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The Arp2/3 complex is essential at multiple stages of neural development
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ABSTRACT
During development of the nervous system, radial glial cells perform self-renewing asymmetric
divisions and give rise to intermediate progenitor cells (IPC) and neurons. The neuronally
committed IPC subsequently undergo multiple rounds of transient amplification and migrate
outwards to form cortical layers as they continue to differentiate into mature neurons. Maturing
neurons extend protrusions on their cell surface to form neurites, a process called neuritogenesis.
Neurite formation results in the establishment of dendrites and axons for synapse formation, which
is essential for sensory and motor functions and even higher-level functioning including memory
formation and cognitive function, as well as shaping of behavior and emotion. Morphological
adaptation during various stages of neural development requires active participation of actin
cytoskeleton remodeling. In this review, we aim to discuss current understanding of the Arp2/3
complex branching nucleator in various neural cell types during development and maturation.
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Introduction

The development of the nervous system requires
orchestration of various cell types to perform cell divi-
sion, migration, and morphogenesis in a timely man-
ner. The dynamics of actin filament through rapid
polymerization and depolymerization plays multiple
crucial roles during these processes. The actin poly-
mers branch from the existing filaments through the
Arp2/3 complex branching nucleator, creating poten-
tials for cellular asymmetry and directionality. The
Arp2/3 complex is an evolutionarily conserved stable
and stoichiometric assembly of 7 polypeptide subu-
nits, including Arp2, Arp3, and Arpc1 to 5.1 While
Arp2 and Arp3 bind directly to the incoming actin
monomer, the rest of the subunits function together to
form a branching point on the existing filament to
allow the formation of a new filament at an angle of
roughly 78 degrees.2 The function of the Arp2/3 com-
plex is highly regulated by the Wiskott-Aldrich Syn-
drome (WAS) family of nucleation promoting factors,
which is further regulated by Rho-GTPases such as
cdc42. In this review, we will discuss recent advances
in the understanding of the roles of the Arp2/3 com-
plex during neocortical neural development and
neuritogenesis.

The Arp2/3 complex in neocortical neurogenesis
and neuronal migration

Knowledge on mammalian cerebral cortex formation
has grown exponentially thanks to the advance in in
vivo cell-labeling techniques and the imaging tools
during fetal development of the rodents. Recent stud-
ies comparing human and rodent brains have identi-
fied measurable differences in terms of proliferative
potential of the neural stem and progenitor cells as
well as layer distributions.3-5 This is easily conceivable
as human brains are much bigger in size and contain
much more neuronal cells and sophisticated neural
circuits. Nonetheless, the ability to manipulate genes
and the availability of techniques to label radial glial
cells and other cell types during brain development
have made the rodent brains the most widely used
model system in the field of cortical development
research.

The prevailing view of neocortical neurogenesis
suggests that radial glial cells (RGC) undergo various
rounds of symmetric and asymmetric cell division to
produce neuronally committed intermediate progeni-
tor cells (IPC) or neurons. The IPC undergo transient
amplification before they relocate to the respective
destinations in the cortical layers where they complete
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their differentiation process. Various modes of neuro-
nal migration have been described in different
species.6 RGC membranous processes provide scaf-
folds and guide for the migrating neurons. Scaffolding,
migration, and cell division all require a dynamic cyto-
skeletal network, which involves the actin cytoskeleton
and its regulators. In the following section, we will dis-
cuss recent advances in the understanding of how the
Arp2/3 complex is involved in these processes.

Neurogenetic and scaffolding functions of the radial
glial cells

RGC are a group of specialized neuroepithelial cells with
a distinct morphology (Fig. 1A). The unique establish-
ment of the apico-basal polarity in RGC is crucial for
their functions. On the apical (ventricular) side, adherens
junctions (AJ) hold the apical end-feet together along the
ventricular surface; on the basal (pial) side, the processes
is a dynamic structure that extend from RGC cell bodies
and span across the cortex to the pial surface.7,8

Adherens junctions in association with RGC integrity
and cell fate decision
N-Cadherin is a major component of the AJ. It has
been shown that decreased N-Cadherin availability by
RNA interference and by blocking antibody leads to
drastically reduced b-catenin transcriptional activity,
resulting in premature cell cycle exit and neuronal dif-
ferentiation.9 The signaling cascade involved is the
Akt pathway which, upon N-Cadherin loss, leads to
dephosphorylation of the Ser552 residue and inactiva-
tion of b-catenin. The Arp2/3 complex is involved in
the establishment and maintenance of the AJ.10 Using
a tissue-specific Cre-recombinase knockout approach,
we found that loss of Arp2/3 in the embryonic RGC
results in similar phenotypes.11 Specifically, we
showed an increase in Tuj1-positive neuronally com-
mitted cells and a decrease in Ki67-positive cells in
E14.5 mouse embryo following Arpc2 knockout. We
also observed a reduction in the density of Pax6-posi-
tive RGC along the VZ. In addition, while Tbr2-posi-
tive IPCs normally localize to the subventricular zone
(SVZ), the Tbr2-positive cells in Arpc2-null embryos

Figure 1. Representation of normal cortical lamination during cortical development (A) and following Arpc2 depletion (B). (A) On the
apical side, short apical processes form end-feet that are attached to the ventricular surface. The end-feet between radial glial cells
(RGC) are anchored to each other via cadherin-containing adherens junctions (AJ).The cell bodies of the RGC are normally located close
to the ventricular surface. An elongated basal process extends radially from the cell body in the opposite direction of the apical end-
foot and spans the entire progressively thickening cortex until it is in contact with the basal surface. Of note, the basal process is a
dynamic structure. Cell division occurs by the apical surface. The Arp2/3 complex is present throughout the RGC, with enrichment in the
apical end-feet and the growth cone-like structure at the tip of the basal process. (B) Following depletion of Arpc2, multiple defects in
RGC end-feet and basal processes, as well as in neuronal migration, altogether lead to disorganized positioning of the RGC, the
intermediate progenitors, and the maturing neurons throughout the cortex.
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are present throughout the entire span of the cortex,
with the highest density in the VZ. These findings are
consistent with the phenotypes observed in the cdc42-
deficient cortex which also described gradual loss of
AJ and substantial reduction in self-renewing RGC in
the VZ.12 Furthermore, a recent study showed that
Numb and Numbl double knockout in mouse RGC
leads to AJ disruption and loss of RGC polarity, lead-
ing to progenitor dispersion, ectopic rosette forma-
tion, and disorganized cortical lamination.7 Numb
and Numbl are localized at the apical end-feet where
they interact with the cadherin-catenin adhesion com-
plex in the AJ.13 These findings are in line with our
observation of ectopic neuroblastic rosettes and disor-
ganized cortical lamination in the Arpc2-null embry-
onic brain. Together, these studies emphasize a role of
the actin branching network in maintaining the mor-
phology of the RGC and their anchorage to the apical
surface through AJ formation, loss of which leads to
premature neural lineage differentiation of the RGC.

It remains unclear how loss of AJ and polarity leads
to a reduction in Akt signal in RGC, although it is pos-
sible that the cues from the microenvironment that are
crucial for promoting a RGC self-renewing cell fate is
stored in the endocytosed vesicles, which requires an
intact actin branching network for excision and release
into the cytoplasm. Another possibility is that the
receptors that are responsible for transmitting signal-
ing cascades to promote RGC self-renewal require an
intact actin branching network to allow their expres-
sion on the membrane surface for ligand binding. The
roles of Arp2/3-mediated exocytosis and endocytosis
in RGC have not been explored in the mammalian sys-
tem. In Drosophila, a recent study showed that Arp2/3
mediates endocytosis of Delta, a ligand for Notch sig-
naling activation, in sensory organ precursors to guide
cell fate decision.14 Notch signaling has also implicated
in mPar3-regulated asymmetric cell division in RGC. It
is possible that Notch signaling plays a mediator role
between Arp2/3 and the RGC cell fate.15

Taken together, we propose that Arp2/3-medi-
ated branching network of the actin cytoskeleton is
upstream of N-Cadherin and Numb/Numbl in the
apical end-feet in the regulation of the integrity of
the AJ. By maintaining AJ and allowing RGC to
anchor to the apical surface, Arp2/3 facilitates
interaction between the RGC and the microenvi-
ronment to promote self-renewal and prevent pre-
mature differentiation and exhaustion.

RGC basal process dynamics during cortical
development
In our Arpc2 tissue-specific knockout model, we
observed a disorganized cortex without columnar forma-
tion of the processes extending radially to the basal sur-
face.11 The laminin-enriched pial basement membrane
was also thin and in discontinuity. Examining the RGC
basal process directly, we found that the Arp2/3 complex
is distributed throughout the entire RGC, and is enriched
in the apical end-feet and the basal growth cone-like
structure. Arp2/3 disruption resulted in the loss of the
basal growth cone-like structure, and instead, the tip of
the basal process assumed a pointed club-like structure.
Furthermore, in wild-type fetal brain slice explant, we
observed steady and smooth extension of the basal pro-
cesses. On the contrary, the process extension in the
Arpc2-null brain slice had an average speed increase of
33%, yet the final average length is much shorter due to
frequent and sudden retractions. The phenomenon is
reminiscent to uncontrolled microtubule polymerization
followed by sudden collapse in the absence of actin cyto-
skeleton brakes. The interaction between microtubules
and the actin cytoskeleton has been well-described in the
axonal growth cone and other models, and may explain
our findings in the RGC basal processes.16-18

Similar phenotypes were observed in the conditional
cdc42 knockout study.19 First, Yokota et al. showed for
the first time using live imaging that the basal processes
and the growth-cone like structures are dynamic. This
dynamic nature of the basal process suggests that con-
stant remodeling and target-seeking activities are essen-
tial for their elongation as the cerebral cortex thickens.
Secondly, cdc42 is also enriched in the apical end-feet
as well as in the basal growth cone-like structures. Inter-
estingly, cdc42 depletion in the RGC leads to excessive
branching of the growth cone-like structures at the
basal end, as opposed to Arpc2 disruption, which leads
to a club-like structure. In either case, the processes are
shorter, and are incapable of providing intact scaffold-
ing and guide for the migrating neuronal cells.

Together, we, and others, showed that the Arp2/3
complex and its upstream regulators are present on
both apical and basal ends of the RGC, and are critical
for their morphogenesis and functions.

Neuronal migration

One interesting observation in the RGC-specific
Arpc2-null embryonic brain is the disruption in
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cortical lamination (Fig. 1). The disorganization of the
cerebral cortex can be explained by RGC scaffolding
defect which leads to failure of the postmitotic neuro-
nal cells to migrate to their pre-determined location in
the cortex. Nonetheless, it is also possible that the
migrating neurons lose their intrinsic migrating ability
as a result of Arp2/3 depletion, as these migrating neu-
ronal cells that are derived from the Arp2-null RGCs
are also depleted of the Arp2/3 complex, and that the
Arp2/3 complex is required for cell migration in
general.2

To directly assess the roles of the Arp2/3 complex in
the migrating neuronal cells, we first utilized a 3D orga-
notypic brain slice/neurosphere co-culture system in
our study.11 We found that the Arp2/3 complex is
required for the cells to migrate out of the neurosphere
on the brain slice. We further verified that, following
depletion of the Arp2/3 complex by introducing dcx-
cre into Arpc2 homozygous embryonic brain, neuronal
cells failed to migrate in vivo. Recapitulating neuro-
sphere cell migration on the 2D coverslip, we further
showed that, as the substrate becomes more adhesive
and more stiff (higher laminin concentration and
higher stiffness index), the cells become less dependent
on Arp2/3 for migration. These findings imply that, at
least during early stages of brain development when
the brain tissue is less cohesive and softer, the presence
of the Arp2/3 complex allows the early-stage neuronal
cells to migrate to their destinations in the cortex.
Whether late-stage migrating neurons continue to
depend on Arp2/3 as the brain continues to mature
and becomes stiffer is not known. Nonetheless, the
existing evidence supports a distinct role of Arp2/3 in
the motility of the migrating neurons during cortical
development. Consistent with our findings, there have
been extensive studies that suggested that the Rho
GTPase regulators of the Arp2/3 complex are highly
involved in neuronal migration.20

The Arp2/3 complex in neuritogenesis

The structural hallmark of a mature neuron is the
presence of cell membrane protrusions that possess
the ability to communicate with another cell nearby or
at a distance, as well as to receive extracellular cues
from the microenvironment. In the axons, actin
cytoskeleton is located at the far end of the microtu-
bule-filled axonal shaft to shape the growth cone. The
function of the actin cytoskeleton is in two-fold - it

communicates with the intracellular microtubules and
with the extracellular environment. In the dendrite,
actin cytoskeleton fills the dendritic spines where it is
involved in the structural plasticity of the spines for
signal processing. In this section, we will discuss cur-
rent understanding of the roles of the Arp2/3 complex
in both axons and dendrites.

Axons

The axonal growth cone is the structure at the tip of
the axonal shaft. The growth cone was first identified
by Ram�on y Cajal in 1890.21 The central (C) and the
peripheral (P) domains are distinguishable under
the microscope (Fig. 2). Between the two domains lies
the transitional (T) zone.22

The primary function of the growth cone is to navi-
gate in the nervous system and search for its synaptic
targets. The process requires repeated cycles of protru-
sion, adhesion, and traction on the leading edges of
the growth cone. The growth cone turns toward
attractive guidance by promoting actin polymerization
and/or decreasing retrograde actin flow on the mem-
branous protrusion closest to the guidance. This
results in stabilization of the filopodia and the lamelli-
podia in the protrusions, and facilitates outgrowth of

Figure 2. Axonal growth cone structure. Three functionally dis-
tinct regions have been identified in the growth cone - the cen-
tral (C) and the peripheral (P) domains, as well as the transitional
(T) zone. The C domain is at the end of the axonal shaft where
the microtubules extending from the axonal shaft terminate. The
C domain are also rich in numerous organelles including mito-
chondria and exocytotic vesicles. The primary function of the C
domain is to support the P domain, which consists primarily of
actin cytoskeleton and has a dynamic morphology. In between
the C and the P domains lies the T zone where microtubules
interact with actin filaments through acto-myosin contractile
structures. Filopodia-like finger protrusions at the P domain are
supported by the lamellipodia-like web structures. This figure is
adapted from Box 1 in Ref. 4.
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the growth cone toward the attractive guidance; on the
other hand, the growth cone turns away from the
repulsive cues by preventing polymerization and/or
losing the adhesion sites closest to the negative stimuli,
allowing the internal retrograde flow governed by the
interaction between the actin filaments and the myo-
sin II motor units to reverse the protrusions.16

In the central nervous system, the localization of
the Arp2/3 complex in the growth cone has been
debated, likely due to different model systems used in
the respective studies. Strass et al., used a mouse
embryonic hippocampal neuron model at embryonic
day E16 and reported that the Arp2/3 complex is
localized primarily in the C domain. They further uti-
lized a dominant-negative mutant of the Arp2/3 regu-
lating protein (the N-WASP CA domain) fused with
enhanced green fluorescent protein (N-WASP CA-
EGFP) to demonstrate that the Arp2/3 complex is not
a major determinant of growth cone actin organiza-
tion and membrane protrusion, and is not required
for filopodia formation in the growth cone. This is in
consistency with the traditional view that Arp2/3 is
specialized in lamellipodia formation but is dispens-
able in filopodia formation. Interestingly, they also
showed that Arp2/3 inhibition enhances axonal
elongation, with an associated increase in the ratio of
tyrosinated to acetylated microtubules, suggesting
increased microtubule polymerization. In addition,
following the expression of N-WASP CA-EGFP,
growth cones failed to retract in response to the nega-
tive cue (Semaphorin 3A).23 On the contrary, Koro-
bova et al. showed that the Arp2/3 complex is present
in the P domain of the growth cones in hippocampal
neurons from E18–20 rat embryos. Using an RNA
interference approach to knock down the Arpc2 sub-
unit, they showed that the Arp2/3 complex is essential
for the formation of both lamellipodia and filopodia.24

These latter findings were consistent with a later study
that showed that Arp2/3 is required for axon guidance
and filopodia initiation in C. elegans.25 The difference
in the approach that was taken to disrupt Arp2/3
function in the target cells and/or the difference in the
animal species used in the experiments may account
for the different conclusions. Future studies to defi-
nitely investigate the roles of the Arp2/3 complex in
mammalian axonal growth cones should utilize a
genetic tissue-specific knockout approach.

More recent studies focused on delineating the role
of the Arp2/3 complex in the peripheral nervous

system. Using embryonic day 7 (E7) chicken dorsal
root ganglion (DRG) cells, Spillane et al. first reported
that the Arp2/3 complex contributes to the initiation
of the axonal filopodia through regulating the actin
patch precursors, which are a meshwork of inter-
weaving actin filaments branching out of the axonal
shaft. Interestingly, using the N-WASP CA-EGFP
dominant-negative peptides described above, they
found that the Arp2/3 complex is not required for fur-
ther development of the actin patch into filopodia.
Moreover, inhibition of Arp2/3 function by N-WASP
CA-EGFP abolishes nerve growth factor (NGF)- or
phosphoinositide 3-kinase (PI3K)-induced patch for-
mation.26 In a later study using the same neuronal cell
model, San Miquel-Ruiz et al. described substrate-
dependent localization and function of the Arp2/3
complex in the growth cone. Specifically, when com-
paring L1 and laminin substrates, they first showed
significant differences in growth cone morphologies,
with more broad and thin veil-like structure when cul-
tured on L1 substrate, presumably due to lamellipodia
predominance, and more finger-like protrusions when
cultured on the laminin substrate, likely due to filopo-
dia predominance. They further showed that Arp2/3
is concentrated on the leading edges when on L1, and
is scattering throughout the P domain when on lami-
nin. Additionally, there were substrate-dependent dif-
ferences in growth cone motility, actin retrograde
flow, and total F-actin intensity following NGF stimu-
lation. Most strikingly, axon guidance is Arp2/3-
dependent on L1, but is Arp2/3-independent on lami-
nin.27 Altogether, these studies demonstrated crucial
yet substrate-dependent roles of the Arp2/3 complex
in peripheral nervous system development.

Dendrites

On the dendrites there are protrusions of various mor-
phologies called the dendritic spines. Ram�on y Cajal
also first described these structures in 1888. At the
time, it was proposed that these dendritic spines are
the contacting sites between neurons. This was later
proven to be true with the advent of electron micros-
copy (EM).28,29 Subsequently, both EM and protein
assays demonstrated that actin filaments are highly
concentrated in the dendritic spines, especially in the
junctional region of the synapse called the postsynap-
tic densities (PSD).30,31 A later study utilizing a
GFP-tagged actin overexpression system along with
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chemical inhibition of actin polymerization further
showed that dendritic spines are the bona fide post-
synaptic structure, and that the morphologies of the
dendritic spines are actin-dependent and are
dynamic.32 Additionally, actin was shown to play a
role in anchoring NMDA and AMPA glutamate
receptors to the plasma membrane in the post-
synaptic sites, and is required for AMPA receptor-
mediated long-term potentiation (LTP) induction and
NMDA receptor-mediated long-term depression
(LTD).33-35 These findings all pointed to a role of the
actin cytoskeleton in postsynaptic plasticity.

Changes in dendritic spine morphology, including
their size and shape, have been linked to synaptic plas-
ticity.36-38 As a branching nucleator, the Arp2/3 com-
plex has been proposed to play a role in spine
morphology, hence the synaptic plasticity. Indeed,
using quantitative immunoelectron microscopy, the
Arpc2 subunit (of the Arp2/3 complex) has been
found to concentrate in the PSD of the dendritic
spines in the CA2 subregion of the rat hippocampus.39

Intriguingly, using a CaMKIIa promoter-driven Cre
recombinase-mediated Arpc3 knockout mouse model
to deplete the Arp2/3 complex in the forebrain excit-
atory neurons, it was found that the Arp2/3 complex

is responsible only for the LTP-induced spine volume
expansion but not the LTD-induced spine shrinkage,
thus dissociating the previous model of a reciprocal
mechanism in the regulation of the spinous morphol-
ogy. Surprisingly, loss of the Arp2/3 complex in the
dendritic spines led to progressive loss of normally
formed axo-spinous synapses and various types of glu-
tamate receptors on the synaptosomal membrane, as
well as the corresponding progression of distinct cog-
nitive, psychomotor, and social disturbances as the
mice age.40 Intriguingly, while the number of the axo-
spinous synapse is reduced following loss of Arpc3,
the number of the abnormal axo-dendritic and double
axonal synapses is significantly increased (Fig. 3). It is
not clear whether only the post-synapse neuron loses
Arpc3, or both presynaptic and postsynaptic neurons
are depleted of Arpc3. This increase is accompanied
by excitation of the dopaminergic neurons in a long-
range (from the frontal cortex to the ventral tegmental
area and substantia nigra pars compacta) circuit and
an elevated dopamine level in the striatum, which
explain the manifestations of psychomotor agitation
and stereotypical behaviors in the Arpc3-depleted
mice.41 Taken together, these findings suggest that the
Arp2/3 complex is required for dendritic spine

Figure 3. Synapse formation between dendrites and axons in the presence (A) and absence of Arp2/3 (B, C). (A) Dendritic spine with a
mature-type morphology supported by actin cytoskeleton meshwork. Presynaptic axon is in contact with the dendritic spine. Postsynap-
tic receptors are supported by actin cytoskeleton on the plasma membrane. (B) Lack of dendritic spines in the absence of Arp2/3 com-
plex. Presynaptic axon is in direct contact with the dendritic shaft. (C) Immature dendritic spines supported by filopodia-like protrusions
with non-branching actin filaments in the absence of Arp2/3 complex lead to anomalous formation of double-axonal synapses. This
figure is modified from Figure 4 in Ref. 24.
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dynamics, and its loss progressively lead to behavioral
abnormalities in mice. In line with animal findings,
abnormalities in dendritic spines have been associated
with multiple human neuropsychiatric disorders,
including Alzheimer disease, schizophrenia, and
autism spectrum disorder.42 It merits further investi-
gation to determine whether a causal role exists for
the Arp2/3 complex in human neuropsychiatric
disorders.

Conclusion and future directions

The Arp2/3 complex, as a downstream effector, is
required at various stages of development in the
nervous system. Although generally thought to be
ubiquitously expressed, the protein levels of the 7 sub-
units must be tightly regulated in order for the
complex to assemble and disassemble in accordance
with the biological needs of the cells. Dysregulation of
one or more subunits have been speculated in human
diseases, such as in Down syndrome and in schizo-
phrenia.42,43 Future studies may explore the mecha-
nisms underlying the accumulation and degradation
of each subunit, and how the expression of the 7 subu-
nits are coordinated for different biological functions.
In addition, although the involvement of the Arp2/3
complex in cellular functions is diverse, some static
(adherens junction formation and polarity establish-
ment), and others dynamic (cell division and migra-
tion) at the tissue level, the fundamental event that
occurs at the molecular level is the dynamic placement
and removal of the actin monomers along the actin fil-
aments and the Arp2/3 branching nucleators. Even in
seemingly static structures like the RGC end-feet, con-
stant recycling of the components of the AJ and the
membranous receptors through the work of the Arp2/
3 complex plays a vital part in maintaining the struc-
tures in association with the microenvironmental
cues. How exactly the external cues impact on the
upstream regulators of Arp2/3 and its assembly is
another interesting topic for future studies. In conclu-
sion, the Arp2/3 complex as an effector of cellular
morphogenesis is essential for multiple cellular and
subcellular processes including the development of
the nervous system.
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