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Abstract

Glioblastoma multiforme (GBM) is one of the deadliest human cancers and is characterized by 

tumor cells that hijack immune system cells in a deadly symbiotic relationship. Microglia and 

glioma-infiltrating-macrophages (GIMs), which in principle should mount an immune response to 

the tumor, are subverted by tumor cells to facilitate growth in several ways. In this study we seek 

to understand the interactions between the tumor cells and the microglia that enhance tumor 

growth, and for this purpose we develop a mathematical and computational model that involves 

reaction-diffusion equations for the important components in the interaction. These include the 

densities of tumor and microglial cells, and the concentrations of growth factors and other 

signaling molecules. We apply this model to a transwell assay used in the laboratory to 

demonstrate that microglia can stimulate tumor cell invasion by secreting the growth factor TGF-

β. We show that the model can both replicate the major components of the experimental findings 

and make new predictions to guide future experiments aimed at the development of new 

therapeutic approaches. Sensitivity analysis is used to identify the most important parameters as an 

aid to future experimental work. The current work is the first step in a program that involves 

development of detailed 3D models of the mechanical and biochemical interactions between a 

glioblastoma and the tumor microenvironment.

Index Terms

Hybrid model; Glioblastoma; microenvironment; microglia; astrocyte; TGFbeta; EGF; CSF-1; E-
cadherin

I. Introduction

Tumor growth is a complex evolutionary process driven by dynamic feedback between a 

heterogeneous cell population and selection pressures from the tumor microenvironment 

(TME). The TME comprises the extracellular matrix (ECM), growth promoting and 

inhibiting factors, nutrients, chemokines, and other cell types in the stromal tissue. 

Alterations in gene regulation and signaling networks involved in cell proliferation and 
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survival have been studied by many, but there is little understanding of how the chemical and 

mechanical signals from the TME interact to affect tumor progression. Here we study one 

aspect of this question in the context of brain tumors.

Most brain cancers are malignant gliomas, the most aggressive form of which is called 

GBM. These tumors are highly invasive, and they spread rapidly, which makes them difficult 

to completely remove surgically. GBM tumors stem from glial cells, a class of neural cells 

that includes both astrocytes and resident brain macrophages (microglia). GIMs can 

comprise up to one third of the total tumor mass [1], and apparently originate from both 

microglia and monocyte-derived macrophages from the circulation [2]. Activated GIMs 

exhibit two distinct phenotypes: the classically-activated, tumor-suppressive type (M1), and 

an alternatively-activated, tumor-promoting, immunosuppressive type (M2) [3]. The balance 

between these phenotypes is usually tilted to the M2 form [4], and numerous factors secreted 

by glioma cells, including growth factors, chemokines, cytokines and matrix proteins, can 

influence GIM recruitment and phenotypic switching [5], [6].

Transforming growth factor beta (TGF-β) is one of the growth factors involved in 

maintenance of tissue homeostasis. The receptor for TGF-β is a heterotetramer of dimeric 

Type I and Type II receptors, and occupation leads to phosphorylation of transcription 

factors in the SMAD family [7] (cf. Figure 1). Normally TGF-β acts to control growth via its 

effect on the cell cycle, but when up-regulated in GBM tumors it stimulates growth [8]. 

TGF-β also acts to stimulate glioma cell migration, as shown in a transwell assay described 

in Figure 2(A). When microglia are plated in the bottom chamber, TGF-β acts as a 

chemotactic attractant for glioma cells in the upper chamber, and silencing of the Type II 

receptor on glioma cells with shRNAs abolishes their migration [9]. More recent work has 

shown that the stimulative effect on invasiveness primarily acts on the stem-cell-like tumor 

sub-population [10].

Other growth factors such as epidermal growth factor (EGF) and colony stimulating factor-1 

(CSF-1) are also important in tumor development. GIMs require CSF-1 for survival, and it 

enhances the phenotypic M1 → M2 transition as well [11]. This is but one step in a 

paracrine signaling loop in which CSF-1 released by tumor cells stimulates GIMs to express 

EGF and infiltrate the tumor, and the EGF in turn acts on the tumor cells to promote their 

invasiveness. Blocking the CSF-1R receptor on GIMs inhibits their enhancement of tumor 

cell invasion [12], [5]. Proteases such as MMP-2 that degrade the extracellular matrix also 

play a role in dispersal of GBM cells, in that tumor cells induce GIMs to secrete MMP-2 

[13].

Many biochemical and mechanical processes underlie the interactions in Figure 1, and it 

would be difficult to develop a comprehensive model of the tumor microenvironment that 

incorporates all of them. As a first step we focus here on one aspect for which there is 

experimental data – the chemotactic response of tumor cells to TGF-β. We develop a model 

based on reaction-diffusion equations that govern cell-cell signaling and cell dispersal with 

the goal of understanding the factors that are important in determining the chemotactic 

movement of glioma cells from the upper to the lower well of the Boyden chamber assay 

shown in Figure 2(A). We show that the model can reproduce many of the experimental 
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observations and we make predictions as to how various interventions can affect the 

outcome.

II. The Mathematical Model For Transwell Experiments

The geometries of the experimental and computational domains are shown in Figure 2, and 

details of the experimental and computational setup are given in the figure caption. The 

mathematical model involves the densities of glioma cells (n), of M1 and M2 microglia (m1 

and m2), and of the extracellular matrix (ρ), as well as the concentration of CSF-1 (C), of 

EGF (E), of TGF-β (G), and of MMPs (P), all a function of (x, t). The evolution equations 

for these components are developed in generality below, but in this paper we focus on the 

transwell assay in one space dimension.

A. Glioma cell density (= n(x, t))

The mass balance equation for the tumor cell density n(x, t) is

(1)

where Jn is the flux and Pn is the net production rate of glioma cells. The flux Jn is 

comprised of three parts, Jrandom, Jchemo, and Jhapto, which are the fluxes due to random 

motion, chemotaxis, and haptotaxis, respectively [14]. We assume that the ECM is 

homogeneous and isotropic, and that the flux due to the random component of motility is 

given by

(2)

where Dn is the diffusion coefficient, which is assumed to be constant. In brain tissue, 

glioma cells are strongly chemotactic to TGF-β [15], and therefore the chemotactic flux is 

assumed to be of the form

(3)

where χn is the chemotactic sensitivity and λG is a scaling parameter. This form reduces to 

the standard form under small gradients and saturates under large gradients.

Glioma invasiveness is enhanced by proteolytic degradation of the ECM via MMPs that are 

produced by glioma cells a the TGF-β–SMAD–E-cadherin–MMP pathway [16], [9]. This 

leads to local degradation of ECM [14] and movement in the direction of the gradient ∇ρ via 

a process called haptotaxis. We represent the haptotactic flux as
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(4)

where  is the haptotactic sensitivity and λρ is a scaling parameter.

The production of tumor cells is due to active EGF-stimulated growth, which we represent 

as follows.

(5)

Here a1 is the proliferation rate of tumor cells in the absence of EGF, kE, l are Hill-function 

parameters for activation of proliferation in the presence of EGF, and κ(x) is the 

spacedependent carrying capacity of the tumor in a given tumor environment (a1, kE, κ(x) ∈ 
ℝ+, l ∈ ℤ+).

Combining the fluxes and growth term leads to the governing equation for the tumor cells:

(6)

B. Densities of M1 (= m1(x, t)) & M2 (= m2(x, t)) type microglia

The evolution of the densities of microglia follows reaction-diffusion equations similar to 

those for tumor cells, but with the following assumptions. (i) Activated M2 – but not M1 – 

cells are chemotactic to the CSF-1 secreted by tumor cells [5], and the flux is of the form 

(3), but with a different sensitivity. Since the microglia produce TGF-β (see later references), 

the movement of activated microglia further enhances glioma invasiveness via the TGF-β-

SMAD-E-cadherin-MMP pathway described earlier. (ii) The inactive (M1) microglia 

transform into the active M2 type at the rate a3 in the presence of CSF-1. (iii) Both 

phenotypes proliferate — with rate constants a2 and a4, respectively. This leads to following 

evolution equations.

(7)

(8)
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C. Tumor ECM density (=ρ(x, t))

The tumor ECM provides structural support for cell migration, but it must also be degraded 

for cell migration by proteases such as the tumor-secreted MMPs. The rate of tumor ECM 

change can be expressed as

(9)

for ρ > 0, and 0 otherwise. Here dρ is the degradation rate by MMPs secreted by tumor cells. 

This equation describes degradation when there is a significant level of ECM present, as is 

normally the case.

D. CSF-1 concentration (= C(x, t))

Glioma cells secrete CSF-1 in order to recruit the stromal cells such as microglia [5]. CSF-1 

is also needed for the activation of M1 into the aggressive M2 type, which in turn promotes 

tumor cell invasion [17], [18], [5], [9]. Thus the governing equation for CSF-1 is

(10)

where a5 is the secretion rate of CSF-1 by glioma cells and dC is the decay rate of CSF-1.

E. EGF concentration (= E(x, t))

We take into account diffusion, secretion, and first-order decay in the system. Activated 

microglia and macrophages are the major source of EGF in gliomas, and thus the governing 

equation for EGF is

(11)

where a6 and B1a6 are secretion rates of EGF by M1 type and M2 type of microglia, 

respectively, and dE is the decay rate of EGF. Here, a6 ≪ 1, B1 ≫ 1.

F. TGF-β concentration (= G(x, t))

Activated microglia and macrophages are the primary source of TGF-β in experimental rat 

gliomas or after brain injury [9], [19], [20], and the gradients created by diffusion promote 

chemotactic movement of tumor cells. In addition to diffusive transport of TGF-β there is a 

convective flux due to chemotactic movement of the microglia in reponse to CSF-1, but this 

is neglected here, and thus the governing equation for TGF-β is as follows.

(12)
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Here a7 and B2a7 are secretion rates of TGF-β by M1 and M2 types of microglia, 

respectively, B2 is a scaling parameter, and dG is the decay rate. We assume that a7 ≪ 1 and 

B2 ≫ 1.

G. MMP concentration (= P (x, t))

We suppose that glioma cells secrete MMPs for degradation of the ECM in response to 

TGF-β signaling from microglia, as found in [16], [9]. It was also shown that antibody 

against TGF-β receptors blocks this effect in invasion assays [9]. Thus

(13)

where a9 is the MMP production rate by glioma cells, B3 is a scale factor, dP is the decay 

rate of MMPs, I(·) is the indicator function, and thG is a threshold value for activation of 

MMP secretion. In general, the diffusion coefficient of MMPs is very small (DP ≪ 1) and 

the half-life of MMPs is short (μP ≫ 1) [21].

H. Boundary conditions and initial conditions

In the following simulations we prescribe Neumann boundary conditions on the exterior 

boundary Γ1 (cf. Figure 2).

(14)

where ν is the unit outer normal vector. The membrane is permeable to all variables (n, m1, 

m2, C, E, G, P), but not freely so. We describe the flux at Γ2 for these variables u = (n, m1, 

m2, C, E, G, P) as

(15)

where

(16)

and the parameter γi (i = 1,…, 8) is determined by the size and density of the holes (see [22] 

for the derivation of these boundary conditions by the method of homogenization). If the 

size or density of the holes in the membrane is increased, the membrane becomes more 

permeable, and γi increases.
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The entire system of equations (6)–(15) can be put into non-dimensional form for use in the 

simulations. This is done in the supplemental material and the parameters are defined there. 

Hereafter we restrict the computational domain to one space dimension, and the domain is 

scaled to unit length.

III. Computational Results

In this section we compare the predictions of the mathematical model with experimental 

observations, and then suggest a therapeutic strategy for blocking invasive glioma cells.

A. Predictions of the computational model

The density profiles of all variables in the model are shown in Figure 3 at t = 0, 18, 36 h in 

the presence of M1/M2 microglia in the lower chamber. Here the right half of the domain 

corresponds to the upper chamber in the transwell. By digesting the ECM, tumor cells in the 

upper chamber can invade the lower chamber and interact with M1/M2 cells. Tumor cells 

secrete CSF-1 (Figure 3C), which promotes the M1 → M2 transformation (Figure 3D). Both 

M1 & M2 cells secrete EGF (Figure 3E) and TGF-β (Figure 3F) to stimulate chemotactic 

movement of glioma cells. Tumor cells degrade the ECM using the MMP near the 

membrane, where TGF-β can exceed the threshold for MMP secretion, and invade the left 

chamber (Figure 3A,B). As they invade, they detect higher levels of EGF and TGF-β, and 

proliferate at a higher rate.

A comparison of simulation results with experimental results is shown in Figure 4. After 36h 
the number of glioma cells invading the lower chamber doubled in the co-culture with 

microglial cells (Neg/9+microglia in Figure 4A) in the lower chamber as compared to the 

control (Neg/9 in Figure 4A) [9]. In the simulations, the number of invading glioma cells 

increased ∼2-fold in the presence of M1/M2 microglia in the lower chamber (+MG in Figure 

4B) relative to the control (absence of microglia; −MG in Figure 4B). As Wesolowska et al. 
[9] remark, tumor cells invade the lower chamber even in the absence of microglia in the 

chamber, which demonstrates the intrinsic invasiveness of these cells.

In Figure 5, we investigate the effect of antibody against TGF-β on tumor invasion. In the 

experiments, Wesolowska et al. [9] found that the neutralizing antibody (Ab) abrogated the 

invasion-promoting effect of microglia in the lower chamber, i.e., the number of migrating 

cells was reduced in the presence of the antibody (+MG+Ab) when compared to the MG 

case in the absence of the antibody (+MG−Ab). Wesolowska et al. [9] showed that a 

knockdown of TGF-β type II receptor (TβIIR) by plasmid-transcribed shRNA can 

effectively inhibit TGF-β signaling and transcriptional responses, thus blocking invasiveness 

of human glioblastoma cells. They also found that a stable knockdown of TβIIR expression 

can impair growth of gliomas in nude mice. The mathematical model also predicts that the 

invasiveness of tumor cells is inhibited in the presence of antibody against TGF-β (+MG

+Ab) relative to control cases: −MG-Ab (no M1/M2 in the lower chamber; no antiboy), 

+MG−Ab (M1/M2 in the lower chamber; no antibody). See Figure 5B. However, one should 

note that this antibody, or TGF-β blocking, is not enough to completely block the aggressive 

invasion of glioma cells, since they invade in the absence of microglia.
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The results of computational studies on the effect of haptotaxis and chemotaxis of glioma 

cells on cell infiltration into the lower chamber are shown in Figure 6. This shows the tumor 

density (A) and the populations of invasive glioma cells (B) at t = 36 h as a function of the 

chemotactic sensitivity χn. One sees that as χn increases, the populations of invasive glioma 

cells increase, they move faster toward the transfilter and divide faster in the lower chamber, 

all leading to increased total glioma populations. Figures 6 (C & D) show the tumor 

densities in the lower chamber and the corresponding number of migrated glioma cells at t = 

36 h as a function of the haptotactic sensitivity . As expected, as  increases, the number 

of migrating glioma cells increases, and they invade the lower chamber faster. We also 

investigated the combined effect of χn and  on the invasive glioma cell populations at 36 h 
(data not shown). Again, as expected, the results show that glioma cells invade faster when 

they have higher sensitivities of both haptotaxis and chemotaxis. Moreover, the combined 

effect is more evident in the left chamber due to the stronger interaction between tumor cells 

in the upper chamber and M1/M2 cells in the lower chamber.

If we increase the rate a3 of differentiation of tumor-suppressive cells (M1) to tumor-

enhancing cells (M2), the total population of microglia increases due to the higher 

proliferation rate of M2 cells, as shown in Figure 7A. M1-and M2-dominant spatial profiles 

of microglia for lower (a3 = 1.61 × 10−3; red) and larger (a3 = 1.61 × 10−1; gray) transition 

rates, respectively, in the lower chamber at the final time are shown in Figure 7B. Figure 7C 

shows the tumor density in the whole domain. For larger a3, more aggressive M2 cells in the 

lower chamber can interact with tumor cells in the upper chamber (red curve in Figure 7C). 

This leads to an increased tumor population (1st column in Figure 7D) and enhanced glioma 

invasion (2nd column in Figure 7D). This enhanced invasiveness of the tumor cells is the 

result of the mutual interactions between tumor cells and the microglia. For large a3 the M1 

type cells are completely converted into the M2 phenotype (solid red curves in Figure 7E, 

7F; a3 = 1.61×10−1), leading to efficient tumor invasion. However, when this transition rate 

is small (a3 = 1.61 × 10−3), the less effective M1 type persists in the lower chamber (black 

solid curve in Figure 7E) with less population of the M2 phenotype (black curve in Figure 

7F). This leads to slower production of TGF-β and lower MMP secretion by tumor cells, 

which in turn results in a reduction in the population of invasive glioma cells by more than 

25% (Figure 7D).

In Figure 8 we illustrate the effect of the M2 phenotype on the regulation of tumor cell 

invasion. As the secretion rate of EGF by M2 cells increases, the number of migrating tumor 

cells also increases (by 28%), since this leads to stronger interactions of M1 and M2 in the 

lower chamber with tumor cells in the upper chamber and faster growth of the latter. On the 

other hand, a decrease in the production rate B2 of TGF-β by M2 cells results in a significant 

decrease (33%) in the number of migrating cells, due to a decreased gradient of TGF-β for 

chemotaxis and to partial inhibition of MMP production via TGF-β-MMP signaling, as 

found in the experiments [9].

Figure 9 shows the results of simulating the population of migrating tumor cells for different 

values of the transfilter permeability γ0, which reflects the pore size in the membrane. One 

sees that as the membrane becomes more permeable to tumor cells, the number in the lower 
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chamber increases, as expected. This is the result of the ease of crossing combined with the 

increased rate of proliferation in the higher EGF found in the lower chamber. In the 

experiments [9], the pore size of the transmembrane was 12 μm, corresponding to γ0 =78.5 

in the model. Cells cannot cross the transfilter when the pore size is much smaller than their 

diameter, which is reflected in Figure 9A, albeit at a very low γ0, because the 

homogenization involves a limit as the pore size goes to zero [22].

B. Sensitivity analysis

The model developed in previous sections contains thirty-four parameters, many of which 

are available in the literature or which can be estimated, but there are some for which no 

experimental data are known. These parameters are χn, , χm, aE, a2, a3, a4, B1, B2, B3, 

γC, γM, and in order to determine how sensitive is the number of migratory glioma cells 

after 12, 24 or 36 hours to these parameters, we have performed a sensitivity analysis using a 

method developed in [23]. We have chosen a physically-reasonable range for each of these 

parameters, and divided each range into 1,000 intervals of uniform length, with all other 

parameters fixed at values given in Tables I & II in the supplemental material. For each of 

the twelve parameters of interest, a partial rank correlation coefficient (PRCC) value is 

calculated. The PRCC values range between -1 and 1 with the sign determining whether an 

increase in the parameter value will decrease (−) or increase (+) the variable of interest at a 

given time. Both the PRCC values and the associated p-value for the twelve perturbed 

parameters (χn, , χm, aE, a2, a3, a4, B1, B2, B3, γC, γM). are computed and recorded in 

Figure 10, which shows the sensitivities to parametric variations for populations of tumor 

cells: , M1 cells: , and M2 cells: 

, and concentrations of ECM: , CSF-1: 

, EGF: , TGF-β: , and MMPs: 

 at t =12, 24, and 36 hours. The results show that the tumor population 

is most strongly positively correlated with aE,, moderately correlated with χn, & B1, and 

only weakly correlated with , χm, a4, B3, γC, & γM. While the M1 population is 

insensitive to most parameters, it is, not surprisingly, negatively correlated with the 

transformation rate of type M1 to type M2 (a3). On the other hand, the M2 phenotype is 

positively correlated with a2 and a4, but is only weakly correlated with other parameters. 

One also sees that the ECM density is negatively correlated with aE, and that the growth rate 

of the M2 phenotype (a4) is very sensitive to the M2 population level and the concentrations 

of EGF and TGF-β.

Figure 11 shows the PRCC values of the invasive tumor population in the lower chamber, 

which is defined as , at t =12 (blue), 24 (green), 36 (red) hours. The 

numbers of invasive cells are positively correlated with the parameters aE, B1, but not 

sensitive to χn, , χm, a2, a3, a4, B2, B3, γC, γM. Thus, in particular, the invasive glioma 

population will increase significantly if either the EGF-stimulated growth rate of tumor cells 

(aE) or the EGF production rate (B1) from M2 microglia is increased. Significantly, and 

again unsurprisingly, the dependence of the invasive cell population on the chemotactic 
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sensitivity χn varies in time – it is initially strongly correlated, but at 36 hours the 

correlation is almost negligible.

C. Application of the model

Bemis and Schedin [24] conducted experiments on the invasive nature of breast cancer cells 

in a Boyden invasion assay with 8 micron pores in the filter, and showed that the number of 

cells invading is significantly decreased (more than 50%) when an MMP inhibitor called 

TIMP is applied to the system (cf. Figure 12A). In our model, blocking of MMP is 

implemented by setting a9, the MMP production rate coefficient in equation (13), to 0.05, 

which is 1% of the normal value. A simulation shows that after 36 h, the population of 

invading glioma cells in the lower chamber is reduced by approximately 70% (see Figure 

12B), which is in good agreement with the experimental results shown in Figure 12B. As 

shown in experiments, TIMP cannot block the invasion of tumor cells completely, but they 

do suggest that blocking MMP activity in the brain will also slow down the invasion of 

glioma cells into the brain stroma. Another potentially-effective therapeutic approach to 

slowing invasion is to apply an antibody against TGF-β signaling [9] (also see Figure 5), 

given its pivotal roles in tumorigenesis [25]. When we apply combined therapeutic strategies 

by TIMP and antibody, this completely blocked the glioma invasion in the system (+MG

+TIMP+Ab in Figure 12B). These in silico experiments suggest that glioma invasion may be 

significantly slowed down by the combined drug which blocks both MMP secretion and 

TβIIR (TGF-β receptors).

IV. CONCLUSION

Cell-cell signaling is an integral process in tumor growth, since many mutations and 

chromosomal changes affect signaling pathways involving growth factors or cytokines. 

Signaling frequently involves indirect interactions between spatially-separated cell 

populations in the TME or between normoxic and hypoxic cells within a tumor. The ’go-or-

grow’ behavior of glioma cells may depend on many microenvironmental factors, including 

glucose-induced up-regulation of miR-451 and mTOR [26]. Despite uncertainty concerning 

the details of the M1→M2 transition in gliomas, our model consistently predicts the role of 

GIMs in promoting glioma invasion in vitro. On the other hand, the presence of inhibitors of 

MMPs and of astrocytes was shown both experimentally and theoretically to block glioma 

invasion [27], [28], and we plan to investigate the role of the possibly continuous spectrum 

of the M1→M2 transition and the role of inhibitory molecules in the regulation of glioma 

infiltration in future work. Factors such as cell packing density and anisotropy of transport 

through the tissue affect the signaling process, but despite its importance, experimental data 

on signaling within tumors is sparse. Thus, computational studies on the effects of these 

interactions on tumor invasion, such as those done in [29], [30], and on the sensitivity of the 

predictions to kinetic parameters, may provide insights to guide experiments aimed at the 

development of new therapeutic approaches.
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Fig. 1. The interaction of the CSF-1, EGF and TGF-β pathways in the control of cell 
proliferation and invasion in glioblastoma
In normal cells these pathways are balanced so as to control growth, but in gliomas 

increased secretion of CSF-1 by tumor cells induces the M1→M2 transformation of the 

microglia and stimulates their secretion of EGF. This disrupts the proliferation-inhibition 

mechanism by partially blocking the TGF-β -Smad pathway and stimulates proliferation and 

invasion.
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Fig. 2. Experimental and mathematical configuration
(A) The Boyden transwell invasion assay used in [9]. Glioma cells were suspended in low-

serum medium in the upper chamber while microglia or medium alone (control) were put 

into the lower chamber. Semi-permeable inserts of 12 μm pore diameter coated with 

Matrigel ECM were inserted in the filter. In response to TGF-β secreted by microglia in the 

lower chamber, glioma cells degrade the ECM proteolytically and invade the lower chamber. 

The number of migrating cells on the lower surface of the permeable membrane were 

counted after 36 h in the absence and presence of microglia in the lower chamber. (B) A 

schematic of the 1D representation of the assay chamber: CSF-1, EGF, TGF-β, MMP, and 

tumor cells can cross the semi-permeable membrane, but neither type of microglia can cross 

it. Initially the glioma cells reside in the upper chamber (domain Ω+) while microglia are 

placed in the lower chamber (domain Ω−).
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Fig. 3. Dynamics of the system
The time evolution of the density of each variable. (A) glioma cells and ECM (B) MMP (C) 

CSF-1 (D) M1/M2 cells (E) EGF (F) TGF-β. Here, ECM = [0.35, 0.65]. Note that the initial 

concentrations of CSF-1, EGF and TGF-β are uniformly zero, as in experiments. The x-axis 

is the dimensionless length across the tumor invasion chamber and the y-axis in each frame 

is the dimensionless density/concentration of the indicated.
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Fig. 4. Experimental data and simulation results
(A) The plot shows the number of glioma cells that migrate through the membrane in the 

absence (Neg/9 and 1119/6) or presence (Neg/9+microglia and 1119/6+microglia) of 

microglia at t = 36 h after seeding at a density of 4×104 cells/insert. The results shown are 

from three independent experiments, each in triplicate, in which the invading glioma cells 

were stained with DAPI (4′,6-diamidino-2-pheylindole) [9]. (B) Simulation results showing 

how the number of migrating glioma cells increases in the presence of M1/M2 microglia 

(+MG) in the lower chamber compared to the absence of microglia (−MG).
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Fig. 5. A neutralizing antibody against TGF-β can abrogate the invasion-boosting effects of 
microglia
(A) Experimental data from the invasion assay in [9]. The graph shows the number of 

migrating glioma cells in the absence (Ctrl) or presence (MG) of microglia after introducing 

anti-TGF-β mAb. In the absence of antibody, the number of invading tumor cells more than 

doubled from the control case (Ctrl-Ab) in the presence of migroglia (MG−Ab). However, 

addition of antibody reduces the number of invading glioma cells by almost 50%. (B) 

Simulation results. In the absence of antibody, an introduction of M1/M2 microglia (+MG

−Ab) in the lower chamber Increased the number of migrating glioma cells compared to the 

absence of microglia (−MG−Ab). However, this invasion-promoting effect can be 

neutralized by adding antibody to the system. In the simulation, we set a7 = 0 (complete 

blocking TGF-β secretion by M1/M2).
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Fig. 6. The effect of chemotaxis and haptotaxis on invasion
(A) Profiles of the tumor cell density at t = 36 h for different values of the chemotactic 

sensitivity χn. (B) (left) The number of cells that have migrated, and (right) the relative 

populations of invasive cells (squares), cells in the upper chamber (circles), and the total 

number of cells (diamonds) at t = 36 h as a function of chemotactic sensitivity. As χn 

increases, the number of migrating cells is increased. (C) Profiles of tumor cell densities at t 

= 36 h for different values of the haptotactic parameter ; (D) The population of migrating 
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cells in the lower chamber as a function of . As the haptotactic parameter  increases 

the tumor cells invade into the region initially occupied by the M1 cells more rapidly. Here 

and hereafter cell numbers are derived from the continuum density using the total number of 

cells in [9].
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Fig. 7. The effect of the M1→M2 transformation on glioma invasion and M1/M2 dynamics
(A) Scaled population levels of M1 and M2 cells at the final time (t = 36h) for various values 

of the differentiation rate a3. (B) Density profiles of the M1 and M2 phenotypes in the lower 

chamber at the final time. (C) Tumor density profiles at the final time for various 

transformation rates of M1 into M2 phenotype. (D) Tumor populations of invasive cells, 

growing cells in the upper chamber, and total cells at the final time. (E,F) The time courses 

of the M1 and M2 populations for various M1→M2 transition rates a3.
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Fig. 8. The effect of EGF and TGF-β on glioma invasion
(A) The number of migrating glioma cells at t = 36 h for various secretion rates of EGF by 

M2 cells. (B) The number of migrating glioma cells at t = 36 h for various secretion rates of 

TGF-β by M2.
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Fig. 9. The effect of the the transwell membrane permeability (γ0) on glioma cell invasion
(A) Tumor densities at the final time (t = 36 h) for various values of the permeability γ0 of 

the transfilter separating the chambers. (B) The number of cells crossing in 36 hours as a 

function of the permeability.
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Fig. 10. 
Sensitivity Analysis: General Latin Hypercube Sampling (LHS) scheme and Partial Rank 

Correlation Coefficient (PRCC) performed on the current model. The reference output in 

color is PRCC values (red for positive PRCC values; blue for negative PRCC values) for the 

populations of tumor, M1, and M2, and concentrations of ECM, CSF-1, ECM, TGF-β, and 

MMPs at time t = 12, 24, 36 h.
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Fig. 11. 
Sensitivity Analysis results for invasive tumor cells. The output is the PRCC values of 

invasive tumor cells in the lower chamber at time t =12 (blue), 24 (green), 36 (red) h.
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Fig. 12. The effect of MMP blocking (−MMP) and combined therapy (−MMP+Ab)
(A) Experimental results showing the number of migrating cells for a breast cancer cell line, 

C-100, in the absence and presence of MMP inhibitor on various ECM (fibronectin) 

concentrations (0, 10, 20 μg/ml) (Figure from Bemis et al. [24] with permission). (B) The 

population of invading tumor cells when MMP secretion was blocked in the absence (+MG

−MMP−Ab) and presence (+MG−MMP+Ab) of TGF-β antibody relative to the control 

(+MG). When proteolytic activity of glioma cells near the membrane is blocked (a9 =0), 

fewer cells (69% reduction) invade the lower chamber.
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