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Abstract

Epilepsy is a complex neurological disorder and a significant health problem. The pathogen-

esis of epilepsy remains obscure in a significant number of patients and the current treat-

ment options are not adequate in about a third of individuals which were known as refractory

epilepsies (RE). Network medicine provides an effective approach for studying the molecu-

lar mechanisms underlying complex diseases. Here we integrated 1876 disease-gene asso-

ciations of RE and located those genes to human protein-protein interaction (PPI) network

to obtain 42 significant RE-associated disease modules. The functional analysis of these

disease modules showed novel molecular pathological mechanisms of RE, such as the

novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by

insulin receptor”). Further analysis on the relationships between current drug targets and

the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs.

In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3,

KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease

modules, which might provide novel insights into the new drug discovery for RE therapy.
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Introduction

Epilepsy is a collection of brain disorders, which is characterized by repeated, uncontrolled sei-

zures. Seizures are abnormal firing of brain cells which may cause changes in behavior or atten-

tion, which affect over 65 million people in the world[1]. The cause of many epilepsy cases

remains unknown, although some are known to result from brain injury, stroke, brain tumor,

gene mutation, and/or substance abuse disorders [2–4]. Seizure is correlated with the enhance-

ment of glutamate responses mediated by N-methyl-D-aspartate (NMDA) receptor. The

NMDA receptors are up-regulated when epilepsy occurs, and the corresponding ion channels

are kept open causing the neurons discharge continuously[5]. Studies show that brain’s neural

circuits play a key role in controlling the balance between epileptic and antiepileptic factors[6].

Studies also support the pathogenic role of neuroinflammation in RE [7]. Microglia may initi-

ate a cycle of inflammation-induced seizures and seizure-induced inflammation, and micro-

glia-driven epilepsy may be a primary pathogenic process[8]. Antiepileptic drugs (AEDs), such

as phenytoin sodium, phenobarbital and felbamate, are the first line treatment for controlling

epileptic seizures [9,10], which are divided into three categories according to their mechanisms

of efficacy. They work by inhibiting the voltage-gated ion channels, increasing the inhibitory

effect of GABA, or inhibiting the conduction of glutamate-mediated excitability [11–14].The

AEDs can inhibit the spread of abnormal firing patterns to distant sites, which are required for

the expression of behavioral seizure activity [15]. However, about a third of the patients do not

respond to AEDs, and they are considered to have medically refractory epilepsies (RE) [16].

Furthermore, to fully address the drug resistance and side effects of AEDs, researchers have

tried to investigate the underlying molecular mechanisms of RE to search for novel molecular

targets and drugs[17]. Meta-analysis studies on epilepsy have proposed new understanding of

the genetic study of epilepsy [18,19]. Furthermore, with the increase of the data sources on

phenotype-genotype associations and protein-protein interactions (PPI), network medicine

has provided an insightful approach to understand the molecular mechanisms of complex dis-

eases [20–22].

Molecular and genetic studies of epilepsy over the recent decades have produced an impres-

sive list of disease-gene associations, together with the interactome network database, which

can be used to investigate the molecular network mechanisms and potential drug targets

related to epilepsy[23]. Molecular networks disrupted in epilepsy have been discovered in the

brain using an integrated systems-level analysis of brain gene expression data, which may lead

to more effective treatments and help us identify new medications for epilepsy[24]. In this

study, we curated comprehensive phenotype-genotype associations related to RE to investigate

the network module mechanisms and identify the potential drug targets for RE treatment.

Here, we follow several main steps to perform the study (Fig 1): 1) Using the RE terms from

the Medical Subject Headings (MeSH) terminology, we extracted the seed genes from three

databases to construct networks based on the interactions between the proteins they encode;

2) we utilized the a community detection method to obtain disease-related topological PPI

modules; 3) Along with the existing AEDs from two databases, we identified three important

epilepsy disease modules and ten potential drug targets by conducting gene ontology (GO)

and pathway enrichment analysis.

Materials and methods

Integrating disease-related genes

The MeSH classification was defined by experts and provided a comprehensive vocabulary

across all disease categories, which were systematically organized in a hierarchical tree[25,26].
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Based on the 23 MeSH headings, which were extrapolated manually by trained experts, we

searched the CoreMine PubMed search engine system[27], the OMIM[28], and the Disease-

Connect[29] databases to extract disease-gene relationships. Moreover, we manually examined

and verified disease-gene co-occurrence in the literature contained in the PubMed database, in

order to ensure highly accurate relationships. We also checked the HGNC database for the

approved name of the gene[30].

Extraction of PPI network

Detailed human PPI data was downloaded from the STRING 9.1 database[31]. The STRING

database is a comprehensive protein-protein interactions (PPIs) data source, which aims to

offer a critical assessment and integration of PPIs, including direct (physical) as well as indirect

(functional) associations. The various data sources involved experimental, predicted and trans-

ferred interactions, together with interactions obtained through text mining. Known and pre-

dicted associations are scored and integrated (STRING10.0 has expanded to 9.6 million

proteins and 184 million interactions) [31,32]. The weight of each interaction between two

proteins was defined by its correlation value. The interactions whose scores> = 700 have

high confidence or be considered as a high-quality subset[33]. By filtering the links with the

scores> = 700, we finally obtained a high-quality String 9 human subset with 218,157 PPI rec-

ords and 14,379 distinct proteins.

Topological module identification

Topological module refers to the subnetwork of one entire network, which has relatively

dense links when compared with the links outside of the subnetwork[20]. BGLL, a popular

Fig 1. Technical roadmap. The main analytic process was described in frame.

https://doi.org/10.1371/journal.pone.0174964.g001
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community detection algorithm which is based on modularity evaluation, was used to obtain

the topological modules of the whole PPI network. Module size too small or too large is not

benefit for the enrichment analysis. The module size limits made us iteratively divided the

modules using BGLL, resulting in topological modules that contain between 5 and 400 mem-

ber nodes [34,35]. The weight of the edges between the modules was calculated using the for-

mula:

weight ¼
c

a� b
ð1Þ

where c is the real edge number, a and b represent the number of proteins in each module.

GO and pathway enrichment analysis

Many online analysis platforms, as well as relevant analysis softwares, are available for GO

enrichment analysis [36,37]. In this study, the results of GO enrichment analysis were per-

formed using the BiNGO 2.44 plug-in for the Cytoscape 3.0.2 software[38], according to the

significance threshold (p-value<0.05). Application of BiNGO in molecular interaction net-

works, e.g. protein interaction networks, visualized in Cytoscape is better than other tools.

BiNGO can map the dominant themes of the target gene based on GO hierarchy, and it also

produce an intuitive and customiazable visual representative results by Cytoscape’s versatile

visualization platform [39].

The BiNGO 2.44 plug-in can map the genes to GO terms using a hypergeometric distribu-

tion relationship. Then, we can obtain the GO terms with related genes. Through Bonferroni

correction to control the false positive rate of analysis, this process will return a p-value. All the

results of pathway enrichment analysis were obtained through the online analysis tool KOBAS

2.0[40], according to the significance threshold (p-value<0.05). The KOBAS 2.0 can return the

results of six pathway databases (Reactome, KEGG PATHWAY, BioCyc, PANTHER, Bio-

Carta, and PID). We chose the Reactome database in our study because its results were the

most comprehensive[41]. By calculating the hypergeometric distribution relationship, we can

pick out statistically significant pathways. Through Bonferroni correction to control the false

positive rate of analysis, this process will also return a p-value. Network and module visualiza-

tions were designed with the help of the visualization software, Gephi [42], while the heat map

was created with the use of hemI software.

Function-based modules similarity

A widely used method in both text mining and biomedical literature to quantify the similarity

between two concepts is the cosine similarity of respective vectors [26]. In this study, we

applied the cosine similarity method to calculate function-based similarity. We used the equa-

tion −log(corrected p − value) to transform p-values to correlation values, since the smaller of

the corrected p-value small the bigger of the correlation between modules and functional enti-

ties. The similarity between the vectors, A and B, of the two modules, A and B, is calculated as

follows:

cosðA;BÞ ¼
Pn

i¼1
AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
A2

i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

B2
i

p ð2Þ

where Ai and Bi are components of vector A and B respectively. The range of functional simi-

larity is zero (no similarity of two modules) to one (two modules have same function), and a

larger value for similarity represents more functional similarity between two modules. The
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combined score equals 0.5�((BP similarity+CC similarity+MF similarity)/3) +0.5�Pathway

similarity.

Shortest paths between drug targets and seed genes

We searched for relevant drugs by searching for disease keywords in the ‘indications’ field of

drug information obtained from the DrugBank database, which combines detailed drug data

with comprehensive drug-target information[43,44]. Shortest paths, a significant topological

quantity, are often used for the analysis of social and biological networks, such as the well-

known small world property of many complex networks [26,45,46]. We used the Dijkstra’s

algorithm to find the shortest path lengths between epilepsy drug targets and seed genes[47].

To obtain random controls for the target-seed gene, we generated 100 independent random-

ized samples in the PPI network. Significant difference was calculated statistically using Stu-

dent’s test.

Results

MeSH heading of RE subtypes

Using epilepsy as the keyword, MeSH terms related to RE were extracted and evaluated from

the MeSH vocabulary. As shown in Table 1, 23 MeSH headings were identified, which were

typical and significant disease phenotypes, such as lissencephaly and myoclonic epilepsy (“Epi-

lepsies, Myoclonic” as the MeSH heading of Dravet syndrome which was one of the best exper-

imentally studied drug resistant primary epilepsy syndromes). The included syndromes are

basically epilepsy syndrome. Individual syndrome belongs to always accompanied by epileptic

seizures. Targets and pathways cross associated with epilepsy syndrome, but not a typical epi-

lepsy syndrome. Anti-N-Methyl-D-Aspartate Receptor Encephalitis was known not long time,

but Alexander Disease was known for a long time.

The MeSH headings which were listed in this manuscript all were according to the consen-

sus of International League Against Epilepsy (ILAE) [48,49]. In this study, we focused on sev-

eral key MeSH headings, such as Dravet syndrome, Lafora disease and refractory temporal

epilepsy. Considering the complexity of epilepsy syndrome, other MeSH headings were all

important related disorders or diseases (e.g. curable temporal epilepsy), which were used for

comparable purposes. We hope to further understand and identify the new general or individ-

ual targets of refractory epilepsies through the comparable and extended research.

Table 1. Twenty three MeSH headings of RE subtypes.

NO. MeSH heading Unique ID NO. MeSH heading Unique ID

1 Alexander Disease D038261 13 Malformations of Cortical Development D054220

2 Anti-N-Methyl-D-Aspartate Receptor Encephalitis D060426 14 MELAS Syndrome D017241

3 Classical Lissencephalies and Subcortical Band Heterotopias D054221 15 MERRF Syndrome D017243

4 Epilepsies, Myoclonic D004831 16 Mitochondrial Encephalomyopathies D017237

5 Epilepsy, Absence D004832 17 Myoclonic Epilepsies, Progressive D020191

6 Epilepsy, Frontal Lobe D017034 18 Myoclonic Epilepsy, Juvenile D020190

7 Epilepsy, Temporal Lobe D004833 19 Neuronal Ceroid-Lipofuscinoses D009472

8 Fragile X Syndrome D005600 20 Rett Syndrome D015518

9 Lafora Disease D020192 21 Spasms, Infantile D013036

10 Landau-Kleffner Syndrome D018887 22 Tuberous Sclerosis D014402

11 Leigh Disease D007888 23 Unverricht-Lundborg Syndrome D020194

12 Lissencephaly D054082

https://doi.org/10.1371/journal.pone.0174964.t001
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Twenty-three MeSH headings were integrated in order to make comparisons to understand

the reliability of target screening for correlation with disease phenotype.

RE associated genes and their functional characteristics

After filtering the relationships with significant correlations (i.e. p-value < 0.05), total 3,219

disease-gene relationships were obtained with the corresponding number of occurrences in

the CoreMine PubMed search engine system[27]. All literatures related to the 3,219 relation-

ships in the PubMed database were analyzed and only 1,852 disease-gene relationships with

1,065 distinct genes were identified. There were additional 24 disease-gene relationships with

21 distinct genes, which were not included in the CoreMine data sources by checking the

Online Mendelian Inheritance in Man (OMIM)[28] and DiseaseConnect[29] databases. All

together we finally obtain 1,086 RE-related genes for further analysis. To further validate the

reliability of the genes, we also conducted the external validation analysis of epilepsy disease-

gene associations using the latest data from the high-quality genotype-phenotype associations

of Human Phenotype Ontology (HPO) database [50]. Using “seizure or seizures” as keywords,

we obtained 662 genes from HPO disease-gene associations that are related to disease

phenotypes with seizure manifestations. There were 215 (215/662 = 32.5%) genes were over-

lapped with the 1086 RE-related genes, which has 5.70-folds over random expectations

(p-value<9.39E-100; binomial test). This result indicates that our curated disease-gene associa-

tions have significant overlap with the gene list associated with seizure phenotypes and thus

further means that our data is reliable for further analysis. The disease-gene association net-

work with 1876 links was visualized accordingly and it showed clearly that the 23 RE related

disease phenotypes (in terms of MeSH headings) both have their own distinct genes and many

shared genes among them (Fig 2A). In addition, we found that most (711/1086 = 65.47%) of

the genes related to just one disease subtype (Fig 2B). However, substantial ratio (~35%) of the

Fig 2. Refractory Epilepsies (RE) disease-gene network and relationships statistics. (A) Disease-gene network showing the relationships of 1,086

genes corresponding to 23 MeSH Headings. The long label big nodes denote diseases in MeSH terminologies; the small nodes denote genes. The size of

the node is positively related to the number of linked genes. Different colors represent different diseases. Genes located in the center of the network are

associated with several diseases (e.g. SCN1A, KCNQ2). Genes located at the periphery of the network are associated with a single disease (e.g.

CHRNA5, CHRNB4). (B) The gene-related MeSH heading numbers are distributed from 1 to 10, with different numbers for different colors. The total

number of seed genes is 1086, of which 711 (accounting for 65.47%) are only associated with one disease subtype (MeSH heading).

https://doi.org/10.1371/journal.pone.0174964.g002
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genes is associated with multiple disease subtypes. For example, SCN1A associates with 10 dis-

ease subtypes, while the four genes: KCNQ2, NHLRC1, PCDH19 and SCN1B associate with 9

subtypes.

To obtain the functional descriptions of RE associated genes, we performed the enrichment

analysis of the GO and pathways of these genes[51]. GO contains three hierarchically struc-

tured vocabularies which describe gene products in terms of their connected biological pro-

cesses (BP), cellular components (CC) and molecular functions (MF)[39]. We obtained 1014

enriched BP terms, 214 CC terms, and 176 MF terms (S1–S3 Tables) of the RE associated

genes. For example, the specific level enriched GO terms that characterize the functions of

these genes include, BP terms: ion transport (fifth level), generation of neurons (seventh level),

and regulation of transmission of nerve impulse (sixth level); CC terms: neuron projection

(fifth level), ion channel complex (fifth level), and postsynaptic membrane (fifth level); and

MF terms: excitatory extracellular ligand-gated ion channel activity (eighth level), neurotrans-

mitter receptor activity (fifth level), and NADH dehydrogenase (ubiquinone) activity (seventh

level). This indicates that the well-known molecular mechanisms of RE that involve nervous

system development and intercellular signaling transduction [52–54].

In addition, it also showed the potential novel mechanisms of RE, which included the

enriched GO terms, such as “regulation of programmed cell death” (sixth level), “apoptotic

process” (sixth level), “response to ethanol” (sixth level) and “response to nicotine” (sixth

level). Recent study suggested that neuronal death seems closely linked to epileptogenesis, but

the effect of seizures on neuronal death and the role of seizure-induced neuronal death in

acquired epileptogenesis need further investigation[55,56]. Similarly, cigarette smoking and

alcohol misuse were considered as the behavioral risk factors associated with epilepsy [57,58],

which indicated that the mechanism for nicotine-induced and alcohol-induced seizure would

be valuable for further investigation.

Furthermore, we identified 55 enriched pathways (corrected p-value<0.05) in the Reac-

tome database (S4 Table), in which most pathways were consistent with the results of GO

enrichment analysis. For example, the pathways, such as “mTOR signaling pathway”, “highly

calcium permeable postsynaptic nicotinic acetylcholine receptors”, “potassium Channels”,

“GABA A receptor activation”, “unblocking of NMDA receptor” and “glutamate binding and

activation”, have close relationships to RE. It is well established that the abnormal activities of

ion channels, neurotransmitters, and NMDA receptors lead to synaptic euphoria, which may

also be involved in the onset of epileptic seizures[59]. Furthermore, the citric acid cycle (TCA)

and respiratory electron transport, which had important roles in RE development, were also

identified to be enriched pathways. It is well-known that epilepsy has a strong genetic back-

ground with the combined risk related to hundreds or thousands of genes. Identifying the

gene network or pathways that underlying epilepsy is important for detection of new targets

for anti-epilepsy medications. Other enriched pathways, such as “presynaptic nicotinic acetyl-

choline receptors”, “signaling by insulin receptor”, may play a role in the development of RE

and its therapeutic responses [60–62].

Disease modules that reveal the underlying molecular mechanisms of

RE

Disease associated genes are not distributed randomly on the molecular interaction network

and they tend to work together in similar biological modules or pathways[63]. To investigate

the underlying molecular modular mechanisms of RE, we obtained high quality human PPI

network (filtered by a significant score > = 700) from the STRING 9.1 database [64,65].

Finally, using a widely used community detection algorithm (see Methods), we identified 314
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topological modules covering 13,733 proteins and 136,800 edges in the human PPI network.

To obtain the RE disease modules, we calculated the overlap ratio (in terms of Relative Risk,

RR)) between RE associated genes and the genes of each topological module. There were 921

(921/1086 = 84.8%) associated genes distributed in 185 (185/314 = 58.9%) modules, which

contained 12,084 (12,084/13,733 = 88.0%) genes/proteins in total.

We combined two filtering conditions to obtain the significant associated modules for RE

disorders. Firstly, we calculated the correlation between 185 modules and RE disorders by

Chi-Square test (with Bonferroni correction) and finally we found that there are five modules

with corrected p-value<0.01, in which module M37 is the last top ranked module with cor-

rected p-value ~3.67e-4 (S5 Table). It suggested that those five modules may have a significant

correlation with RE. Interestingly, all proteins (i.e., GRM1-8) of module M145 were seed

genes of RE, which form a dense network corresponding to the glutamate receptor complex.

Module M37 has 305 genes and overlapped 45 (45/305 = 14.8%) seed genes with RE associated

gene list and thus has a RR value 1.94. In fact, there are many modules with less number of

genes, which although have not passed the most conserved type of multiple testing correction

method, have much larger RR values over the RR value of M37. Therefore, finally we consider

the RR value of M37 as the threshold to filter the significant associated modules of RE disor-

ders, which include 42 modules (S6 Table). It is these 42 primary modules are used for further

analysis.

To distinguish the core modules from those 42 significant modules, we constructed a net-

work with nodes representing the modules and links representing shared PPI interactions

between them (Fig 3). It showed that there are six modules (M37, M65, M80, M114, M155,

and M197) with significantly higher degrees than that of the other modules (Table 2), which

means that these six modules are the central modules underlying RE molecular pathologies

[66].

We further examined the enriched GO terms of the 42 modules (Table 2, S7 Table), in

which we only list the top enriched specific GO terms. For example, the three modules, namely

M37, M155 and M65, have enriched terms with lowest p-values, which include the BP terms:

oxidative phosphorylation, ion transport, and synaptic transmission; the CC terms: mitochon-

drial inner membrane, channel complex, and synapse part; and the MF terms: hydrogen ion

transmembrane transporter activity, ion channel activity, and gated channel activity.

Most modules (except module M139 and M150) have their enriched pathways using six

pathway databases in KOBAS 2.0. However, we only obtained 317 enriched pathways (cor-

rected p-value<0.05) for 28 modules using the Reactome database. The 317 pathways were

classified into two types according to whether it was located in a single module or multiple

modules. We call the former as “individual pathway” and the latter as “common pathway” for

RE. Statistical analysis yielded 223 individual pathways located on 27 modules, and 94 com-

mon pathways distributed across 20 modules. We generated a heat map to display the 94 com-

mon pathways corresponding to their enrichments in 20 modules (Fig 4). It showed that the

common enriched pathways also referred to the branch of transmission across chemical syn-

apses, neurotransmitter receptor binding and downstream transmission in the postsynaptic

cell. Neurotransmitter secretion is triggered by the influx of Ca2+ through voltage-gated chan-

nels, which gives rise to a transient increase in Ca2+ concentration within the presynaptic ter-

minal. Module M37, M65 and M155 had significant enrichment pathways (red color) among

the 20 modules. For module M37, the highly enriched individual pathway was “Respiratory

electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupl-

ing proteins”. Module M65 was closely related to the “Activation of NMDA receptor upon

glutamate binding and postsynaptic events” “Glutamate Binding, Activation of AMPA Recep-

tors and Synaptic Plasticity” “Trafficking of AMPA receptors” and “Unblocking of NMDA
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receptor, glutamate binding and activation”. Module M155 was most related to the “activation

of voltage-gated potassium channels”, “GABA receptor activation”. NMDA receptor-mediated

signal transduction is critical for synaptic plasticity. In acute and chronic seizures, a selective

NMDA receptor antagonist has broad clinical application prospects[5]. It has been shown that

CaV3.2 channels regulate NMDA receptor mediated transmission and subsequent NMDA

receptor dependent plasticity of AMPA-R-mediated transmission[67].

To further detect the functional similarity between two module pairs, the vectors corre-

sponding to each module were constructed using their GO terms and pathways as features,

and the cosine similarity of the module vectors was calculated to quantify the similarity

between the two modules pairs. A combined score was then used to comprehensively evaluate

the functional similarity between these modules. The combined scores of the top seven module

Fig 3. Interactions between 42 topological modules. Red nodes: seed genes of modules > = 10; blue nodes: seed genes of modules < 10;

green nodes: extensional modules. Node size corresponds to degree of module. The thickness of the edge is proportional to the weight, and

the weight corresponds to strength of interactions.

https://doi.org/10.1371/journal.pone.0174964.g003
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pairs are shown in Table 3 (S8 Table). As we can see, module M65 and M155 exhibited the

most functional similarity among the 42 modules.

Only 36 (36/42 = 85.7%) modules that had functional similarity were classified into five

clusters using the community detection algorithm in Gephi software. Each cluster corresponds

Table 2. Top one enriched GO terms in the main ten modules.

Module Size Degree BP CC MF

GO term p-value GO term p-value GO term p-value

M37 305 10 Oxidative

phosphorylation

< 1E-100 Mitochondrial membrane part <1 E-100 Hydrogen ion transmembrane

transporter activity

< 1E-100

M65 184 16 Ion transport 2.29E-43 Calcium channel complex 9.34E-47 Gated channel activity 3.87E-53

M80 52 15 Regulation of TOR

signaling cascade

8.69E-13 Cytosol 1.31E-07 Protein serine/threonine kinase

activity

4.76E-05

M114 53 11 Regulation of fatty acid

oxidation

4.68E-22 AMP-activated protein kinase

complex

1.90E-11 Protein serine/threonine kinase

activity

2.68E-15

M145 7 3 Negative regulation of

cyclase activity

8.16E-10 Integral to plasma membrane 2.81E-07 Glutamate receptor activity 8.27E-19

M155 141 13 Ion transport 4.02E-69 Ion channel complex 6.63E-83 Gated channel activity 6.01E-98

M188 43 6 Synaptic transmission,

cholinergic

1.10E-28 Nicotinic acetylcholine-gated

receptor-channel complex

5.90E-38 Nicotinic acetylcholine-activated

cation-selective channel activity

9.95E-35

M197 50 11 Membrane invagination 1.35E-09 Coated pit 5.83E-07 Lipoprotein binding 1.68E-09

M208 34 6 Muscle organ

development

3.62E-09 Dystrophin-associated

glycoprotein complex

1.09E-42 Calcium ion binding 8.94E-04

M230 45 8 Protein localization 6.44E-15 Endosome 3.62E-29

Size means the number of proteins in each module. Degree corresponds to number of edges connected with module. The function of a module is very

similar to those of the proteins in it. The p-value is negatively related to the enrichment.

https://doi.org/10.1371/journal.pone.0174964.t002

Fig 4. Heat map of 94 common pathways corresponding to enrichment in 20 modules. X-axis: pathway; Y-axis: module. Color key from blue to red

is representative of low to high enrichment (p value from large to small). If the cross of module and pathway form a black cell, it refers to that the pathway in

the module is not enriched.

https://doi.org/10.1371/journal.pone.0174964.g004
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well to the RE MeSH headings related to the PPI topological modules (RR>1.0). These alloca-

tions were based on the observation that genes causing similar diseases tend to link to each

other in the interactome [68,69]. The patients with similar clinical manifestations may have

different underlying disease mechanisms. Moreover, gene products linked to the same pheno-

type have a strong tendency to interact with each other and to cluster in the same network

neighborhood[70]. It showed that most of the MeSH headings map multi-modules, especially

Myoclonic epilepsies (Table 4).

Table 3. Combined score of top seven pair of modules.

Module1 Module2 GO-BP GO-MF GO-CC Pathway Combined score

M65 M155 0.615 0.814 0.557 0.364 0.513

M279 M155 0.00572 0.323 0.0173 0.753 0.434

M80 M114 0.0966 0.644 0.240 0.515 0.421

M65 M188 0.358 0.490 0.356 0.268 0.335

M271 M225 0.446 0.323 0.175 0.332 0.323

M271 M24 0.0747 0.347 0.424 0.317 0.299

M188 M155 0.306 0.417 0.386 0.178 0.274

https://doi.org/10.1371/journal.pone.0174964.t003

Table 4. The number of modules corresponded to MeSH headings.

MeSH heading Number of

Module

Module MeSH heading Number of

Module

Module

Alexander Disease 1 M80 Fragile X Syndrome 5 M88,M145,M230

M234,M271

Leigh Disease 1 M37 Myoclonic Epilepsy,

Juvenile

6 M83,M105,M140

M145,M155,M266

MERRF Syndrome 1 M208 Epilepsy, Temporal Lobe 7 M63,M105,M145,M150

M155,M225,M232

Mitochondrial Encephalomyopathies 1 M300 Spasms, Infantile 7 M53,M63,M80,M139

M155,M208,M253

Epilepsy, Frontal Lobe 2 M188,M266 Epilepsy, Absence 8 M65,M105,M145,M155

M188,M266,M271,

M279

MELAS Syndrome 2 M37,M300 Rett Syndrome 8 M26,M50,M53,M145

M225,M234,M252,

M271

Classical Lissencephalies and Subcortical

Band Heterotopias

3 M34,M80,M188 Tuberous Sclerosis 8 M24,M80,M83,M114

M129,M179,M230,

M234

Unverricht-Lundborg Syndrome 3 M27,M63,M129 Malformations of Cortical

Development

9 M34,M65,M80,M88,

M112

M145,M165,M208,

M225

Lafora Disease 4 M27,M114,

M155,M230

Myoclonic Epilepsies,

Progressive

9 M27,M53,M114,M129,

M150

M155,M190,M225,

M232

Lissencephaly 4 M80,M114,

M197,M208

Epilepsies, Myoclonic 12 M63,M105,M112,M136,

M139,M142

M155,M179,M188,

M219,M266,M300

Neuronal Ceroid-Lipofuscinoses 4 M27,M96,M188,

M229

https://doi.org/10.1371/journal.pone.0174964.t004
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We have further investigated the associated modules corresponded to each MeSH headings

and actually we found that there are distinct modules associated to some specific RE MeSH

headings (Table 4, e.g. module M197 for Lissencephaly, M136 for Myoclonic Epilepsies),

which means that some RE disease subtypes have their corresponding distinct molecular

mechanisms. Furthermore, we found that different MeSH headings have substantial number

of shared modules, which makes some modules such as M155 and M80 associated to multiple

MeSH headings. This suggested that these modules (e.g.M155) would be the common underly-

ing molecular network of different RE subtypes. These indications could be further confirmed

from the results of the shared genes (using Jaccard similarity) between each RE MeSH head-

ings (S9 Table). We found that most RE MeSH headings have some degree of shared genes

between each other.

Moreover, frontal lobe epilepsy and temporal lobe epilepsy have very different gene distri-

butions within their modules. Frontal lobe epilepsy with 49 associated genes correlates to two

modules when RR>1.0, while temporal lobe epilepsy with 185 associated genes correlates to

seven modules when RR>1.0. The therapeutic effect of different brain regions affected by dis-

ease varies considerably, which can, to some extent, be demonstrated from the difference in

module distribution. Although the module distribution is disparate, there were functional sim-

ilarities between the modules, which might indicate shared similar molecular pathologies

between them.

The underlying mechanisms of AEDs from the perspective of drug-

target-gene interactions

Related antiepileptic terms, such as anticonvulsant, antiseizure, and antiepileptic, were used to

obtain the names of current AEDs from the DrugBank and Sider databases [43]. Finally, 68

drugs and their 119 corresponding targets were identified and obtained (Fig 5A). Most drugs

target only a few proteins, but some, like Zonisamide and Diazepam, have many targets. It has

been suggested that the eight GABA receptors such as GABRAx, GABRB1, and GABRD are

targeted by more than 20 drugs each, and were the top eight proteins targeted by these drugs.

The top seven drugs with most targets included Diazepam, Nitrazepam, and Primidone. They

all had more than 20 target proteins, which were GABA receptors, and had significant overlap

between each other. The distribution of drugs per target and the distribution of targets per

drug are shown in Fig 5B and 5C. There were 18 (18/68 = 26.5%) drugs with only one target,

and 57 (57/119 = 47.9%) target proteins targeted by only a single antiepileptic drug. This sug-

gested that new drugs tend to bind known target proteins, which had shown obvious limita-

tions in the treatment of epilepsy. The 119 drug targets were mapped to 13,733 proteins, with

an overlap for 105 (105/119 = 88.2%) drug targets. The minimum shortest distances between

105 drug targets and 921 seed genes were measured to analyze their interaction path lengths.

The actual mechanism through which a drug acts may be unknown, however, the number of

molecular steps between a drug target and the corresponding disease cause can be estimated

by the shortest distance [44]. A clear enrichment was observed in regions with the lower short-

est distances, in comparison with randomized gene groups of similar size and pairing (Fig 5D;

p-value = 3.63E-126, t-test), showing the high direct-target effect of current AEDs. Moreover,

this provided evidence that most AEDs directly corresponding molecular markers that aid the

understanding of the cause of RE.

Drugs do not target diseases equally, but are clearly enriched in some modules[44]. To

quantify this effect and investigate the distribution of drug targets, the shortest path length

between the 105 drug targets and the 314 modules was calculated. The results showed that

M155 had the greatest number of targets (19 direct targets and 8 targets as the first neighbors
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of seed nodes), followed by M65 (16 direct targets and 8 targets as the first neighbors of seed

nodes). The other modules had <7 targets (S10 Table).

The most important modules that represented the greatest correlation were selected as the

modules that included more drugs that are available. To understand the degree of a module in

Fig 5. Refractory Epilepsies (RE) existing drug-target network, statistical analysis about drug- target and minimum shortest path analysis. (A)

Drug-target network. Blue nodes: drugs; red nodes: targets. The network was generated by using the known associations between drugs and their targets

from the DrugBank and Sider databases. The size of each drug (target) node is proportional to the number of targets that the drug has (the number of

drugs targeting the protein), respectively. A link is placed between a drug node and a target node if the protein is a known target of that drug. One drug can

target multiple proteins, and one protein can be targeted by multiple drugs. (B) Distribution of drugs with respect to the number of their targets; (C)

Distribution of targets with respect to the number of effective drugs. (D) Distribution of the shortest distances of the actual data and random protein groups.

https://doi.org/10.1371/journal.pone.0174964.g005
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the RE drug discovery, it would be relevant to normalize the number of drugs by the number

of proteins of each module. The number of drugs corresponding to each module was deter-

mined statistically (S10 Table). M155 had the greatest number of drugs (48 drugs), followed by

M65 (20 drugs). Module M95 was not in the primary 42 modules, although it had 21 drugs.

The other modules had <11 drugs. The results indicated that modules M155 and M65 had the

greatest potential with RE pharmacology and were considered the most important modules

for drug discovery. The two modules had the proteins, such as KCNA2, GABRA1, and

GRIN2A, which had been recently be discovered as novel epilepsy genes [71].

Novel potential drug targets detected in RE disease modules

A disease module, a local neighborhood of the interactome whose perturbation is associated

with epilepsy, can be mechanistically linked to a particular disease phenotype[70,72]. The

precise identification of such disease modules could help with the elucidation of molecular

mechanisms, identification of new disease genes, and related signaling pathways, and aid with

rational drug target identification[69]. Although module M37 had the greatest number of seed

genes, there were no available AEDs for module M37, which had only 10 (10/305 = 3.3%) pro-

teins targeted by drugs for the treatment of non-epileptic disorders. Module M155 had the

most seed genes and the greatest number of drugs when RR> = 2.0. From the aforementioned

functional analysis, Module M155 can be identified as one of the most important modules for

drug discovery. The most enriched terms are ion transport for BP, ion channel complex for

CC, gated channel activity for MF, and the enriched pathway is the activation of voltage gated

potassium channels, which is the only pathway under voltage gated potassium channels in the

Reactome database. Potassium channels are important determinants of seizure susceptibility

by modulating the electrical activity of neuronal and non-neuronal cells in the brain. The 141

proteins of module M155 were classified into six types on the basis of whether seed gene or

drug target (Fig 6A) and there were 43(43/141 = 30.5%) proteins located in the pathway of acti-

vation of voltage-gated potassium channels.

In order to be considered as a novel drug target for epilepsy, the protein still needs to fulfill

the following two conditions: 1) no known anti-epilepsy drugs target this protein; 2) The target

should exist in the most enriched pathways related to epilepsy. Considering these two condi-

tions, we finally identified six proteins (i.e. KCNA1, KCNA4, KCNA5, KCNA6, KCNC3 and

KCND2) from M155 as the potential drug targets (Fig 6A).

The aforementioned functional similarity analysis revealed that module M155 and M65

had the largest correlations. Drugs distribution showed that module M65 had the second high-

est number of drugs when RR> = 2.0. Similarly, we, obtained four proteins (i.e. KCNMA1,

CAMK2G, CACNB4 and KCNMB3) from module M65 as potential drug targets (Fig 6B), and

one (GRM1) from module M145 (actually M145 is a protein complex). The expression of 11

proteins at the tissue and cellular levels are shown in Table 5. Specific gene mutations occur-

ring exclusivelyin the brain can lead to RE, which was identified as one of the causes of RE [4].

Hippocampal sclerosis and dysplasia of the cerebral cortex have been considered vitally impor-

tant pathogenic factors of RE[73,74]. KCNMB3 is not expressed in the cerebral cortex and hip-

pocampus; therefore, it could not be considered as a candidate drug target. In conclusion, ten

potential drug targets were finally identified for RE in this study.

Discussion

In this study, network medicine approaches were used to integrate the data from multiple

databases to investigate the molecular mechanisms and possible drug targets of RE. Total 1086

genes associated with RE were curated after validating each disease-gene relationships from
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medical literature. This gene list might be the most comprehensive phenotype-genotype asso-

ciation data repository for studying RE molecular mechanisms. Forty two primary disease-

related gene networks (modules) were constructed and selected based on the interaction infor-

mation of gene-encoded proteins in which about 35 modules had significant interactions and

functional similarity between each other. These architectures of interaction module indicated

the complicated molecular mechanisms of RE and the possible pharmacological targets of RE

Table 5. Expression of potential drug targets in tissues and cells.

Tissue Cerebral Cortex Hippocampus

Cell Neuronal cells Glial cells Endothelial cells Neuropil Neuronal cells Glial cells

M155 KCNA1 KCNA5 KCNA1 KCNA1 KCNA1 KCNA6

KCNA4 KCNA6 KCNA4 KCNA4 KCNA4

KCNA5 KCNA5 KCNA5 KCNA6

KCNA6 KCNA6 KCNA6 KCNC3

KCNC3 KCND2 KCNC3

KCND2

M65 CAMK2G CAMK2G CACNB4 KCNMA1 CAMK2G CACNB4

CACNB4 CACNB4 CAMK2G CACNB4

CACNB4

M145 GRM1 GRM1 GRM1 GRM1 GRM1

The target tissue information can be searched in the human protein atlas database.

https://doi.org/10.1371/journal.pone.0174964.t005

Fig 6. Disease module network. (A) Protein classification network of module M155. The protein nodes are color-coded. Light pink nodes: currently

known epilepsy drug targets which are not seed genes; green nodes: currently known drug targets, not specific for epilepsy, which are not seed genes; red

nodes: currently unknown drug targets which are also not seed genes; blue nodes: currently known epilepsy drug targets which are also seed genes;

yellow nodes: currently known drug targets—seed genes, not specific for epilepsy; purple nodes: currently unknown drug targets—seed genes, not

specific for epilepsy. (B) Protein classification network of module M65. The node coloring is the same as that of module M155.

https://doi.org/10.1371/journal.pone.0174964.g006
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personalized treatment. The detected RE-related modules provided a potential subtyping of

RE from molecular network perspectives. For example, three significant core modules (M155,

M65 and M145) may contain potential drug targets. The protein components of these three

modules were consistent with the current understanding of pathological mechanisms and

pharmacology of epilepsy. Besides, the significant enriched pathways, for example, “GABA A

receptor activation”, “unblocking of NMDA receptor, glutamate binding and activation”, are

likely the main biological mechanisms of RE and deliver highly insightful information for its

drug discovery.

The ten potential targets for antiepileptic medications could be classified into two groups

including the ion channel (potassium and calcium channel) and glutamate receptors. Consis-

tently, the KCNAs, components of potassium channel, were detected as the potential drug tar-

get for RE in this study. Ezogabine or retigabine was an antiepileptic drug that reduces

neuronal excitability by enhancing the activity of the KCNQ potassium channels; KCNAs (e.g.

KCNA1 and KCNA6) and KCNQ2 are associated with peripheral nerve hyperexcitability in

humans[75]. Based on the aforementioned network analysis, KCNA1 and KCNA6 belong to

M155 which is the most important module for epilepsy. Both KCNA1 and KCNA6 involved in

cell signal transduction. Taken together, KCNA1 and KCNA6 might have the potential to

become the best novel targets for antiepileptic drug discovery. CACNB4 could directly couple

electrical activity to gene expression, which was responsible for a type of juvenile myoclonic

epilepsy[76]. Recent studies had shown that ganoderma lucidum polysaccharides may inhibit

calcium overload and promote CaMK II α expression to protect epileptic neurons[77].

However, we searched the drugs for these ten potential targets from the Drugbank database,

and found that most of the drugs were general anesthetics (Enflurane, Methoxyflurane, and

Sevoflurane, etc.) or potassium channels blockers (Dalfampridine, Amitriptyline). Although

the ten potential drug targets that were identified in this study have approved drugs but they

are not antiepilepsy drugs. This means that these ten drug targets might be the novel targets

for epilepsy treatment since they located in the significant associated modules of RE disorders.

In addition, these approved drugs for other diseases might have the opportunity to be repur-

posed for RE treatment as well. As a matter of fact, six of the ten potential targets (i.e. KCNA1,

KCNA4, KCNA5, KCNA6, KCNC3 and KCND2) have been already used in clinical practice.

These proteins are the targets of Dalfampridine, which is a potassium channel blocker used to

help multiple sclerosis patients walk [78]. Dalfampridine is a neurofunctional modifier and the

first drug that was specifically approved to help with mobility in these patients. However, Dal-

fampridine may cause seizure as its serious side effect [79,80]. This meant that there were still

no particular drugs aiming for these ten potential targets to treat epilepsy. Nevertheless, our

results indicate that further studies to elucidate the precise intervention of these targets might

be valuable for novel drug development of RE.

Our results showed that the curated RE-related 1086 genes were enriched in the nicotine

addiction pathway. It reported that nicotine addiction could cause seizures in human subjects

and reduction in the activity of the glutamate transporter type 3, leading to a decrease in gluta-

mate uptake[57,81]. GRM1 was closely related to the RE pathological mechanism, which made

it a potential new target for antiepileptic medications. The nicotine addiction pathway was also

closely tied to the GABAergic synapse [82]. More than half of GABA receptors were distrib-

uted in module M155. Therefore, module M155 may provide the potential molecular network

mechanism for nicotine-induced seizures.

Furthermore, the modules: M37, M80, M114, and M197, which had no available AEDs

targets, also played central roles in the molecular network of RE. Functional analysis of these

modules showed that M80 and M114 were mainly relevant to mTOR signaling pathway.

This is consistent with that mTOR signaling pathway plays a role in RE physiopathology
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[83]; Module M37 was another significant network module because its most important func-

tion was oxidative phosphorylation—a function that was crucial for the development of epi-

lepsy[84]; In our previous studies[23], four proteins (MT-CYB, UQCRB, UQCRC1 and

UQCRH) were identified to be potential drug targets for RE. All these four proteins related

to oxidative phosphorylation are the components of module M37. The genes of module

M197 were mainly enriched in lipoprotein metabolism and HDL-mediated lipid transport

pathways. A previous study showed that long-term AEDs therapy could significantly

increase the total cholesterol and high-density lipoprotein cholesterol (HDLC). Moreover,

the effect was more pronounced with HDLC[85]. Therefore, the further exploration of possi-

ble targets that interact with these modules would be much valuable for RE related drug

pharmacological research.

However, our results would also be influenced by incomplete data and may contain bias

introduced by available publications. As for the topology of modules, different algorithms may

produce different community detection results that might influence some specific results. In

addition, this study did not experimentally validate the 10 potential drug targets in vivo or

vitro. This study is also not currently involved in clinical practice, but similar bioinformatics

analysis has already applied to clinical cases [86]. However, we believe that our results provide

novel insights on molecular mechanisms of RE. Furthermore, the curated RE-related genes

and identified modules serve a useful resource for the discovery of potential drug targets for

RE.

In the further research, we will validate some potential effective targets through molecular

biology and animal model. We will also apply computer aided drug design (CADD) related

software, such as DOCK, Auto Dock, and MOE, to facilitate potential drug design through

docking computation[87]. It is well known that both RE and cancer have the issue of drug

resistance in clinical practice. Previous studies showed that there were possible similar molecu-

lar mechanisms underlying the drug resistance in both RE and cancer [88]. We may reveal the

potential molecular mechanism of drug resistance in RE and make comparison between RE

and cancer through network analysis.
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