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ABSTRACT

Astrocytes, a major type of glial cells in the mammalian central nervous system (CNS), have a wide
variety of physiological functions, including formation of the blood brain barrier, and modulation of
synaptic transmission and information processing, and maintenance of CNS homeostasis. The
signaling pathway initiated by bone morphogenetic protein (BMP) is critical for astrogliogenesis.
However, exactly how this pathway regulates astrogliogenesis remains poorly understood. We have
recently provided in vitro and in vivo evidence for neogenin’s function in neural stem cells (NSCs) to
promote neocortical astrogliogenesis. Neogenin in NSCs as well as astrocytes is required for BMP2
activation of RhoA that promotes YAP (yes-associated protein) nuclear translocation, consequently,
YAP interaction with nuclear p-Smad1/5/8, and stabilization of Smad1/5/8 signaling. We have also
provided evidence that YAP in NSCs is necessary for neocortical astrogliogenesis, and expression of
YAP in neogenin deficient NSCs diminishes the astrogliogenesis deficit. These recent findings
identify an unrecognized function of neogenin in promoting neocortical astrogliogenesis, and
reveal a pathway of BMP2-neogenin-YAP-Smad1 underlying astrogliogenesis in developing mouse
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neocortex.

Nearly 50% of the cells in the adult human brain are
glial cells.! Among which, astrocytes are the most
abundant glial cell type in the mammalian brain,
which play a wide variety of roles in brain develop-
ment and functions, such as regulating the cerebral
blood flow, forming and maintaining blood brain bar-
rier, supporting the central nervous system (CNS)
metabolism, clearing the neurotransmitter between
synapse, and specific effects on synaptogenesis and
synaptic plasticity.>” In addition, astrocytes also play
critical roles in pathological CNS such as spinal cord
injury and stroke.>®” Defects in astrocyte generation
during development contribute to dysfunctions of
synaptic plasticity, neuropsychological disorders, and
brain tumors.®® Thus, it is of considerable interest to
investigate how astrocytes are generated. During
mammalian brain development, astrocytes are derived
from neural stem cells (NSCs) in the ventricular and
sub-ventricular zone. Rodent cortico-cerebral astro-
gliogenesis mainly takes place at the late embryonic
stages and the first 3 postnatal weeks, following neuro-

genesis,4’9’10 which is consisted of 2 concurrent

regulatory processes: astrocyte differentiation from
NSCs and the local proliferation of astrocytes.”'' Pio-
neer studies have shown that rodent cortico-cerebral
astrogliogenesis is controlled by both intrinsic fac-
tors'? and extracellular factors,'> which induce astro-
cytic gene transcription such as GFAP and S100beta.
Nowadays, although studies from culture system and
mouse model have demonstrated that bone morpho-
genetic protein (BMP)-Smads signaling,”'>'* Notch

signaling,”' ">

and Janus kinase-signal transducer
and activator of transcription (JAK-STAT) signaling
pathways control the appropriate timing of astroglio-
genesis,'”'®!” exactly how these pathways regulate
astrogliogenesis remains poorly understood. Here, we
mainly focus on recent molecular insights into the
role of BMP signaling in neocortical astrogliogenesis
in the developing mouse brain.

BMPs are members of the transforming growth fac-
tor B (TGFp) superfamily of signaling ligands.'® BMPs
mediate a highly conserved signal transduction cas-
cade through the type-I and type-II receptors and
intracellular Smad proteins, which regulate a wide
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variety of cellular processes, including cell fate specifi-
cation, cell proliferation, cell migration and cell death
during development.'” BMPs play dynamic roles in
neurogenesis and astrogliogenesis.”'*'*'® During late
embryonic and early postnatal periods, BMP signaling
promotes astroglial differentiation.”'**° Combination
treatment of BMP2 with LIF accelerates the induction
of astrocytes from the cultured E14.5 mouse telence-
phalic precursors,”" and such capability of BMP2 and
LIF to synergically promote astrogliogenesis was fur-
ther confirmed in E16.5 cortico-cerebral precursors
kept under thyroid hormones.*> Mechanistically, BMP
signaling is mediated by heteroterameric serine/threo-
nine kinase receptors and their downstream transcrip-
tion factors Smad1/5/8. In the nuclei, Smads form a
complex with STAT?3 that is bridged by the transcrip-
tional co-activators p300/CBP,>'** and participate in
the induction of astrocytic gene expression. Knockout
LIF** and its receptors LIFRB* and gp130°° or down-
stream of STAT3 all result into the impairment of
astrocytic differentiation, indicating that the JAK-
STAT3 pathway is essential for astrogliogenesis in the
developing brain. Interestingly, treatment of BMP2
alone to gpI30~'~ cultures, elicits a moderate but
reproducible activation of the GFAP promoter,”' sug-
gesting that pSmads might also directly activate GFAP
promoter, independently of JAK-pSTAT3 pathway. In
our recent studies, in the receptor and downstream
levels, we provide new insights on the BMPs signaling
for the neocortical astrogliogenesis.

Neogenin, a member of the DCC family trans-
membrane protein, serves as a receptor for the axon
guidance cue netrins, the repulsive guidance mole-
cules (RGMs) and BMPs.**** By taking advantage of
X-gal reporter in neogenin mutant mice and antibod-
ies, we have demonstrated neogenin’s expression in
embryonic NSCs in vitro and in vivo,” in consistent
with the previous reports.”’>* Neogenin deficient
mice or NSCs showed normal self-renewal or prolif-
eration of NSCs or neurogenesis,”® but impaired neo-
cortical astrogliogenesis. Note that neogenin is
reported to regulate adult neurogenesis by promoting
neuroblast migration and cell cycle exit,’® suggesting
that neogenin may play an age-dependent function
during neurogenesis. Although neogenin is not
required for neural differentiation in cultured NSCs
and in neonatal age, multiple neogenin mutant mice,
including neogenin hypomorphic allele, neogenin™®"

in CKO, and neogeninGFAP -CKO, show an

impairment in neocortical, but not hippocampal,
astrogliogenesis.’® In addition, neogenin depletion in
E15.5 cortical NSCs by in utero electroporation also
results in impaired astrogliogenesis, providing addi-
tional evidence for neogenin’s function in promoting
neocortical astrogliogenesis.
regarding the mechanisms underlying neogenin’s
selective regulation of neocortical astrogliogenesis.

It remains unclear

We propose the following potential possibilities.
First, the temporal and spatial expression patterns of
BMPs and neogenin may be different between cortex
and hippocampus. Second, neogenin may have dif-
ferent signaling and functions in NSCs between cor-
tex and hippocampus. These possibilities require
further investigations in future.

Neogenin appears to be a co-receptor for BMPs
signaling. It regulates iron homeostasis by regulating
BMP induction of hepcidin.*® It also promotes chon-
drogenesis and endochondral bone formation by
enhancing and sustaining BMP-Smad1/5/8 signaling
in chondrocytes.37 In consistent, our recent study
supports a role for neogenin in BMP-2-induced
astrocyte differentiation.’® Exactly how neogenin
regulates BMP signaling remains poorly understood.
Several mechanisms may underlie neogenin regula-
tion of BMP signaling. First, in the ligand level, neo-
genin may play a role in process and secretion
of soluble HJV, an inhibitor of BMP signaling.*®
Second, at the receptor level, upon BMP2 treatment,
both neogenin and BMP receptors are recruited
to the lipid raft microdomains, and neogenin is
required for the recruitment or stabilization of BMP
receptors in lipid rafts.”” Interestingly, recent struc-
ture studies have shown that neogenin ligands,
RGMs, serve as a bridge between neogenin and
BMPs.**?® Third, in the downstream signaling level,
our recent findings suggest that neogenin in NSCs or
astrocytes is required for BMP2 activation of RhoA,
YAP (yes-associated protein)
nuclear translocation, consequently, YAP interaction
with nuclear p-Smad1/5/8”. This event is critical for
stabilization of nuclear pSmad1/5/8 signaling and
neocortical astrogliogenesis.”® YAP knockout in
NSCs also results in a similar cortical astrogliogenesis
deficit in vitro and in vivo.’>*® Overexpression of

which promotes

YAP in neogenin deficit NSCs diminishes the astro-
cytic differentiation deficit.’® These observations
suggest that neogenin/YAP pathway is essential for
cortical astrogliogenesis in the developing brain.



How does YAP regulate BMP2/Smadl signaling?
Our results suggest that YAP interaction with pSmad1
may be critical for maintaining pSmad1 protein stabil-
ity. This view are in line with reports that YAP inter-
acts with Smads in the nuclear to modulate BMP/
Smadl or TGF/Smad2 signaling in HEK293 cells or
Eph4 cells,***’ and that YAP-pSmad1/5/8 complex in
the nuclei of HEK293 cells prevents p-Smad1/5/8 deg-
radation by Smurf1.*>** These reports, combine with
our results, demonstrate the importance of YAP regu-
lation of BMP2/Smad]1 signaling in various cell types.
Interestingly, our recent studies have shown that YAP
may interact with STAT3 in the nucleus of astrocytes
upon cytokine treatment.** Thus, it is of interest to
test whether YAP forms a complex with smadl and
STAT3 in the nucleus to promote BMP2-induced
astrogliogenesis in future (Fig. 1, Model).

Astrocytic glioma is the most common brain tumor
in adult central nervous system.* The glioma initiat-
ing cells (GIC) are believed as be highly chemoresist-
ant, thus they are responsible for glioma replase. One
potential treatment for glioma is to induce differentia-
tion of GICs to more benign and or/druggable cell
type.*® BMP signaling (p-Smad1/5/8) is decreased in
patients with glioma, compared with that of normal
brain and low grade astocytomas. The expression of
BMPRIB receptor is down-regulated in high grade
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Figure 1. A model of neogenin and YAP in modulating BMP2-
inducing astrocytic differentiation in NSCs or astrocytes. Neoge-
nin in NSCs or astrocytes is required for BMP2 activation of RhoA,
which promotes YAP nuclear translocation, consequently, YAP
interaction with nuclear p-Smad1/5/8. This event is critical for sta-
bilization of nuclear p-Smad1/5/8 signaling and neocortical astro-
gliogenesis. YAP is very likely form a complex with smad1 and
STAT3 in the nucleus to promote BMP2-induced astrogliogenesis.
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glioma.”” Interestingly, neogenin is also reduced in
these patients with glioma.*® These observations thus
demonstrate a negative correlation between BMP-neo-
genin signaling pathway and the malignant grade of
glioma. This view is supported by additional observa-
tion that BMPs inhibit proliferation and promote dif-
ferentiation of GICs, thus suppressing the growth of
glioma.”” Our studies suggest that neogenin/RhoA/
YAP/Smadl signaling plays a critical role in BMP2-
induced astrocyte differentiation of NSCs. Although
netrin-1 via DCC receptor up-regulates YAP expres-
sion, escalating YAP levels in the nucleus and promot-
ing cancer cell proliferation and migration,” our
results showed that netrin-1 did not regulate YAP
level in WT or neogenin mutant astrocytes. Further
investigation is necessary to illustrate whether neoge-
nin/RhoA/YAP/Smadl signaling pathway is involved
in BMPs-induced differentiation of GICs, which may
reveal novel therapeutic targets for astroglioma.
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