine 
release is mainly “non-neurogenic” and sensitive to hypoxia 
[30, 31]. 

 In this review of the special issue celebrating the 50
th

 
anniversary of Ca

2+
 channel discovery by Harald Reuter 

[32], we will focus on the role that L-type Cav1.3 channels 
play in regulating spontaneous and electrically-evoked AP 
firing in CCs. We will review the peculiar way in which 
Cav1.3 regulates the pacemaking of CCs in concert with SK 
[20] and “fast-inactivating” BK channels [9, 19] that shape 
APs and set the frequency of firing at rest and during 
stimulation. We will also review the newly uncovered burst 
firing patterns of CCs, and how this firing mode may be 
triggered by reducing Nav channels and “fast-inactivating” 
BK channel availability [22, 24]. All this appears uniquely 
linked to the degree of expression and gating properties of 
Cav1.3 channels that regulate both the neuron-like firing 
modes and the Ca

2+
-dependent release of catecholamines 

from the adrenal medulla. 

TONIC VERSUS BURSTS FIRING MODE IN 

CHROMAFFIN CELLS: BASIC REQUIREMENTS 

 In neurons and neuroendocrine cells, spontaneous firing 
takes place when sufficient inward current is driven by small 
voltage perturbations near resting potential. Critical for 
triggering spontaneous AP oscillations is the net balance 
between inward and outward currents (leak, Na

+
, Ca

2+
 and 

K
+
) near resting potential. When the inward depolarizing 

current outweighs the outward current, a more positive 
unstable potential is reached at the start of the “negative 
conductance” region of the IV characteristics [33, 34]. At 
this unstable potential, any small depolarization causes a tiny 
inward current that further depolarizes the cell and triggers 
an AP train. Low-threshold spontaneous membrane potential 
oscillations occur easily if the cell possesses high input 
resistance (2-5 G ) and is equipped with sufficiently large 
densities of Nav and Cav channels that activate readily at 
low voltages like chromaffin cells [11, 35, 36]. An additional 
fundamental requirement for driving spontaneous firing in 
slow spiking cells is the presence of a slowly inactivating 
current that sustains the slow pacemaker potential. 

 Spontaneous firing is rather variable in CCs regardless of 
whether the cells are isolated [9-11, 16, 18-20, 24] or in 
slices of the adrenal gland [21-23]. In many CCs the firing is 
“tonic irregular”, i.e., spikes occur at variable frequency 
(Fig. 1a). In mouse CCs (MCCs), the degree of regularity is 
negatively correlated with spike frequencies recorded at rest. 
Fast spiking cells are typically more regular and display 
“tonic regular” firings (Fig. 1b). 

 As in many neurons, a fraction of CCs can undergo also 
spontaneous bursts at normal physiological conditions [22, 
24]. Burst firing of APs occurs as a train of APs on top of a 
sustained plateau potential of variable duration (Fig. 1c). The 
burst terminates with a marked afterhypolarization (AHP) 
whose deepness sets the duration of the inter-bursts interval 

Fig. (1). Different firing patterns of spontaneously active RCCs and MCCs. a, b) Spontaneous AP traces recorded from two different RCCs 

displaying typical tonic irregular and tonic regular firing patterns, respectively. c) Representative trace of spontaneous AP trains fired in a 

burst-like mode recorded from a MCC. To the right are shown a single burst at an expanded time scale (grey window) and the overlap of 
consecutive APs within a burst. Numbers indicate the position/sequence in the burst (adapted from ref. [24]). 
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(IBI): deeper AHPs generate longer IBIs. The origin of this 
“neuron-like” bursting mode in CCs is completely unknown 
but one can speculate that it derives from accumulated K

+
 

channel inactivation and from the presence of sizeable 
slowly inactivating inward currents (Ca

2+
 or Na

+
) that sustain 

the plateau potential and part of the spikes amplitude. Any 
reduction of the K

+
 currents activated during the first AP 

attenuates the AHP to more positive values (plateau 
potential) where Cav and Nav channels can be activated to 
sustain the quickly repeated APs of the bursts. As several ion 
channels contribute to set the plateau potentials and spike 
amplitudes, the key issue is then to uncover how their degree 
of expression, gating properties and sensitivity to 
endogenous and exogenous modulators may alter the 
equilibrium between tonic and burst firing modes in CCs. 
Below we will review the biophysical features of Cav1.3, 
BK, SK and Nav channels that in concert set the firing of 
CCs. 

THE Cav CHANNELS OF CHROMAFFIN CELLS 

 Mammalian adrenal chromaffin cells express all types of 
Cav channels (L, N, P/Q, R and T-type) [5, 8, 9, 37, 38]. 
Their expression density changes remarkably among animal 
species, cell conditions and development. In adult animals L, 
N, P/Q and R-type channels are the dominant species [5, 8, 
10, 39]. They shape action potential waveforms, control 
catecholamine secretion and vesicle retrieval. Despite the 
many reports, convincing proof of a specific co-localization 
of either one of the expressed Cav channel types with the 
secretory apparatus is still lacking. Each channel type control 
catecholamine release with the same Ca

2+
-dependence [6, 

40-48]. The question is thus, why chromaffin cells which are 
spherically shaped cells and do not possess neuron-like 
morphology and specialized pre-post microdomains need so 
many different Ca

2+
 channel types for their function? A 

possibility is that depending on their different sensitivity to 
external signaling and intracellular second messengers, the 
many Cav channel types warrant compensatory paracrine 
and autocrine responses to different CCs functioning 
conditions. Along this view, Cav2.1 and Cav2.2 channels 
can be effectively down-regulated by released ATP and 
opioids that are co-released with adrenaline and 
noradrenaline [49-54]. Conversely, Cav1.2 and Cav1.3 L-
type channels could be both strongly up-regulated by 
elevating the cAMP/PKA levels [55-57] or drastically down-
regulated by cGMP/PKG mediated pathways [57]. Cav 
channels can also undergo drastic up-regulation during cell 
re-modeling, as in the case of Cav3.2 T-type channels [6, 
39]. Cav3 channels are usually not expressed in adult CCs 
but are functionally active in embryonic CCs when 
innervation of the adrenal medulla has not reached complete 
maturation [30, 58, 59]. At this developmental stage, CCs 
respond only to non-neurogenic stimuli. Cav3.2 channels are 
de-novo recruited in adult CCs to sustain “low-threshold” 
exocytosis during stress mimicking conditions such as 
during -adrenergic receptor stimulation [60] or chronic 
hypoxia [61]. Recent evidence indicates that exogenous 
expression of Cav3.2 channels in a chromaffin cell line 
induces “low-threshold” release of catecholamines, which 
can be blocked by coexpressing a peptide corresponding to 
the syntaxin-1A interaction domain of the channel [62]. 

Cav1.3 AS PACEMAKER CHANNEL: A COMPLEX 

GROWING CONCEPT 

 CCs express mainly the two neuronal Cav1.2 and Cav1.3 
channel isoforms, that have strong amino acid homologies. 
They both contribute to about 50% of the total current in cat, 
rat and mouse CCs [5, 7, 11, 56]. In humans, L-type 
channels are reported to contribute to 30% of the total [63], 
but this is most likely an underestimate since the DHP 
blocking assay was done with cells clamped at rather 
negative Vh (-80 mV) using low doses of nifedipine (1 M).  

 Cav1.2 and Cav1.3 are also directly involved in the 
control of vesicle endocytosis [64, 65] and pacemaking of 
spontaneous [10, 11] and evoked AP firings [9]. The last 
observation is a relatively new concept that gains increasing 
evidence. Many reports on neurons, cardiac myocytes and 
neuroendocrine cells suggest the involvements of L-type 
channels in pacemaking [9]. The question is thus, are both 
channels suitable for pacemaking or one of them is optimal 
for triggering auto-rythmicity? Looking at their gating 
properties, it is evident that Cav1.3 possesses the 
characteristics to sustain subthreshold currents that may 
contribute to sustain spontaneous low frequency firing 
patterns (0,2 to 2 Hz) typical of chromaffin cells [10, 11, 19], 
substantia nigra pars compact neurons [28, 66-68] and sino-
atrial node (SAN) “pacemaker cells” [69]. 

 Data derived from heterologously expressed channels 
indicate that: i) Cav1.3 has similar single-channel 
conductance to Cav1.2 [70] but activates with steep voltage-
dependence at more negative voltages [71, 72] and, ii) 
Cav1.3 has faster activation but slower and less complete 
voltage-dependent inactivation as compared to Cav1.2 [71]. 
In addition, Cav1.3 is less sensitive to DHPs as compared 
with Cav1.2, requiring about 10-fold more DHPs for full 
block at normal Vh (-70 mV) [73]. Cav1.3 sensitivity toward 
DHPs increases markedly at less negative Vh (-50 mV) 
reaching comparable IC50 values of Cav1.2 [71]. Thus, at -50 
mV saturating concentrations of DHPs that block Cav1.2 
ensure also full block of Cav1.3. This is crucial when 
assaying the role of Cav1.3 during spontaneous AP 
recordings in firing cells that spend most of their time at the 
interspike potential around -50 mV (see ref. [36]). 

 Despite a recent report indicates selective block of 
reconstituted Cav1.3 channels [74], contradicting findings 
[75, 76] suggest there are not yet available specific blockers 
for this Cav1 isoform. Due to this, the exact role of Cav1.3 
in cellular auto-rythmicity can be assayed only indirectly 
using the Ca1.3 deficient mouse (Cav1.3

–/–
) [77]. This mouse 

model has a strong phenotype characterized by deafness and 
bradycardia. Deafness derives from the complete absence of 
Cav1.3 L-type currents in cochlear inner hair cells and 
degeneration of outer and inner hair cells [77]. Bradycardia 
derives from the abolition of the major component of the 
Cav1.3 L-type current activating at low voltages in the SAN 
“pacemaker cells” controlling the heart rhythm and rate 
under physiological conditions [69]. 

 A specific role of L-type channels in CC pacemaking was 
first reported in RCCs [10]. Increasing doses of nifedipine 
could either decrease the firing frequency or block the 
spontaneous firing. In these experiments, a tight coupling of 
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L-type channels to the fast-inactivating BK channels of 
RCCs was also noticed, in good agreement with previous 
reports by Chris Lingle’s lab [78, 79]. An L-type pacemaker 
current of 10 to 20 pA amplitude was first reported in AP-
clamp experiments in WT MCCs [11]. A subthreshold 
inward Ca

2+
 current of this size passing through the high 

input resistance of chromaffin cells (2-5 G ) [11, 19, 35] is 
sufficient to generate pacemaker potentials of 10-20 mV that 
drive the cell from inter-pulse potentials of -50 mV to the 
threshold of the AP up-stroke (-30 mV) [11]. Deletion of 
Cav1.3 reduces drastically the amplitude of this pacemaker 
current and the fraction of firing MCCs [19]. An example is 
shown in Fig. 2 where the inward Ca

2+
 currents of WT and 

Ca1.3
–/–

 MCCs flowing during the inter-pulse interval (ISI) 
are compared. Loss of Cav1.3: i) decreases markedly the 
level of the nifedipine-sensitive currents driving spike 
generation, ii) raises the rheobase (from 4 to 6.6 pA) and iii) 
decreases the extent of spike frequency adaptation during 
sustained current injections [20]. 

 As pacemaker channel, Cav1.3 appears quite unique if 
compared with other neuronal channels that generate spike 

firings and carry mostly Na
+
 currents, like the 

hyperpolarization-activated cation channels (HCN) [80], the 
persistent [81] and resurgent [82] Na

+
 channels and 

background channels [83]. The inward Ca
2+ current 

generated by Cav1.3 is always accompanied by outward K
+
 

currents associated with Ca
2+

-activated BK and SK channels 
that are highly expressed in neurons [84] and neuroendocrine 
cells [85, 86]. Thus, activation of Cav1.3 generates net 
currents that might be inward or outward depending on the 
degree of coupling and expression density of BK and SK 
channels. In the case of BK, it depends also on membrane 
potential since these channels are also steeply voltage-
dependent [84].  

THE Cav1.3-BK CHANNEL NANODOMAINS 

REGULATE AP SHAPE AND CELL FIRING MODES 

 As in many brain regions, BK channels are highly 
expressed in RCCs [10, 86], MCCs [9, 19, 22] and bovine 
CCs (BCCs) [85, 87], To activate during physiological 
depolarization, BK channels need an intracellular Ca

2+
 

concentration of at least 10 M [84]. Such high 

 

Fig. (2). Deletion fo Cav1.3 causes a marked reduction of the pacemaking L-type current flowing during the interspike interval. Top, 

representative AP trains from a WT (left) and Cav1.3
–/–

 MCC (right) recorded after a 15 pA (700 ms) current step starting from Vh= -70 mV. 

The voltage traces were used as voltage-clamp command to reveal the interspike specific apamin-sensitive currents. Middle, Ca
2+

 currents of 

WT (left) and Cav1.3
–/–

 MCCs (right) recorded in control condition (black trace, ctrl) and in the presence of 3 M nifedipine (grey, nife). 

External solution contained 135 mM TEA, 300 nM TTX and 2 mM Ca
2+

. Bottom insets, Ca
2+ 

currents flowing during the spike and the 
interspike interval of WT and Cav1.3

-/-
 MCCs shown at an expanded time scale (adapted from ref. [20]). 
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concentrations occur only within “Ca
2+

-nanodomains” in the 
close vicinity of the Ca

2+
 source [88]. For this purpose, the 

neuronal BK channels are often co-localized to either the 
P/Q- [89], N- [90] or L-type [91] channels. RCCs and MCCs 
express two different BK channels that are predominantly 
coupled to L-type Cav1 channels [9, 79] and can be 
distinguished according to their inactivation kinetics: a fast-
inactivating (BKi) and a slowly inactivating channel type 
(BKs) [9, 19, 78]. The BKi channel is typically expressed in 
CCs and gives rise to slowly adapting cell firing. The BKs 
channel has gating properties similar to the central neurons 
and smooth muscle BK channels and causes fast adapting 
cell firings [78]. Due to their strong voltage-dependence, BK 
channels contribute to the repolarization phase of the AP 
(AHP) [84, 86], influence the refractory period and regulate 
the firing rate of CCs. In MCCs, block of BK channels by 
paxilline significantly augments the firing frequency by 
delaying AP repolarization and slightly reducing the early 
phase of the AHP [19]. Notice that due to the tight Cav1-BK 
coupling also nifedipine, like paxilline, delays AP 
repolarization and reduces the early phase of the AHP in 
MCCs [9, 19] and RCCs [10, 78] (see Fig. 4 in ref [9]). 
However, due to the block of Cav1.3, the DHP either blocks 
or slows down the firing rate. 

 Given the critical role of Cav1.3 in pacemaking MCCs, 
the Cav1-BK channel coupling is a key determinant for 
setting the AP shape and the firing frequency of CCs. In 
addition, the coupling is drastically altered by deletion of 
Cav1.3 in a way that loss of Cav1.3 prevents the expression 
of BKi channels [19]. This property appears to be an 
adaptive phenomenon first discovered in cochlear inner hair 
cells [91]. In MCCs this is evident by comparing the BK 
channel types expressed in WT and Ca1.3

–/–
 MCCs using 

standard protocols of Ca
2+

 pre-loading which maximally 
activate all available BK channels (Fig. 3a). WT MCCs are 
shown to express a predominance of fast-inactivating BK 
currents while Ca1.3

–/–
 MCCs display typically slowly 

inactivating BK currents. Using fast (BAPTA) and slow 
(EGTA) Ca

2+
 buffers it is also possible to prove that the 

coupling between BKs and Cav1.2 channels in Cav1.3
-/-

 
MCCs is BAPTA- and EGTA-sensitive suggesting that the 
two channels are separated by an average distance of more 
than 160 nm. Conversely, the coupling between Cav1.3 and 
BKi channels in WT-MCCs is BAPTA-sensitive but EGTA-
insensitive, suggesting an average distance of 50 to 160 nm 
between the two channels. In other words, BKi and Cav1.3 
channels form functional “Ca

2+
-nanodomains” that regulate 

the steepness of the AHP phase and thus set the-shape and 
frequency of AP trains.  

 Because BKi channel inactivation is associated with the 
presence of a specific 2 subunit that shifts channel 
activation toward more negative voltages at a given Ca

2+
 [92, 

93], these findings suggest that loss of Cav1.3 channels may 
lead to the loss of BK- 2 subunits. This could also indicate 
that 2 is the critical element regulating the close coupling 
between Cav1.3 and BKi channels. In the absence of 2 the 
coupling between BK and Cav1.3 (or Cav1.2) channels is 
weaker and less critical for cell firing. That 2 may be a key 
element of BK channels that helps regulating MCCs firing is 
suggested by recent findings showing that deletion of the 2 
subunit produces rather drastic changes to MCCs firing 

patterns [22]. The knock-out of BK- 2 subunits in fact slows 
AP repolarization and, during constant current injection, 
decreases AP firing. This clearly supports the idea that the 

2-mediated shift of the BK channel activation range affects 
repetitive firing and AP properties. Unexpectedly, CCs from 
BK- 2 deficient mice show an increased tendency toward 
spontaneous slow-wave burst firings, suggesting that the 
peculiar activation properties of BK channels in the absence 
of 2 subunits may predispose CCs to burst firing and, 
possibly, to an associated increased secretion of 
catecholamines. It is worth noticing that burst firing occurs 
also in BK deficient (BK

–/–
) MCCs during L-type current 

activation by BayK 8644 [9, 19] and in WT MCCs when 
Nav channel availability is reduced by either slowly 
inactivating or blocking them (see below).  

THE “FUNCTIONAL” Cav1.3-SK CHANNEL COUPL- 
ING REGULATE CELL FIRING FREQUENCY AND 

FIRING ADAPTATION 

 SK channels (KCa2.1, KCa2.2, KCa2.3) are widely 
expressed throughout the central and peripheral nervous 
system where they act as key modulators of neuronal 
excitability [94, 95]. They control intrinsic excitability and 
pacemaking, dendritic integration, postsynaptic responses as 
well as synaptic plasticity [84]. Besides affecting firing 
frequencies, SK channels are involved in switches from single 
spiking into burst firing patterns and can drive spike frequency 
adaptation and accommodation [96-98]. SK currents 
contribute to the AHP phase of single or burst of APs, 
slowing-down the pacemaker cycle. The high Ca

2+
-sensitivity 

of SK channels is at the basis of the prevailing current view 
that SK channels do not have to be necessarily close to a 
specific Ca

2+
 source to get activated [84]. Several studies 

nevertheless demonstrated a specific coupling of SK channels 
to Cav channels or neurotransmitter receptors [90, 99-102].  

 In chromaffin cells, SK channels were first biophysically 
identified in BCCs [85] and RCCs [86]. Experiments on cat 
adrenal glands showed that secretion of catecholamines 
induced by electrical stimulation or acetylcholine application 
could be potently stimulated by SK block with apamin [103]. 
In RCCs, the SK channels mediate the biphasic effect of 
muscarine on AP firing, which consists in a transient 
hyperpolarization followed by a sustained depolarization [4, 
104]. The hyperpolarization is induced by an IP3-mediated 
increase of intracellular Ca

2+
 via M1 receptors activation [4] 

while the depolarization is associated with the block of an 
M-type K

+
 channel [12].  

 SK channels are of extreme importance for the control of 

MCCs firing [20]. By comparing WT and Ca1.3
–/–

 MCCs 
firing it has been possible to uncover a “functional” coupling 

between Cav1.3 and SK channels that slows down MCC's 

basal firing rate and leads to spike frequency adaptation upon 
sustained current injections [20]. This is not surprising, since 

in MCCs, as in most neurons, the SK channels are equally 

driven by L, N, P/Q and R-type channels (see Fig. 9 in ref. 
[20]). As Cav1.3 drives most of the slow pacemaking 

current, it is evident that the SK currents at rest are mainly 

driven by these L-type channels. Thus, during spontaneous 
firing the “Cav1.3-SK coupling" builds-up robust 

subthreshold SK currents that slows-down the pacemaking 
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and guarantees the effective recovery of NaV channels 

required to maintain stable the AP firings. A critical role of 

SK currents on MCC firings is evident by observing that: i) 
the MCC firings is slow and irregular at control and becomes 

faster and more regular by blocking the SK channels with 

apamin, ii) the frequency of spontaneously firing MCCs 
increases nearly 3-fold upon addition of apamin and, iii) 

exists a negative correlation between the basal firing 

frequency and the percentage of frequency increase induced 
by apamin. A corollary of this is that the presence of SK 

channels decreases the precision of firing in MCCs, which is 

in contrast to most central neurons where robust SK currents 
increase the regularity and precision of firing [97, 98, 105, 

106]. The increased precision of firing is due to an enhanced 

NaV channel availability sustained by SK channels that is 
required for pacemaking these cells.  

 The “functional” Cav1.3-SK channel coupling has a 

similar critical role on the response to sustained depolariza- 

tion. It allows the fast adaptation of the initial high-frequency 

to a low sustained frequency during prolonged stimulations. 

Loss of Cav1.3 induces a nearly two-fold reduction of the total 

Ca
2+

 charge entering the cell during pacemaking with 

consequent reduction of SK currents (Fig. 3b). In this case, the 

induced AP-firing adapts more slowly and generates AP trains 

of higher frequency and lower amplitude. The “functional” 

and “not localized” coupling to SK channels thus accounts for 

the inability of Ca1.3
–/–

 MCCs to adapt their firing frequency. 

As a consequence, the Cav1.3-SK coupling confers to Cav1.3 

the dual role of "drive" and "brake" of MCC's excitability that 

is crucial when controlling sustained catecholamine release 

from the adrenal gland during stressful stimuli [5]. The 

braking action of SK channels is particularly crucial to prevent 

over-excitation that could damage cells that fire slowly  

(~1 Hz) and rely on “Ca
2+

-dependent pacemakers” such as 

chromaffin cells [19], dopaminergic and histaminergic 

neurons [67, 107]. 

 The fast adapting response to sustained depolarization 
due to the Cav1.3-SK coupling has clear-cut implications on 
the overall organization of catecholamine release in the 
adrenal medulla. The first is that increasing the frequency of 
stimulation does not necessarily lead to a linear increase of 
catecholamine secretion. The catecholamine release induced 
by trains of electrical stimulations (0.1 to 30 Hz), saturates 
between 3 and 10 Hz and then declines in rat and cat 
chromaffin cells [3, 103, 108]. The second implication is 
that, similarly to certain neuronal networks [109], the phasic 
response regulated by the Cav1.3-SK coupling may help the 
firing synchronization in the adrenal medulla where 
chromaffin cells are electrically coupled [39]. Synchronization 
followed by adaptation to low firing frequencies in extended 
areas of the adrenal medulla may optimize the release of 
catecholamines during prolonged stressful stimulation, 
preventing excessive accumulation of undesired levels of 
circulating catecholamines. 

 

Fig. (3). Deletion of Cav1.3 prevents the activation of fast inactivating BK channels and reduces the size of SK currents during spike 

frequency adaptation. a) The BK channels of Cav1.3
/

 MCCs are mainly non-inactivating [19]. Membrane-permeable EGTA-AM is unable 

to prevent the coupling in WT MCCs but is effective on Cav1.3
/

 MCCs. BAPTA-AM is effective on both WT and Cav1.3
/

 MCCs 

(adapted from ref. [9]). The pulse protocol is shown at the bottom left. b). Top, evoked AP trains from a representative WT and Cav1.3
-/-

 

MCC used as voltage-clamp command to reveal the Ca
2+

 and SK currents of the same cells of (Fig. 2). Middle, Ca
2+

 and SK currents 

recorded in the presence of a Tyrode standard (2 mM Ca
2+

, 4 mM K
+
) containing 300 nM TTX and 1 M paxilline in control (black traces) 

and in the presence of either 3 M nifedipine (light grey s) or 200 nM apamin (dark grey). Notice how nifedipine is equivalent to apamin in 

blocking the outward SK currents. Bottom, SK currents (grey traces) obtained after subtraction of the apamin trace from the control trace of 
the middle panel overlapped with the Ca

2+
 currents of (Fig. 2) (black traces) (adapted from ref. [20]). 
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Nav1.3 AND Nav1.7 CHANNELS DO NOT 

CONTRIBUTE TO PACEMAKER CURRENT 

 As in most brain neurons [33, 110], voltage-gated Na
+
 

channels (Nav) are highly expressed in the CCs of all animal 
species [14, 15, 17, 21, 24, 35, 36, 111-114]. Nav channels 

generate and shape the AP waveform and thus directly 

contribute to CCs excitability. Early studies have shown the 
existence of a background Na

+
 conductance that could drive 

Na
+
-influx at rest in rat and gerbil CCs [13, 14]. TTX 

application or Na
+
 removal from the extracellular medium 

reduces, but does not block rat CCs firing [111]. In MCCs, 

Nav channel block by TTX preserves AP firing [21, 24, 36], 

suggesting that Nav channels play a different role in CC 
excitability than L-type channels [9]. Furthermore, Nav 

channels in MCCs activate at 24 mV more positive potentials 

than Cav1.3, suggesting a minor contribution to sub-
threshold pacemaker currents [36], even considering that 

Nav channels are expressed at much higher densities with 

respect to Cav channels in CCs [35]. Taken all together these 
observations raise two key questions: do Nav channels 

contribute to the pacemaking of CCs? How critical Is their 

availability to trigger CCs firing modes?  

 Concerning the first issue, the answer is clearly linked to 

the type of Nav channels expressed in CCs. Presently, 
Nav1.7 is thought to be the main voltage-gated Nav channel 

expressed in bovine and human adrenal tissues [115, 116]. In 

the rat adrenal gland, mRNA encoding Nav1.7 is expressed 
only in the medulla [117], with a plausible localization in 

CCs, as also reported in PC12 cells [118]. A recent report by 

our group shows that cultured MCCs express Nav1.7 
(scn9A) and Nav1.3 (scn3A) with a 7.3-fold higher 

expression level for the scn3A transcript [24]. In conclusion, 

all the available functional studies on CC Nav channels show 
convincingly that these channels are TTX-sensitive and fast-

inactivating [24, 35, 36, 113, 114]. Fast inactivating Nav 

channels could partly contribute to pacemaking in fast-
spiking neurons [27, 119] with firing frequencies of 40-100 

Hz but could hardly sustain pacemaking currents in slow 

firing cells with inter-pulse intervals of 0.3 to 2 s duration, 
such as in CCs. All this, however, cannot exclude that CCs 

could express “persistent” or “resurgent” Na
+
 currents that 

partly contribute to slow pacemaking. This possibility has 
been recently investigated using traditional whole-cell and 

perforated micro-vesicle single channel recordings in MCCs 

[24]. It is concluded that the Nav1.3/Nav1.7 fast inactivating 
channels expressed in MCCs are fully inactivated after step 

depolarization of 200-1000 ms. The steady-state net currents 

at these time intervals are <1-2 pA and comparable to the 
background current noise. It is thus unlikely that Nav1.3 and 

Nav1.7 contribute to the pacemaker current in MCCs. In 

addition, MCCs do not possess ”persistent” Nav currents 
which are typically associated with Nav1.6 (scn8a) [82]. 

Persistent Na
+
 currents activate at potentials as negative as -

70 mV [120] and sustain tonic firing at elevated frequencies 
(20-100Hz) in several neurons [121-124]. MCCs do not fire 

at elevated frequencies and lack scn8a [24]. In addition, the 

auxiliary  subunit scn4b (NaV 4) is linked to resurgent Na
+
 

currents [125]. Neither scn4b nor “resurgent” Na
+
 currents 

are revealed in MCCs [24]. 

Nav1.3/Nav1.7 CHANNELS AVAILABILITY REGU-

LATE THE Cav1.3-MEDIATED SWITCH FROM 

TONIC TO BURST FIRING  

 Concerning the second question it is worth recalling that 
as in most neurons, Nav channels availability is critical for 
shaping the AP waveform in MCCs [20, 36]. Subtle changes 
in spike shape can lead to drastic changes in Cav channel 
recruitment and in AP-induced Ca

2+
 transients [126]. AP 

broadening is indeed a common way to optimize presynaptic 
Ca

2+
 influx at central presynaptic terminals [127]. Neuronal 

Nav channel availability is drastically reduced by 
depolarizing the resting membrane potential [128, 129]. The 
same is true in MCCs where the reduced Nav channel 
availability drastically alters L-type channel recruitment and, 
paradoxically, boosts catecholamine secretion [24]. 

 As shown in Vandael et al., 2015 [24], Nav channel 
availability can be reduced by either blocking Nav1.3/Nav1.7 
channels by TTX or by lowering the resting membrane 
potential from physiological (-50 mV) to steady depolarized 
potentials (-40 mV). In the latter case, the slow and partial 
recovery from fast inactivation and the fast entry into the 
closed-state inactivation at -40 mV, reduces Nav channel 
availability by nearly 50%. This leads to a reduced AP peak 
and less KV and BK channel activation that attenuates the 
fast afterhyperpolarization phase. This in turn slows the 
return to baseline potentials followed by a switch from net 
outward to net inward currents after AP termination. When 
Nav channel availability is reduced up to 20% of total either 
by TTX block or steady depolarization the conversion from 
outward to inward current is more drastic and a switch from 
tonic into burst firing is observed. Figure 4 shows an 
example of switch from tonic to burst firing in the presence 
of saturating doses of TTX. 

 

Fig. (4). TTX leads to a dose-dependent switch into burst firing of 

MCCs. Top, representative current-clamp trace showing the action of 

increasing TTX concentration. Middle and bottom. better view of the 

effects of increasing TTX concentrations on AP waveforms and firing 

patterns at slower and faster (grey windows) time scales. Periods of 

activity were taken from the top panel (adapted from ref. [24]).  
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 During burst firing, brief periods of high frequency firing 

are separated by relatively long gaps of no activity. Spikes 

fire in bursts on top of a slow-wave depolarization plateau 

that lasts for the whole burst duration. AP-clamp experiments 

show clearly that while the net current during the AHP of 

single control spikes is outward, the current during the 

intraburst interval is net inward and carried by Ca
2+ 

(dashed 

rectangles in Fig. 5a). Broadening of APs during cell 

depolarization and bursts of APs in the presence of TTX 

causes a ten-fold prolongation of Ca
2+

 currents (bottom inset 

in Fig. 5b) that, despite the lower amplitudes, carries about 

four-fold more Ca
2+

 charges inside the cell [24], 

demostrating that Ca
2+

 currents are the main source of the 

slow depolarization plateau. In conclusion, the incoming 

Ca
2+

, together with a lack of sufficient outward K
+
 current is 

the triggering event of burst firing when Nav channels 

availability is strongly attenuated. 

 Spontaneous burst firing is also observed in a minority of 
MCCs (14%) (Fig. 1c and 6). A train of high frequency spikes 
emerge on a significantly longer slow-wave depolarization 
plateau with respect to those induced by TTX (200-500 ms vs. 
80-200 ms, respectively). Due to the Nav channel availability, 
the first spike amplitude is always larger as compared to the 
subsequent APs that are gradually broader, of lower overshoot 
and reduced AHP amplitude (Fig. 6). Nav, Kv and BK 
currents decline rapidly during the burst while Cav currents 

Fig. (5). Reducing NaV availability by TTX inverts net current during the AHP from outward to inward. a) Top, AP-clamp experiment 

showing representative control spike. Middle, Kv currents (ligh grey traces) were measured in a Tyrode standard solution with TTX (300 

nM) and Cd
2+

 (200 μM). Ca
2+

 currents (black) were measured in the presence of TTX (300 nM) and high extracellular TEA (135 mM). Ca
2+

-

activated K
+
 currents (dark grey) were obtained by subtracting from a control recording in Tyrode standard with 300 nM TTX the KV and the 

Ca
2+

 current. Bottom, close up of the middle panel. The dashed rectangles indicate the AHP phase and the respective currents that sustain it. 

b) same as for a, using a spike doublet fired after complete block of Nav currents with 300 nM TTX. Bottom-left inset in a: net current 

amplitudes measured during the AHP phase indicated by the dashed rectangles. Bottom-left inset in b: Ca
2+

 charge entering the cell during 

the AHP phase calculated by integrating the corresponding Ca
2+

 inward current (ICa) shown in full to the right (adapted from ref. [24]). 

 

Fig. (6). Time courses of K
+
, Na

+
 and Ca

2+
 currents during a slow-wave burst in different MCCs. a) AP-clamp recordings of KV and BK 

currents. Top shows the burst recorded and used as voltage command (black trace), KV and BK currents are shown in grey. b, c) as for panel a 

but currents isolated were Ca
2+ 

(black), SK (grey) and Na
+
 (black). d). Top, BK, SK and Kv outward current amplitudes versus the spike 

number of the burst. Bottom, same as top but for the Na
+
 and Ca

2+ 
inward currents (adapted from ref. [24]). 
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decline more slowly. Conversely, SK currents build up rapidly 
to terminate the burst. Thus, burst firings originating from 
plateau potentials lasting for hundreds of milliseconds give 
origin to large Ca

2+
 influxes that may boost the Ca

2+
-

dependent secretion of catecholamines. In this view, burst 
firing represents a way by which CCs rapidly increase the 
release of adrenaline and noradrenaline upon requirement.  

 Figure 7 shows that this indeed is the case if current-

clamped MCCs are first hyperpolarized to stop their 

spontaneous activity and prevent Ca
2+

 accumulation at the 

onset of the recording. Control cells and cells pre-treated with 

TTX are then stimulated for 40 s with a constant depolarizing 

pulse to induce secretion. The fast quantal release of 

catecholamines revealed with carbon fibre amperometry [11, 

61] (Fig. 7a) shows clearly that the increased AP frequency 

during bursts in the presence of TTX enhances significantly 

the quantity of released catecholamines (Fig. 7b, bottom). 

Thus, block of Nav channels with TTX to induce burst firing 

paradoxically boosts Ca
2+

-entry and release of catecholamines. 

Although not shown, it is likely that most of the exocytosis is 

sustained by Cav1.3 since is the dominant pacemaking 
channel supporting prolonged depolarizations in MCCs. 

TONIC VERSUS BURST FIRING IN CHROMAFFIN 

CELLS: A “NEURON-LIKE” WAY OF SIGNALLING 

TO BOOST EXOCYTOSIS 

 The present findings show that CCs possess intrinsic 
“neuron-like” firing properties typical of some central 

neurons that undergo burst firing [27]. CCs spontaneously 
fire at rest in an irregular tonic manner and change into burst 
firing depending on the expression density and gating 
conditions of Na

+
, Ca

2+
 and K

+
 channels that control the 

firing. Recent evidence supports the view that this occurs 
when the net current passing during the AP repolarization 
phase turns from outward to inward, i.e., when inward Na

+
 

and Ca
2+

 currents prevail on outward K
+
 currents. Thus, burst 

firing is apparent in MCCs when Kv channels are blocked by 
TEA [21] or when the 2 subunit controlling the fast 
inactivation rate of Slo1 BK channels is deleted [22]. Burst 
firing occurs also in a minority of MCCs under physiological 
conditions [22, 24], most likely because of a critical balance 
between functioning Na

+
, K

+
 and Ca

2+
 channels. In RCCs 

and BCCs, burst firing appears when either the ERG K
+
 

channel is blocked by the antiarrhythmic drug WAY or when 
an M-current is blocked by an histamine-mediated pathway 
[16, 18]. In this view, any modulatory mechanism that leads 
to a depression of K

+
 outward current or to a potentiation (or 

maintenance) of Ca
2+

 currents is potentially able to induce 
burst firing in CCs. Indeed, burst firing occurs also when the 
availability of functional fast-inactivating Nav1.3/Nav1.7 
channels is strongly attenuated by block with TTX or by 
accelerating the Nav channel entry into closed-state 
inactivation at more depolarized resting potentials. This 
latter, represents a novel modulatory pathway by which “fast 
inactivating” Nav channels control burst firing in 
spontaneously firing cells [24]. A role typically played by 
“persistent” and “resurgent” neuronal Nav channels. 

 

Fig. (7). Burst firing associated with Nav channel block boosts MCC exocytosis. a) Experimental arrangement to record catecholamine 

secretion using a carbon fibre microelectrode (CFE) from a current-clamped MCC. The cell is constantly depolarized to evoke an AP train 

(Vm) by passing a constant current (i) through the glass pipette using a square pulse voltage command (Vcmd). The quantal release of 

adrenaline and noradrenaline is detected in forms of amperometric currents by the CFE (Iamp) placed very close to the CC. b) Top, example 

of combined recording of APs (black traces) and amperometric currents (grey traces) by CFE amperometry in control. Middle, combined 

recording of AP bursts and amperometric events during TTX application to the same cell of the top. Bottom, overlap of cumulative secretion 

plots obtained by integrating the amperometric recordings shown in a and b for control (black trace) and TTX application (grey trace) 
(adapted from ref. [24]). 
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 Burst firing in CCs is in all cases sustained by the L-type 
Cav1.3 currents which activate at relatively low voltages and 
inactivate slowly at potentials near rest. Cav1.3 sets and 
regulates the firing cycle by sustaining the slow pacemaking 
current and by triggering BK and SK currents. In CCs the 
slow-wave bursts enhance the quantity of Ca

2+
-entry inside 

the cell and thus boost exocytosis of catecholamines. In 
altered physiological conditions, this may occur in various 
ways: i) by any mechanism that dampens Kv and BK 
channel gating, ii) by regulatory pathways which up-regulate 
L-type channels [56, 57] or, iii) by modulatory pathways that 
cause steady CC depolarizations and drastically reduce 
Nav1.3/Nav1.7 channel availability. This latter might be 
applicable to conditions such as plasma hyperkalemia [36], 
acidosis [130] or increased histamine levels that induce 
sustained depolarizations, burst firing [18] and enhanced 
circulating catecholamines [131]. Of particular interest in CC 
biology is the potential role of muscarinic receptors, whose 
activation causes prolonged membrane depolarizations, 
increased cell firing and sustained catecholamines release [4, 
21]. The action is mediated by the M1 muscarinic receptor 
[132] and proceeds through the inhibition of TASK1-like 
channels [130]. As muscarine activates the PKC pathway in 
RCCs [4, 133], it is likely that Nav channels may undergo 
the well-known PKC-dependent down-regulation mediated 
by muscarinic receptors [134]. This, together with the 30% 
reduced Nav channels availability at depolarized Vh, would 
critically increase the probability of MCCs to switch into 
burst firing patterns, boosting catecholamine release during 
ACh-driven acute stress responses. 

 An open question is what could be the clinical impact of 
CC burst firing and increased catecholamine release following 
Nav channel block. Nav channel blockers are widely used in 
therapy and thus, it would be interesting, for instance, to estab-
lish whether increased levels of catecholamines may occur in 
patients with ventricular tachycardia treated with Nav1.5 
channel blockers [135]. Obviously, an increased level of circu-
lating catecholamines will reverse the beneficial effects of 
Nav1.5 blockers. To this specific issue we can observe that 
cardiac Nav1.5 channels are structurally and functionally dif-
ferent from neuronal Nav1.3/Nav1.7 channels [110]. Nav1.5 
channels are TTX-insensitive and carry large “late” sodium 
currents (INaL) in myocardial pathologies [136] while Nav1.3 
and Nav1.7 are TTX-sensitive and fast-inactivating [24, 36]. 
In addition, several used Nav1.5 blockers are many-fold more 
potent in inhibiting INaL than the peak INa [137]. For instance, 
the piperazine derivative ranolazine exerts its therapeutic ef-
fects at ~10 M with minimal or no effect on peak INa. Given 
this, it seems unlikely that a Nav1.5 blocker could reduce the 
peak of fast-inactivating Nav1.3/Nav1.7 currents of CCs to 
less than 20% to induce burst firing and increased circulating 
catecholamines that would enhance cardiac arrhythmias in 
hearts treated with INaL blockers [136]. 

 We conclude by observing that in physiological, patho-
logical or therapeutical conditions, the density of functional 
Nav1 channels is a key element for driving Cav1.3 channels 
availability and CCs function. For this, is very important to 
identify all possible causes that down-regulate Nav1.3/Nav1.7 
channels availability and shift CCs firing from tonic to bursts, 
including potential Nav channel blockers used in therapy 
[138]. 
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