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Abstract

The vast majority of published results in the literature is statistically significant, which raises

concerns about their reliability. The Reproducibility Project Psychology (RPP) and Experi-

mental Economics Replication Project (EE-RP) both replicated a large number of published

studies in psychology and economics. The original study and replication were statistically

significant in 36.1% in RPP and 68.8% in EE-RP suggesting many null effects among the

replicated studies. However, evidence in favor of the null hypothesis cannot be examined

with null hypothesis significance testing. We developed a Bayesian meta-analysis method

called snapshot hybrid that is easy to use and understand and quantifies the amount of evi-

dence in favor of a zero, small, medium and large effect. The method computes posterior

model probabilities for a zero, small, medium, and large effect and adjusts for publication

bias by taking into account that the original study is statistically significant. We first analyti-

cally approximate the methods performance, and demonstrate the necessity to control for

the original study’s significance to enable the accumulation of evidence for a true zero effect.

Then we applied the method to the data of RPP and EE-RP, showing that the underlying

effect sizes of the included studies in EE-RP are generally larger than in RPP, but that the

sample sizes of especially the included studies in RPP are often too small to draw definite

conclusions about the true effect size. We also illustrate how snapshot hybrid can be used

to determine the required sample size of the replication akin to power analysis in null hypoth-

esis significance testing and present an easy to use web application (https://rvanaert.

shinyapps.io/snapshot/) and R code for applying the method.

Introduction

Most findings published in the literature are statistically significant [1–3] and are subsequently

interpreted as nonzero findings. However, when replicating these original published studies in

conditions as similar as possible to the original studies (so-called direct replications), replica-

tions generally provide lower estimates of the effect size that often are not statistically signifi-

cant and are interpreted as suggesting a null effect. For instance, in medicine findings of only 6

out of 53 (11.3%) landmark studies on the field of hematology and oncology were confirmed

in replication studies [4]. In psychology, the Reproducibility Project Psychology (RPP; [5])
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replicated 100 studies published in major journals in 2008. Of the 97 original findings reported

as statistically significant, only 35 (36.1%) had a statistically significant effect in the replication,

and 81 of 97 (83.5%) findings were stronger in the original study. In economics, the Experi-

mental Economics Replication Project (EE-RP; [6]) replicated 18 studies published in high-

impact journals. Of 16 findings that were statistically significant in the original study, 11

(68.8%) were statistically significant in the replication, and 13 of 16 (81.3%) had a stronger

effect in the original study.

Interpreting the results of the replicability projects as providing evidence of many true null

effects among the originally published studies has received criticism (e.g., [7, 8]). For instance,

Maxwell, Lau, and Howard [8] argue that, although the replication in RPP generally had higher

statistical power than the original study, the power of the replication was still too low to con-

sider as evidence in favor of the null hypothesis. Consequently, the statistically nonsignificant

findings of many replications are also consistent with a true nonzero, albeit small effect.

Many researchers adhere to null hypothesis significance testing (NHST) when evaluating

the results of replications, and conclude based on a nonsignificant replication that the original

study does not replicate [9]. However, such a vote counting procedure has been largely criti-

cized in the context of a meta-analysis (e.g., [10], Chapter 28) and comes along with three fun-

damental problems. First, one cannot obtain evidence in favor of the null hypothesis of a true

zero effect with NHST (e.g., [11]). Second, NHST does not tell us the size of the effect. Third,

not all available information about the underlying effect is used in NHST because evidence

obtained in the original study is ignored. What we need are methods providing evidence on

the common true effect underlying both the original study and replications.

The method that immediately comes to mind when the goal is to estimate effect size based

on several studies is meta-analysis. Two different traditional meta-analytic models can gener-

ally be distinguished: fixed-effect and random-effects model. Fixed-effect meta-analysis

assumes that one common true effect underlies all observed effect sizes, whereas random-

effects meta-analysis assumes observed effect sizes arise from a (normal) distribution of true

effect sizes [12]. When one study is a direct replication of another, fixed-effect rather than ran-

dom-effects meta-analysis seems to be the most appropriate method because the two studies

are very similar. A small amount of heterogeneity in true effect size, however, may be possible

since there could be minor discrepancies in for instance the studied population or experimen-

tal design as was sometimes the case in RPP. Publication bias is universally recognized as a

major threat to the validity of meta-analyses, leading to overestimation of effect size (e.g., [13–

15]). Publication bias is the suppression of statistically nonsignificant results from being pub-

lished [16]. Evidence of publication bias and as a consequence overestimation of effect size is

omnipresent (e.g., [1–3, 14]), and is also obvious from the aforementioned results of the repli-

cability projects; almost all original findings were statistically significant whereas the replica-

tion findings were not, and the large majority of original effect size estimates was larger than

those in the replication. Hence, traditional meta-analysis will be biased as well and will not suf-

fice. A meta-analysis method is needed that takes into account the statistical significance of the

original study, thereby adjusting for publication bias.

The present paper develops and applies a Bayesian meta-analytic method, called snapshot
hybrid, to evaluate the effect size underlying an original study and replication. A requirement

for applying the method is that the effect size of the original study is statistically significant.

This requirement hardly restricts the applicability of the proposed method since the vast

majority of published studies contain statistically significant results [1–3] and replications are

often conducted when statistical significance is observed.

The snapshot hybrid has many desirable properties. First, the method has few assumptions.

It assumes both studies estimate the same true effect size and the effect size in the original
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study and replication is normally distributed. The second desirable property is that, as opposed

to fixed-effect meta-analysis, our method adjusts for publication bias when evaluating the

underlying true effect size by taking into account statistical significance of the original study.

Third, it provides a very simple interpretation of the magnitude of the true effect size. Its main

output is the posterior model probability of a zero, small, medium, and large effect (i.e., proba-

bility of a model after updating the prior model probability with the likelihood of the data).

Consequently, as opposed to NHST, it also quantifies the evidence in favor of the null hypothe-

sis, relative to a small, medium, and large hypothesized effect. One high posterior model prob-

ability suggests certainty about the magnitude of the true effect, whereas several substantial

nonzero posterior model probabilities indicate that the magnitude of the effect is rather uncer-

tain. Fourth, the method has great flexibility in dealing with different prior information.

Although the method’s default prior model probabilities are equal (i.e., zero, small, medium

and large effect are equally likely), using a simple formula one can recalculate the posterior

model probabilities for other prior model probabilities, without having to run the analysis

again.

The goal of the present paper is fourfold. First, we explain snapshot hybrid and examine its

statistical properties. Second, we apply the method to the data of RPP and EE-RP to examine

evidence in favor of zero, small, medium, and large true effects. Particularly, we verify if inter-

preting the statistically nonsignificant findings of replication studies in psychology as evidence

for null effects is appropriate. Third, we describe, analogous to conducting a power analysis for

determining the sample size in a frequentist framework, how the proposed method can be

used to compute the required sample size for the replication in order to get a predefined poste-

rior model probability of the true effect size being zero, small, medium, or large. This goal

acknowledges that our method is not only relevant for evaluating and interpreting replicability

of effects. Replicating other’s research is often the starting point for new research, where the

replication is the first study of a multi-study paper [17]. Fourth, we present a web application

and R code allowing users to evaluate the common effect size of an original study and replica-

tion using snapshot hybrid.

The next section provides a hypothetical example of an original study and replication by

Maxwell et al. [8], and illustrates the problem of evaluating the studies’ underlying true effect

size. The subsequent section explains snapshot hybrid, and is illustrated by applying it to the

example of Maxwell et al. [8]. Then, the statistical properties of our method are examined ana-

lytically. Subsequently, the method was applied to the results of RPP and EE-RP. How the

required sample size of the replication can be determined with the proposed method in order

to achieve a predefined posterior model probability for a hypothesized effect size (zero, small,

medium, or large) is discussed next. Then, the computer program is described to determine

this required sample size, followed by a conclusion and discussion section.

Methods related to snapshot hybrid

The proposed snapshot hybrid method is related to several other methods. The meta-analysis

methods p-uniform [15, 18] and p-curve [19] also take statistical significance of studies’ effect

sizes into account in order to correct the meta-analytic effect size estimate for publication bias.

The effect size estimate of p-uniform and p-curve is equal to the effect size where the statisti-

cally significant p-values conditional on being statistically significant are uniformly distrib-

uted. Both methods have been shown to provide accurate estimates of the underlying true

effect size in case of publication bias, but only if the amount of heterogeneity in studies’ true

effect size is modest [15, 18–20]. We also wrote a paper where we use frequentist statistics to

evaluate the common effect size underlying an original study and a replication, taking into
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account the statistical significance of the original study [21]. This method estimates effect size,

provides a confidence interval, and enables testing of the common effect. Advantages of the

Bayesian method presented here are that interpretation of its results is more straightforward,

and evidence in favor of the null hypothesis is quantified.

Another related paper is a Bayesian re-analysis of the results of RPP [22]. In this paper,

Bayes factors were computed for each original study and replication separately, comparing the

null hypothesis of no effect with an alternative hypothesis suggesting that the effect is nonzero.

For the original studies, publication bias was taken into account when computing Bayes factors

by using Bayesian model averaging over four different publication bias models. The most

important differences of our Bayesian method and their re-analyses, which we interpret as

advantages of our methodology, are: (i) they do not evaluate the underlying effect size, but test

hypotheses for original study and replication separately, (ii) they make strong(er) assumptions

on publication bias, using Bayesian model averaging over four different models of publication

bias, (iii) their methodology lacks flexibility with dealing with different prior information (i.e.

another prior requires rerunning the analysis), and (iv) they did not provide software to run

the analysis. Both Etz and Vandekerckhove [22] and van Aert and van Assen [21] conclude

that for many RPP findings no strong conclusions can be drawn on the magnitude of the

underlying true effect size.

Example by Maxwell, Lau, and Howard [8]

We will illustrate snapshot hybrid using a hypothetical example provided by Maxwell et al. [8]

with a statistically significant original study and nonsignificant replication. They use their

example to illustrate that so-called failures to replicate in psychology may be the result of low

statistical power in single replication studies. This example was selected because it reflects an

often occurring situation in practice. For instance, 62% of the 100 replicated studies in RPP [5]

and 39% of the 18 replicated studies in EE-RP [6] did not have a statistically significant effect,

as opposed to the effect in the original study. Hence, researchers often face the question what

to conclude with respect to the magnitude of the true effect size based on a statistically signifi-

cant original effect and a nonsignificant replication effect. Does an effect exist? And if an effect

exists, how large is it?

The example employs a balanced two-independent groups design. The original study, with

40 participants per group, resulted in Cohen’s d = 0.5 and t(78) = 2.24 (two-tailed p-value =

.028), which is a statistically significant effect if tested with α = .05. A power analysis was used

by Maxwell et al. [8] to determine the required sample size in the replication to achieve a statis-

tical power of .9 using a two-tailed test, with an expected effect size equal to the effect size

observed in the original study. The power analysis revealed that 86 participants per group were

required. The observed effect size in the replication was Cohen’s d = 0.23 with t(170) = 1.50

(two-tailed p-value = .135), which is not statistically significant if tested with α = .05.

In our analyses, like in RPP and EE-RP, we transform effect sizes to correlation coefficients.

Correlation coefficients are bounded between -1 and 1, and easy to interpret. Transforming

original and replication effect sizes to correlations using ro ¼ dffiffiffiffiffiffi
dþ4
p (e.g., [10], p. 48) yields ro =

0.243 and rr = 0.114 for original and replication effect size, respectively. Testing individual cor-

relations as well as combining correlations in a meta-analysis is often done using Fisher-trans-

formed correlation coefficients [10] (Chapter 6), since these follow a normal distribution with

variance 1/(N − 3) with N being the total sample size [23]. The Fisher-transformed correlations

(θ) are ŷo ¼ 0:247 and ŷr ¼ 0:115 with standard errors .114 and .0769, respectively. Statisti-

cally combining the two effects by means of fixed-effect meta-analysis yields ŷ ¼ 0:156 with

standard error 0.0638, which is statistically significant (two-tailed p = .0142), suggesting a

Bayesian evaluation after replication

PLOS ONE | https://doi.org/10.1371/journal.pone.0175302 April 7, 2017 4 / 23

https://doi.org/10.1371/journal.pone.0175302


positive effect. Transforming the results of the meta-analysis to correlation coefficients yields

the effect size estimate of 0.155 (95% confidence interval; 0.031 to 0.274). Although fixed-effect

meta-analysis suggests a positive effect size, it should be interpreted with caution because of

the generally overestimated effect size in the original study due to publication bias.

Snapshot Bayesian hybrid meta-analysis

The snapshot Bayesian hybrid meta-analysis method, snapshot hybrid for short, is a meta-anal-
ysis method because it combines both the original and replication effect size to evaluate the

common true effect size. It is a hybrid method because it only takes the statistical significance

of the original study into account, whereas it considers evidence of the replication study as

unbiased. The method is Bayesian because it yields posterior model probabilities of the com-

mon true effect size. Finally, it is called snapshot because only four snapshots or slices of the

posterior distribution of effect size are considered, i.e. snapshots/slices at hypothesized effect

sizes equal to zero (ρ = 0), and small (ρ = 0.1), medium (ρ = 0.3), and large (ρ = 0.5) correla-

tions [24] (Chapter 4). We selected these four hypothesized effect sizes, because applied

researchers are used to this categorization of effect size. Moreover, point hypotheses enable

recalculating the posterior model probabilities for other than uniform encompassing prior dis-

tributions (i.e., prior model probabilities derived from other prior distributions than a uniform

distribution that results in equal probabilities for the hypothesized effect sizes) as we will show

later.

Two assumptions are underlying snapshot hybrid. First, the same effect (i.e., fixed effect)

has to be underlying the original study and replication. This assumption seems to be reason-

able if the replication is exact although small amounts of heterogeneity may arise if there are

minor discrepancies in studied population or experimental design. Exact replications are often

conducted as the first study of a multi-study paper [17]. Second, effect size in the original

study and replication are assumed to be normally distributed, which is a common assumption

in meta-analysis [25]. Furthermore, the original study is required to be statistically significant.

This requirement hardly restricts the range of application of the method because most studies

in the social sciences contain statistically significant results, particularly in psychology with

percentages of about 95% (e.g., [1, 3]) or even 97%, as in the RPP [5] and also 89% in the

EE-RP. Note that, even if publication bias was absent in science, snapshot hybrid should be

used if a researcher chooses to replicate an original study because of its statistical significance.

It is precisely this selection that biases methods that do not correct for statistical significance,

similar to how selecting only ill people for treatment or high scoring individuals on an aptitude

test results in regression to the mean when re-tested.

The snapshot hybrid consists of three steps. First, the likelihood of the effect sizes of the

original study and replication is calculated conditional on four hypothesized effect sizes (zero,

small, medium, and large). Second, the posterior model probabilities of these four effect sizes

are calculated using the likelihoods of step 1 and assuming equal prior model probabilities.

Equal prior model probabilities are selected by default, because this refers to an uninformative

prior distribution for the encompassing model. Third, when desired, the posterior model

probabilities can be recalculated for other than equal prior model probabilities. We will explain

and illustrate each step by applying the method to the example of Maxwell et al. [8].

In the first step, the combined likelihood of the effect size of the original study (ŷo) and rep-

lication (ŷr) for each hypothesized effect size (θ) is obtained by multiplying the densities of the

observed effect sizes:

LðyÞ ¼ f ð�̂o; �̂rjyÞ ¼ foð�̂ojyÞ � frð�̂rjyÞ ð1Þ
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Note that densities and likelihood are based on Fisher-transformed correlations and hypothe-

sized effect sizes. Fig 1a shows the probability density functions and densities of the observed

effect size of the replication (ŷr ¼ :115). The four density functions follow a normal distribu-

tion with means θ0 = 0 (red distribution), θS = 0.1 (blue distribution), θM = 0.31 (yellow distri-

bution), θL = 0.549 (green distribution), and standard deviation ŝr ¼ :0769. The densities or

heights at ŷr ¼ :115 (see vertical dashed line) are 1.705, 5.096, 0.210, 0, for a zero, small,

medium, large true effect, respectively.

Fig 1b shows the four density functions and densities of the observed effect size in the origi-

nal study (ŷo ¼ :247). Colors red, blue, yellow, and green refer again to distributions of a zero

(θ0), small (θS), medium (θM), and large (θL) hypothesized effect, respectively. The density

functions take statistical significance of the original finding into account by computing the

density of ŷo conditional on the study being statistically significant, i.e. by truncating the densi-

ties at the critical value of the Fisher-transformed correlation (θcv). A two-tailed test with α =

.05 is assumed reflecting common practice in social science research where two-tailed tests are

conducted and only the results in one direction get published. The truncated densities are cal-

culated as

foðŷojyÞ ¼
�

ŷo � y

ŝo

� �

1 � F
ycv� y

ŝo

� � ð2Þ

with ϕ and F being the standard normal density and cumulative distribution function, respec-

tively. The denominator of (2) also represents the power of the test of no effect if the hypothe-

sized effect size is equal to θ. Note how the conditional density fo in Fig 1b of a just significant

Fig 1. Probability density functions of the replication (panel a) and transformed original effect size when statistical

significance is taken into account (panel b). The four hypothesized effect sizes (zero, small, medium, and large) are denoted by

θ = 0 (0, red distribution), θ = 0.1 (S, blue distribution), θ = 0.31 (M, yellow distribution), and θ = 0.549 (L, green distribution). The

dashed vertical line refers to the observed effect sizes in the hypothetical example of Maxwell et al. [8] for the replication (panel a) and

original study (panel b). The dots on the vertical dashed line refer to densities for no, small, medium, and large effect in the

population.

https://doi.org/10.1371/journal.pone.0175302.g001

Bayesian evaluation after replication

PLOS ONE | https://doi.org/10.1371/journal.pone.0175302 April 7, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0175302.g001
https://doi.org/10.1371/journal.pone.0175302


correlation increases when the hypothesized correlation decreases; the conditional density fo is

virtually identical to the unconditional density for large hypothesized effect size (because sta-

tistical power is close to 1), whereas the conditional density is 40 times larger (i.e., 1/(α/2))

than the unconditional density function for θ = 0. The densities at ŷo ¼ :247 are 13.252,

10.852, 3.894, 0.105 for a zero, small, medium, large hypothesized effect, respectively. Note

that after taking the statistical significance of the original finding into account, the density is

highest for θ0 and θS and substantially lower for θM, and θL. Hence, it is less likely that ŷo stems

from a population with a medium or large effect size than from a population with no effect or

a small effect size. The first row of Table 1 presents the likelihoods of the observed effect sizes

as a function of hypothesized effect size, after multiplying the studies’ densities with Eq (1).

The likelihood is largest for a small hypothesized effect in comparison with no, medium, and

large hypothesized effect, suggesting that there is most probably a small true effect underlying

the original study and replication.

In the second step, the posterior model probability πx of each model with hypothesized

effect size x is calculated using

px ¼
Lðy ¼ xÞ

Lðy ¼ y0Þ þ Lðy ¼ ySÞ þ Lðy ¼ yMÞ þ Lðy ¼ yLÞ
ð3Þ

where x refers to either a zero (θ0), small (θS), medium (θM), or large (θL) hypothesized effect

size. This posterior model probability is a relative probability because it quantifies the amount

of evidence for a model with a particular hypothesized effect size relative to the other included

models. Since all likelihoods are weighed equally, implicitly equal prior model probabilities are

assumed in Eq (3). The second row of Table 1 (method ‘snapshot hybrid’, uniform prior) pres-

ents the four posterior model probabilities of snapshot hybrid for the example. The posterior

model probabilities indicate that after observing correlations ro = 0.243 and rr = 0.114, the evi-

dence in favor of the null hypothesis slightly increased from .25 to .287, increased a lot (from

.25 to .703) in favor of a small hypothesized effect size, and decreased a lot for a medium and

large hypothesized effect size.

For the sake of comparison, we also calculated the posterior model probabilities using a

method we call snapshot naïve because it incorrectly does not take the statistical significance of

the original finding into account (i.e., without truncating the density at θcv). Its results are pre-

sented in the third row of Table 1 (method ‘snapshot naïve’, uniform encompassing prior

Table 1. Likelihoods and posterior model probabilities for zero, small, medium, and large hypothesized correlations for the example of Maxwell

et al. [8].

Prior Method Zero (ρS = 0) Small (ρS = 0.1) Medium (ρS = 0.3) Large (ρS = 0.5)

Likelihood 22.594 55.304 0.819 0

Posterior model probabilities Uniform Snapshot hybrid .287 .703 .010 0

Snapshot naïve .063 .866 .071 0

p0 = 2 Snapshot hybrid .446 .546 .008 0

p0 = 6 Snapshot hybrid .707 .289 .004 0

N(0,1) Snapshot hybrid .288 .702 .010 0

Posterior model probabilities of one snapshot (ρS) relative to the others are calculated with the snapshot hybrid (second row and last three rows) and without

correcting for statistical significance (snapshot naïve, third row). For snapshot hybrid, posterior model probabilities are calculated for four different sets of

prior model probabilities; equal prior model probabilities (i.e., uniform encompassing model), prior model probabilities where the hypothesized zero effect

gets a weight (p0) 2 or 6 times higher than the other hypothesized effects, and prior model probabilities when a normal distribution with mean and variance

equal to 0 and 1 is the encompassing model, respectively.

https://doi.org/10.1371/journal.pone.0175302.t001
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distribution). These uncorrected posterior model probabilities provide stronger evidence in

favor of a small effect relative to a zero, medium, and large effect, although posterior model

probabilities for both a zero and medium hypothesized effect are still larger than zero (.06).

Comparing the results of applying snapshot hybrid to those of snapshot naïve to the example

shows that snapshot hybrid assigns larger posterior model probabilities to zero hypothesized

effect size than snapshot naïve. This always holds. More generally, the snapshot naïve first-

order stochastically dominates snapshot hybrid, i.e., snapshot naïve’s cumulative posterior

model probabilities exceed those of snapshot hybrid. The evaluation of snapshot hybrid may

even suggest that the true effect size is smaller than the estimates of both the original study and

replication. The latter typically occurs when the original effect size is just statistically signifi-

cant (i.e., has a p-value just below .05) and the replication effect size has the same sign as the

original effect.

Finally, in the third step the posterior model probabilities of a hypothesized effect size rela-

tive to the other hypothesized effect sizes may be recalculated using other than equal model

probabilities. The posterior model probability p�x for hypothesized effect size x can be recalcu-

lated using

p�x ¼
pxpx

p0p0 þ pSpS þ pMpM þ pLpL
; ð4Þ

with prior model probabilities or weights p, and posterior model probabilities π calculated

with Eq (3) assuming equal uniform prior probabilities. Note that p�x ¼ px for equal prior

model probabilities. The values of px, with x referring to no (0), small (S), medium (M), or

large hypothesized effect (L), can simply be derived from the prior density function of the

researcher.

Simple and conservative prior model probabilities are to assign, for instance, a two or even

six times higher prior model probability to a zero hypothesized effect than to any of the other

hypothesized effects. Note that other prior model probabilities can also be used, and that these

probabilities can also be specified for other hypothesized effect sizes than zero. Substituting

p0 = 2 and p0 = 6 (and pS, pM, and pL all equal to 1) and the posterior model probabilities pre-

sented in row “uniform snapshot hybrid” of Table 1, yields the recalculated posterior model

probabilities presented in the two subsequent rows of Table 1. Naturally, more conservative

prior model probabilities yield stronger evidence in favor of a hypothesized zero effect, with

posterior model probabilities increasing from .287 (uniform prior) to .707 (p0 = 6).

The posterior model probabilities can also be recalculated when a continuous prior is speci-

fied for the encompassing model, for instance a normal distribution with mean and variance

equal to 0 and 1, respectively, denoted by N(0,1) in Table 1. This normal prior yields prior

model probabilities at θ = 0, θ = 0.1, θ = 0.31, θ = 0.549 of p0 = 0.263, pS = 0.261, pM = 0.250,

pL = 0.226, which are close to the equal prior model probabilities. This yields the recalculated

posterior model probabilities in the last row of Table 1, again showing that assigning higher

prior model probability to a hypothesized zero effect results in stronger evidence in favor of

the null hypothesis. To sum up, the posterior model probabilities can be recalculated without

doing the Bayesian analysis again, by applying Eq (4) using other prior model probabilities.

Second, the example demonstrates that the prior model probabilities can have substantial

effects on the posterior model probabilities, particularly if there is no (very) strong evidence

for a hypothesized effect size.

Analytical evaluation of statistical properties

We evaluated the statistical properties of snapshot hybrid by comparing it to snapshot naïve.

This comparison demonstrates that effect size evaluation often suggests larger effect sizes than
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the true effect size if statistical significance of the original study is not taken into account. Sta-

tistical properties of the methods were evaluated with the correlation coefficient as the effect

size measure of interest. However, both methods can also be applied to other effect size mea-

sures (e.g., standardized mean differences).

Method

We analytically approximated the statistical properties of both snapshot hybrid and snapshot

naïve using numerical integration of the joint probability density function (pdf) of the statisti-

cal significant original effect size and effect size in the replication. This joint pdf is a function

of the true effect size and both effect sizes’ standard error. The joint pdf of the statistically sig-

nificant observed original effect size and the effect size of the replication was approximated by

creating an equally spaced grid of 5,000 x 5,000 values. The pdf of the statistically significant

observed original effect sizes was approximated by first selecting 5,000 equally spaced cumula-

tive probabilities given that the effects sizes that accompanied these probabilities were statisti-

cally significant. A one-tailed Fisher-z test with α = .025 was used to determine the critical

value for observing a statistically significant effect size in the original study because this corre-

sponds to a common practice in social science research where two-tailed hypothesis tests are

conducted and only the results in the predicted direction are reported. For instance, under the

null hypothesis this means that the cumulative probabilities range from 1 � 0:025þ
ð1�:025Þ

5;001
¼

:975005 to 1 � 0:025þ
ð5;000�:025Þ

5;001
¼ :999995. All these cumulative probabilities were then

transformed to Fisher-transformed correlation coefficients given a true effect size and standard

error to approximate the pdf of the original effect size. The pdf of the replication’s observed

effect size given a true effect size and standard error was created in a similar way as the pdf of

the original study’s observed effect size, but there was no requirement for the effect size in the

replication to be statistically significant. Hence, 5,000 equally spaced cumulative probabilities

ranging from 1

5;001
¼ :00019996 to 5;000

5;001
¼ :9998 were selected and the pdf of the observed effect

size in the replication was obtained by transforming these probabilities to Fisher-transformed

correlation coefficients. Combining the marginal pdfs of the observed effect size in the original

study and replication resulted in an approximation of the joint pdf consisting of 25,000,000

different combinations of effect sizes that was used for evaluating the statistical properties of

snapshot hybrid and snapshot naïve. Both methods were applied to each combination of effect

size in the original study and replication.

In order to examine the performance of the methods under different conditions, joint pdfs

were created by varying two factors: total sample size for the original study and replication (N)

and true effect size (ρ). Six different sample sizes were selected (N = 31; 55; 96; 300; 1,000;

10,000) and were imposed to be equal in the original study and replication. Sample sizes of 31,

55, and 96 refer to the first quartile, medium, and third quartile of the observed sample sizes of

the original study in RPP [5]. Larger sample sizes were also included for two reasons. First,

large sample sizes enable us to examine large sample properties of our method, such as conver-

gence of the methods to the correct hypothesized effect size. Second, bias of snapshot naïve

can be examined with large sample sizes, because bias is expected to disappear for very large

sample size whenever true effect size exceeds zero. For the true effect size, we selected ρ = 0 (no

effect), 0.1 (small effect), 0.3 (medium effect), 0.5 (large effect), which correspond to the meth-

ods’ snapshots or hypothesized effect sizes. Our analysis used equal prior model probabilities,

assigning probabilities of .25 to each hypothesized effect size.

Posterior model probabilities of snapshot hybrid and snapshot naïve at the four hypothe-

sized effect sizes were computed using Eq (3) for each of the 25,000,000 different combinations
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of effect sizes. Performances of both methods was then evaluated with respect to three out-

comes. The first outcome was the expected value of the posterior model probability for each

hypothesized effect size. Second, we calculated the proportion that the posterior model proba-

bility of a particular hypothesized effect size relative to the other hypothesized effect sizes was

larger than .25, which amounts to the probability that evidence in favor of the true hypothesis

increases after observing the data. The third outcome was the proportion that the posterior

model probability of a particular hypothesized effect size relative to the other hypothesized

effect sizes was larger than .75. This proportion corresponds to a Bayes Factor of 3 when com-

paring a particular hypothesized effect size to the other hypothesized effect sizes. Since a Bayes

Factor exceeding 3 is interpreted as positive evidence (e.g., [26]), we interpret posterior model

probabilities of .75 or more as positive evidence in favor of that hypothesized effect size. Note

that selecting a posterior model probability of 0.75 (and Bayes Factor of 3) is a subjective

choice, and that selecting other posterior model probabilities (and Bayes Factors) for the analy-

ses was also possible. In our analyses, we expect all three outcomes to increase in sample size

for snapshot hybrid, but not always for the biased snapshot naïve method.

Computations were conducted in the statistical software R and the parallel package was

used for parallelizing the computations [27]. Computer code for the computations is available

at https://osf.io/xrn8k/.

Results on statistical properties

Expected value of the posterior model probability. Table 2 presents the expected values

of the posterior model probabilities of snapshot hybrid and snapshot naïve for four different

Table 2. Expected values of the posterior model probabilities of the snapshot hybrid, snapshot naïve, and traditional fixed-effect meta-analysis

(FE).

Snapshot Hybrid Snapshot Naïve FE

N ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5 ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5

ρ = 0 31 0.466 0.36 0.151 0.023 0.177 0.336 0.411 0.076 0.215

55 0.535 0.375 0.089 0.002 0.212 0.479 0.304 0.005 0.16

96 0.601 0.368 0.03 0 0.241 0.648 0.112 0 0.12

300 0.757 0.243 0 0 0.338 0.662 0 0 0.068

1,000 0.948 0.052 0 0 0.758 0.242 0 0 0.037

ρ = 0.1 31 0.36 0.351 0.231 0.057 0.11 0.258 0.485 0.147 0.268

55 0.375 0.403 0.211 0.011 0.111 0.367 0.501 0.021 0.215

96 0.368 0.481 0.15 0 0.101 0.552 0.347 0 0.177

300 0.243 0.745 0.012 0 0.04 0.94 0.02 0 0.127

1,000 0.052 0.948 0 0 0.007 0.993 0 0 0.103

ρ = 0.3 31 0.151 0.231 0.367 0.25 0.027 0.099 0.456 0.417 0.381

55 0.089 0.211 0.523 0.178 0.012 0.089 0.663 0.236 0.337

96 0.03 0.15 0.738 0.082 0.003 0.066 0.842 0.089 0.312

300 0 0.012 0.985 0.003 0 0.008 0.989 0.003 0.3

1,000 0 0 1 0 0 0 1 0 0.3

ρ = 0.5 31 0.023 0.058 0.25 0.669 0.002 0.014 0.188 0.796 0.516

55 0.002 0.011 0.178 0.808 0 0.002 0.146 0.851 0.499

96 0 0 0.082 0.918 0 0 0.075 0.925 0.498

300 0 0 0.003 0.997 0 0 0.003 0.997 0.499

1,000 0 0 0 1 0 0 0 1 0.5

ρ denotes the effect size in the population, N is the sample size in the original study and replication, and ρS refers to the snapshots of effect size.

https://doi.org/10.1371/journal.pone.0175302.t002
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snapshots (ρS). The posterior model probabilities are presented for different sample sizes (N)

and true effect sizes (ρ). Results for sample sizes per group equal to 10,000 are not shown since

expected posterior model probabilities of both methods are always equal to 1 for the correct

snapshot and to 0 for the incorrect snapshot. The bold values in the columns for snapshot

hybrid and snapshot naïve indicate the posterior model probability for that particular snapshot

that matches the true effect size. Hence, the bold values in these columns should be higher

than the posterior model probabilities for the other snapshots. The final column shows the

expected value of the estimate of traditional fixed-effect meta-analysis.

Expected values of the posterior model probabilities of snapshot hybrid at the correct snap-

shot (e.g., ρS = 0 if ρ = 0 and ρS = 0.1 if ρ = 0.1) increase as the sample size increases, as they

should (bold values in first four columns in Table 2). Expected values of the posterior model

probabilities are close to .75 for ρ = 0, ρ = 0.1, and ρ = 0.3 at ni = 300, and at N = 55 for ρ = 0.5.

Snapshot hybrid has difficulties distinguishing whether an effect is absent (ρ = 0) or small (ρ =

0.1) for N< 1,000 because the expected values of the posterior model probabilities at ρS = 0

and ρS = 0.1 are close to each other for both effect sizes. Even if N = 1,000, the expected value

of the posterior model probability of ρ = 0 at snapshot ρS = 0.1 is .052 and the same holds for

the expected value of the posterior model probability of ρ = 0.1 at snapshot ρS = 0.

The expected values of the posterior model probability of snapshot naïve also increase as

the sample size increases (bold values in columns seven to ten in Table 2). However, the per-

formance of snapshot naïve is worse than of snapshot hybrid for ρ = 0 for all N, and for ρ = 0.1

at N = 31 and 55. Most important is that if ρ = 0 the expected posterior model probability of

snapshot naïve suggests a small effect (ρ = 0.1) up to N� 300 (i.e., 600 observations in original

study and replication combined). Evidence in favor of a small true effect size is even increasing
in sample size until N = 300, where the expected value of the posterior model probability of

incorrect snapshot ρ = 0.1 is .662 and larger than the .338 for the correct snapshot of zero true

effect size. Even when N = 1,000, evidence in favor of a small effect hardly diminished; the

expected posterior model probability (.242) is only little lower than .25. The performance of

snapshot naïve is better than snapshot hybrid’s performance for ρ = 0.1 at N�96, and for

medium and large true effect size, i.e., expected posterior model probabilities at the correct

snapshot are highest for snapshot naïve. Note, however, that for a medium true effect size evi-

dence in favor of a strong effect (ρS = 0.5) also increases for small sample size (N = 31; expected

posterior model probability increases from .25 to .417). All these results can be explained by

two related consequences of correcting for the statistical significance of the original study.

The first consequence is that not correcting for statistical significance of the original study

leads to overestimation of effect size. The last column of Table 2 presents the expected value of

fixed-effect meta-analysis, and consequently, its bias. The bias decreases both in true effect size

and sample size, and is most severe for ρ = 0 and N = 31 (0.215). Bias results in a higher

expected value of the posterior model probability of ‘incorrect’ snapshots (ρS6¼ρ) for snapshot

naïve. The fact that snapshot naïve performs relatively worse for a true small effect than for a

medium and strong true effect is thus because overestimation is worse for lower true effect

size, particularly for small N.

The second consequence is that snapshot hybrid assigns a relatively higher ‘weight’ to the

likelihood of the original effect under a zero true effect, compared to snapshot naïve. This is

because, in contrast to snapshot naïve, the replication’s likelihood is multiplied by the recipro-

cal of statistical power (which is the ‘weight’) under snapshot hybrid (see Eq (2) and Fig 1),

and statistical power increases in true effect size. In the extreme case, for very large sample size

(e.g., N> 10,000), the only difference between snapshot hybrid and snapshot naïve is that the

likelihood of the original effect under a zero hypothesized effect is multiplied by 40 under

snapshot hybrid, because the likelihoods at other snapshots are multiplied by 1 under snapshot
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hybrid (statistical power then equals 1 at these snapshots). The relatively higher weight

assigned to the likelihood of the original study’s effect under the hypothesized zero effect

explains why snapshot hybrid performs better than snapshot naïve if ρ = 0, for all values of N.

This relatively higher weight translates into higher posterior model probabilities for ρS = 0

under snapshot hybrid than snapshot naïve. These higher posterior model probabilities for

ρS = 0 under snapshot hybrid also explain why snapshot naïve outperforms snapshot hybrid

for nonzero true effect size in combination with large sample size. For nonzero true effect size

and small sample size, however, snapshot hybrid outperforms snapshot naïve because then the

adverse effect of overestimation in snapshot naïve is stronger than the higher weight of (incor-

rect) snapshot ρS = 0 in snapshot hybrid.

To sum up, sample sizes of 300 for the original study and replication are needed to obtain

expected posterior model probabilities with snapshot hybrid close to .75 or higher for a true

effect size of ρ = 0, ρ = 0.1, and ρ = 0.3, whereas a sample size of 55 for the original study and

replication is sufficient for ρ = 0.5. Hence, small sample sizes (sample size of about 50 per

study) are sufficient to make correct decisions if true effect size is large, whereas for zero or

small true effect size large sample sizes are required (sample size of at least 300 up to 1,000 per

study). Not taking the statistical significance of the original study into account results in worse

performance of snapshot naïve when true effect size is zero or small, or when sample sizes are

small. Snapshot naïve outperforms snapshot hybrid, i.e. gives higher expected posterior model

probabilities for the correct snapshot as well as lower ones for all incorrect snapshots whenever

ρ = 0.1 and N�1,000, ρ = 0.3 and N�300, and ρ = 0.5and N�31. However, snapshot naïve is

biased as a result of not taking the statistical significance of the original study into account. Its

better performance is a consequence of its bias, just as the high statistical power of the fixed-

effect meta-analysis for small true effect size is a consequence of its overestimation of effect

size. Hence, we advise to use snapshot hybrid rather than snapshot naïve. However, if a

researcher is certain that the true effect size is, for instance, large, snapshot naïve may be used

since this method outperforms snapshot hybrid in most conditions.

Probability of posterior model probability larger than .25 (π>.25) and .75 (π>.75).

Table 3 shows the probability of how often the posterior model probability is larger than .25

(π>.25), i.e. how often the posterior model probability is larger than the prior model probabil-

ity. The probability of π>.25 of snapshot hybrid at the correct snapshot is at least .776 and

approaches one if the sample sizes increases (bold values in the third to sixth columns of

Table 3). The same pattern is observed for snapshot naïve, but the probabilities π>.25 at the

correct snapshot are smaller for snapshot naïve than snapshot hybrid if ρ = 0, and ρ = 0.1 and

N<300, and higher for ρ = 0.3 and ρ = 0.5. The lowest probability of π>.25 at the correct snap-

shot of snapshot naïve is 0.274 for ρ = 0 and N = 31. However, both methods’ probabilities of

π>.25 at the incorrect snapshot are also substantial and sometimes even larger for the incor-

rect than for the correct snapshot. For ρ = 0 and N = 31, the probability of π>.25 of snapshot

hybrid is higher for the incorrect snapshot at ρS = 0.1 than the correct snapshot (ρS = 0). The

same holds for snapshot naïve at N�300 if ρ = 0, and at N<96 if ρ = 0.1. If the probability of

π>.25 is largest for the correct snapshot, the probability of π>.25 at one of the incorrect snap-

shots can still be substantial. For instance, if ρ = 0 or ρ = 0.1 and N = 300, using snapshot

hybrid the probability π>.25 is 0.36 for an incorrect snapshot (ρS = 0.1 or ρS = 0, respectively).

The probability of π>.25 of snapshot naïve is 0.321 for ρ = 0 and N = 1,000 at the incorrect

snapshot ρS = 0.1, and 0.495 for ρ = 0.1 and N = 96 at ρS = 0.3. Probabilities of π>.25 at incor-

rect snapshots also occur for large true effect sizes in combination with small sample sizes. To

conclude, a posterior model probability larger than .25 should not be interpreted as evidence

in favor of that effect size, but should be interpreted in combination with posterior model

probabilities for the other hypothesized effect sizes.
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Table 4 illustrates the probability of how often the posterior model probability is larger than

.75 (π>.75), when evidence can be interpreted as evidence in favor of that true effect. Hence,

the probabilities of π>.75 can be interpreted as how often the methods yield the correct con-

clusion with respect to the magnitude of the true effect size akin to statistical power in null

hypothesis significance testing. Table 4 also shows how often inconclusive results (columns

named “Inconcl.”) were obtained, indicating that none of the posterior model probabilities

were larger than .75. Focusing first on the results of snapshot hybrid (columns three to seven),

the probability of making the wrong decision never exceeds 0.065. However, the probability of

obtaining inconclusive results is large for N�96 when ρ = 0 (� .706) or ρ = 0.1 (� .9). The

probability of making the correct decision is at least 0.8 (akin to a power of 0.8) for a sample

size in between 300 and 1,000 when ρ = 0 or ρ = 0.1, between 96 and 300 when ρ = 0.3, and

between 55 and 96 when ρ = 0.5.

The probability of making a false decision using snapshot naïve (last five columns) can be

substantial for true effect sizes zero to medium. When ρ = 0, the probability of making the

false decision that the true effect size is of small magnitude is larger than the probability of

drawing the correct conclusion for N�300. The probability of making false decisions are 0.263

for ρ = 0.1 at N = 55, and 0.157 for ρ = 0.3 at N = 31. The probability of observing inconclusive

results with snapshot naïve was large for N�96 when ρ = 0 (� .628) or ρ = 0.1 (� .547). The

probability of making a correct decision does not exceed 0.8 when ρ = 0 for N�1,000, and

exceeds 0.8 when ρ = 0.1 and sample size between 96 and 300, and ρ = 0.3 and ρ = 0.5 in com-

bination with sample size between 55 and 96.

Table 3. Probability of posterior model probability larger than .25 of snapshot hybrid and snapshot naïve.

Snapshot Hybrid Snapshot Naïve

N ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5 ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5

ρ = 0 31 0.855 0.914 0.22 0.017 0.274 0.725 0.757 0.082

55 0.897 0.84 0.107 0.001 0.364 0.891 0.473 0.001

96 0.926 0.705 0.03 0 0.406 0.97 0.146 0

300 0.939 0.359 0 0 0.513 0.882 0 0

1,000 0.984 0.065 0 0 0.868 0.321 0 0

ρ = 0.1 31 0.687 0.87 0.417 0.063 0.123 0.512 0.885 0.206

55 0.686 0.891 0.322 0.007 0.132 0.677 0.758 0.015

96 0.654 0.895 0.206 0 0.103 0.829 0.495 0

300 0.36 0.931 0.015 0 0.033 0.992 0.024 0

1,000 0.067 0.982 0 0 0.007 0.999 0 0

ρ = 0.3 31 0.233 0.483 0.776 0.385 0.009 0.119 0.83 0.656

55 0.114 0.391 0.84 0.252 0.003 0.109 0.914 0.338

96 0.027 0.234 0.911 0.104 0 0.081 0.961 0.114

300 0 0.015 0.995 0.003 0 0.009 0.997 0.003

1,000 0 0 1 0 0 0 1 0

ρ = 0.5 31 0.014 0.062 0.471 0.887 0 0.004 0.292 0.97

55 0 0.007 0.265 0.939 0 0 0.204 0.963

96 0 0 0.105 0.973 0 0 0.096 0.976

300 0 0 0.003 0.999 0 0 0.003 0.999

1,000 0 0 0 1 0 0 0 1

ρ denotes the effect size in the population, N is the sample size in the original study and replication, and ρS refers to the snapshots of effect size. Note that

the sum of probabilities across four snapshots is sometimes larger than 1, because posterior model probabilities can be larger than .25 for more than

snapshot.

https://doi.org/10.1371/journal.pone.0175302.t003
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To conclude, when true effect size is zero or small, very large sample sizes are required to

make correct decisions and snapshot hybrid should be used to take the statistical significance

of the original study into account; using snapshot naïve likely results in wrong conclusions

when sample size is smaller than 300. When true effect size is medium or large, smaller sample

sizes are sufficient to make correct decisions. Snapshot naïve yields both higher probabilities of

making correct decisions and lower probabilities of making incorrect decisions when ρ = 0.1

and N = 1,000, ρ = 0.3 and N�300, ρ = 0.5 and N�96.

Conclusions. The probability of making the correct decision with snapshot hybrid, based

on posterior model probabilities larger than .75, is at least 0.8 (akin to a power of 0.8) for a

sample size in between 300 and 1,000 when ρ = 0 or ρ = 0.1, between 96 and 300 when ρ = 0.3,

and between 55 and 96 when ρ = 0.5. The probability of making a false decision using snapshot

naïve can be substantial for true effect sizes zero (even for samples sizes of 300 per group in

both studies) to medium. Whereas snapshot hybrid outperforms snapshot naïve if there is no

or a small true effect, snapshot naïve generally outperformed snapshot hybrid for medium and

large true effect sizes. Importantly, the results of both methods also illustrate that it is hard to

obtain conclusive results about the magnitude of the true effect size in situations with sample

sizes that are illustrative for current research practice. In the penultimate section of this paper,

we use snapshot hybrid to derive the sample size of the replication to obtain evidence of a true

effect, akin to power analysis.

Table 4. Probability of posterior model probability larger than .75 of snapshot hybrid and snapshot naïve.

Snapshot Hybrid Snapshot Naïve

N ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5 Inconcl. ρS = 0 ρS = 0.1 ρS = 0.3 ρS = 0.5 Inconcl.

ρ = 0 31 0.04 0 0 0 0.96 0 0 0 0.002 0.998

55 0.142 0 0.003 0 0.855 0.001 0 0.085 0 0.914

96 0.291 0 0.003 0 0.706 0.008 0.343 0.021 0 0.628

300 0.641 0.061 0 0 0.298 0.118 0.487 0 0 0.395

1,000 0.935 0.016 0 0 0.049 0.679 0.132 0 0 0.189

ρ = 0.1 31 0.01 0 0 0.002 0.988 0 0 0 0.012 0.988

55 0.033 0 0.017 0 0.95 0 0 0.263 0.001 0.736

96 0.057 0 0.043 0 0.9 0 0.288 0.165 0 0.547

300 0.065 0.625 0.004 0 0.306 0.001 0.943 0.007 0 0.049

1,000 0.018 0.933 0 0 0.049 0.001 0.993 0 0 0.006

ρ = 0.3 31 0 0 0 0.06 0.94 0 0 0 0.157 0.843

55 0 0 0.115 0.05 0.835 0 0 0.513 0.077 0.41

96 0 0 0.645 0.025 0.33 0 0.006 0.802 0.029 0.163

300 0 0.005 0.982 0.001 0.012 0 0.003 0.988 0.001 0.008

1,000 0 0 1 0 0 0 0 1 0 0

ρ = 0.5 31 0 0 0 0.498 0.502 0 0 0 0.699 0.301

55 0 0 0.018 0.732 0.25 0 0 0.034 0.796 0.17

96 0 0 0.027 0.895 0.078 0 0 0.024 0.904 0.072

300 0 0 0.001 0.997 0.002 0 0 0.001 0.997 0.002

1,000 0 0 0 1 0 0 0 0 1 0

ρ denotes the effect size in the population, N is the sample size in the original study and replication, and ρS refers to snapshots of effect size. The columns

“Inconcl.” indicate the probability of observing inconclusive results (i.e., none of the posterior model probabilities for the hypothesized effect sizes was larger

than .75)

https://doi.org/10.1371/journal.pone.0175302.t004
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Replicability projects

The Reproducibility Project Psychology (RPP; [5]) and the Experimental Economics Replica-

tion Project (EE-RP; [6]) are two projects that studied the replicability of psychological and

economic experimental research by replicating published research. Articles for inclusion in

RPP were selected from three high impact psychological journals (Journal of Experimental

Psychology: Learning, Memory, and Cognition, Journal of Personality and Social Psychology,

and Psychological Science) published in 2008. EE-RP included all articles with a between-sub-

ject experimental design published in the American Economic Review and the Quarterly Jour-

nal of Economics between 2011 and 2014. The most important finding from these articles was

selected for both projects to be replicated and the replication was conducted according to a

predefined analysis plan in order to ensure that the replication was as close as possible to the

original study.

RPP contained 100 studies that were replicated. A requirement for applying snapshot

hybrid is that the original study has to be statistically significant. Three observed effect sizes

were reported as not being statistically significant in the original studies of RPP. However, of

the remaining 97 original effect sizes reported as statistically significant, recalculation of their

p-values revealed that four were actually not statistically significant either, but slightly larger

than .05 [5]; these were excluded as well. The remaining 93 study-pairs included 26 study-

pairs that had to be excluded because the correlation coefficient and standard error could not

be computed for these study-pairs. This was, for instance, the case for F(df1 >1,df2) or χ2.

Hence, the snapshot hybrid and snapshot naïve were applied to 67 study-pairs. EE-RP

included 18 study-pairs. The effect size measure of the study-pairs included in EE-RP was also

the correlation coefficient. Only two studies had to be excluded because the original study was

not statistically significant. Hence, the snapshot hybrid and snapshot naïve were applied to 16

study-pairs of the EE-RP. Information on effect sizes and sample sizes of the study-pairs and

the results of the snapshot hybrid and snapshot naïve are reported in S1 Table for EE-RP and

S2 Table for RPP.

Table 5 lists the posterior model probabilities averaged over all the study-pairs of the snap-

shot hybrid and snapshot naïve. The difference between the average posterior model probabili-

ties of snapshot hybrid and snapshot naïve was largest for the study-pairs in RPP at ρS = 0

(0.293 vs. 0.126). Average posterior model probabilities of both the snapshot hybrid and snap-

shot naïve based on the study-pairs in EE-RP were larger at ρS = 0.3 and ρS = 0.5 than the

study-pairs in RPP, whereas this was the other way around at ρS = 0 and ρS = 0.1.

Table 6 shows the proportions of how often the posterior model probability was larger than

.25 for the snapshot hybrid and snapshot naïve. Seven different categories were used because

the posterior model probability could be larger than .25 for two snapshots. A study-pair was

assigned to one of the categories belonging to snapshots ρS = 0, 0.1, 0.3, and 0.5 if the posterior

model probability of only one of these snapshots was larger than .25. If the posterior model

Table 5. Average posterior model probabilities for the study-pairs in EE-RP and RPP for snapshot hybrid and snapshot naïve at four different

snapshots (ρS = 0; 0.1; 0.3; 0.5).

ρS

0 0.1 0.3 0.5

Snapshot Hybrid EE-RP 0.084 0.137 0.34 0.44

RPP 0.293 0.234 0.217 0.256

Snapshot Naïve EE-RP 0.03 0.165 0.361 0.444

RPP 0.126 0.285 0.267 0.321

https://doi.org/10.1371/journal.pone.0175302.t005
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probability of a study-pair was, for instance, 0.4 of snapshot ρS = 0 and 0.5 of snapshot ρS =

0.1, the study-pair was assigned to category 0–0.1. The proportion of study-pairs in the catego-

ries ρS = 0 and 0–0.1 was larger for snapshot hybrid than snapshot naïve. On the contrary,

snapshot naïve resulted in a higher proportion of study-pairs in the categories ρS = 0.3, 0.3–0.5

and 0.5 than snapshot hybrid. The large proportions for the categories including two snapshots

(e.g., 0–0.1) indicated that drawing definite conclusions about the magnitude of the effect size

was often impossible. Comparing the results between EE-RP and RPP shows that the propor-

tion of study-pairs in the categories ρS = 0 and 0–0.1 was larger for RPP than EE-RP. The pro-

portion of study-pairs in the categories ρS = 0.3, 0.3–0.5, and 0.5 was larger for EE-RP than

RPP.

Table 7 presents the proportions of how often the posterior model probability was larger

than .75 for the snapshot hybrid and snapshot naïve for snapshots ρS = 0, 0.1, 0.3, and 0.5.

None of the posterior model probabilities at the different snapshots was larger than .75 for

snapshot hybrid in 18.8% and 62.7% of the study-pairs in EE-RP and RPP (last column of

Table 7, respectively. For snapshot naïve, no posterior model probability was larger than .75 in

6.3% of the study-pairs in EE-RP and 52.2% of the study-pairs in RPP. Hence for most of the

effects studied in the RPP, no decisions can be made on the magnitude of the true effect size,

whereas for EE-RP decisions can be made in the majority of effects studied.

For the EE-RP, no evidence in favor of a zero true effect was obtained, whereas the majority

of effects examined showed evidence in favor of a medium (31.2% for snapshot hybrid and

37.5% for snapshot naïve) or large true effect (43.8% for both snapshot hybrid and snapshot

naïve). In RPP, evidence in favor of the null hypothesis was obtained for 13.4% of the effects

examined according to snapshot hybrid. This number is much lower than the percentage of

statistically nonsignificant replications in RPP (73.1%). A small percentage of study-pairs

obtained evidence in favor of a large true effect (16.4%-23.9%).

The studies in RPP can be divided into social and cognitive psychology studies. The propor-

tions of how often the posterior model probability was larger than .75 for social psychology

and cognitive psychology is presented in Table 8. According to snapshot hybrid, the true effect

Table 6. Proportions of how often the posterior model probability is larger than .25 for the study-pairs in EE-RP and RPP for snapshot hybrid and

snapshot naïve at seven different snapshots (ρS = 0; 0–0.1; 0.1; 0.1–0.3; 0.3; 0.3–0.5; 0.5).

ρS

0 0–0.1 0.1 0.1–0.3 0.3 0.3–0.5 0.5

Snapshot Hybrid EE-RP 0 0.125 0.062 0.062 0.312 0 0.438

RPP 0.134 0.284 0.045 0.119 0.06 0.164 0.194

Snapshot Naïve EE-RP 0 0.062 0.125 0 0.375 0 0.438

RPP 0.015 0.194 0.149 0.06 0.164 0.179 0.239

https://doi.org/10.1371/journal.pone.0175302.t006

Table 7. Proportions of how often the posterior model probability is larger than .75 for the study-pairs in EE-RP and RPP for snapshot hybrid and

snapshot naïve at four different snapshots (ρS = 0; 0.1; 0.3; 0.5) and how often none of the posterior model probabilities is larger than .75 (Incon-

clusive results, final column).

ρS

0 0.1 0.3 0.5 Inconcl.

Snapshot Hybrid EE-RP 0 0.062 0.312 0.438 0.188

RPP 0.134 0.030 0.045 0.164 0.627

Snapshot Naïve EE-RP 0 0.125 0.375 0.438 0.062

RPP 0.015 0.119 0.104 0.239 0.522

https://doi.org/10.1371/journal.pone.0175302.t007
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size was more often zero in studies in social psychology than in cognitive psychology (23.5%

vs. 3.0%), whereas it was more often large in cognitive psychology than in social psychology

(21.2% vs 11.8%). For approximately half of the study-pairs in both fields, none of the posterior

model probabilities of snapshot hybrid and snapshot naïve was larger than .75 (final column of

Table 8).

Determining sample size of replication with snapshot hybrid

Snapshot hybrid can also be used for computing the required sample size where P(πx�a) = b
with a being the desired posterior model probability and b the desired probability for a correct

decision (i.e., desired probability of observing a posterior model probability larger than a).

Computing the required sample size with snapshot hybrid is akin to computing the required

sample size with a power analysis in null hypothesis significance testing. A value for a is 0.75

that corresponds to a Bayes Factor of 3 [26] and b equal to 0.8 reflecting 80% statistical power.

Note that any other desired values for a and b can be chosen. We do not compute the required

sample size with snapshot naïve because it falsely does not take the significance of the original

study into account and is unsuitable for ρ = 0.

For computing the required sample size of the replication, we need information on the

effect size or test statistic and sample size(s) of the original study and the expected true effect

size in the population. The four different hypothesized effect sizes or snapshots (zero, small,

medium, large) are used as before. P(πx�a) for the hypothesized effect size is calculated using

numerical integration. The required sample size of the replication can be obtained by optimiz-

ing the sample size until b is obtained. The required sample size of the replication is also com-

puted when the original study is ignored. A researcher may opt to ignore information of the

original study if he or she believes that the original study does not estimate the same true effect

or has other reasons to discard this information.

The procedure for determining the sample size of the replication is programmed in R and

requires as input the observed effect size and sample size of the original study, α-level, desired

posterior model probability (a), and desired probability (b). Users can also specify (besides

specifying the α-level, a, and b) the two group means, standard deviations, and sample sizes or

a t-value and sample sizes in order to compute the required sample size in case of a two-inde-

pendent groups design. The output is a 4×2 table with for each hypothesized effect size the

required total replication sample size when the original effect size is included or excluded. An

easy to use web application is available to compute the required sample size for researchers

who are not familiar with R (https://rvanaert.shinyapps.io/snapshot/).

Determining the sample size of the replication with snapshot hybrid for the example by

Maxwell et al. [8] with ro = .243 and N = 80 resulted in the sample sizes presented in Table 9

for each hypothesized effect size, using a = 0.75 and b = 0.8. Higher sample sizes are needed for

zero and small hypothesized effect size than for medium and strong hypothesized effect size.

Table 8. Proportions of how often the posterior model probability is larger than .75 for the study-pairs in RPP grouped by social and cognitive psy-

chological studies for snapshot hybrid and snapshot naïve at four different snapshots (ρS = 0; 0.1; 0.3; 0.5) and how often none of the posterior

model probabilities is larger than .75 (Inconclusive results, final column).

ρS

0 0.1 0.3 0.5 Inconcl.

Snapshot Hybrid Social 0.235 0.059 0 0.118 0.588

Cognitive 0.030 0 0.091 0.212 0.667

Snapshot Naïve Social 0.029 0.176 0.059 0.118 0.618

Cognitive 0 0.061 0.152 0.364 0.424

https://doi.org/10.1371/journal.pone.0175302.t008
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When ignoring the original study, less observations are needed for nonzero hypothesized effect

sizes than after incorporating the original study. The reason is that, after taking the statistical

significance of the original effect into account, the original effect provides evidence in favor of

a zero true effect. This is also the reason that more observations are needed for a zero hypothe-

sized effect size when the original study is ignored (N = 645) relative to incorporating it

(N = 587). We note that Maxwell et al. [8] conducted a power analysis based on the results of

the original study to compute the required sample size in the replication and ended up with a

sample size of 172. The explanation for their low required sample size is that they likely overes-

timate effect size with the original study by not taking its statistical significance into account.

Sample size of the replication obtained with snapshot hybrid may also be larger than the sam-

ple size obtained with a power analysis, because four different hypothesized effect sizes are

examined with snapshot hybrid instead of one in a usual power analysis. However, this will

only have a minor influence since the posterior model probability for at least two out of four

effect sizes will be small if the sample size is large.

Finally, we emphasize that snapshot hybrid is sensitive to the observed effect size in the

original study. An observed effect size in the original study close to a hypothesized effect size

results in a smaller required sample size for the replication than if the observed effect size sub-

stantially deviates from the hypothesized effect size. Our web application can be used to exam-

ine the sensitivity of the required sample size to the results of the original study. This provides

information on how much evidence there is for a particular hypothesized effect size in the

original study after taking into account statistical significance in this study. The first column is

affected by the statistics of the original study, whereas the last is not because it ignores the orig-

inal study. For instance, if Maxwell et al. [8] had postulated ro = .243 and N = 800, the required

sample size for the replication by taking into account the information of the original study is

3,691, 561, a sample size of less than 4, and 1,521 for ρ = 0; 0.1; 0.3; 0.5, respectively. The reason

that only very few observations are required for medium hypothesized effect size and very

large sample size for zero and large hypothesized effect size is that the original study provides

strong evidence of a close to medium true effect size.

Conclusion and discussion

The high number of statistical significant findings in the literature (e.g., [1–3]) does not match

the average low statistical power [28–30], and raises concerns about the reliability of published

findings. Several projects recently systematically replicated published studies in medicine [4],

psychology (RPP; [5]), and economics (EE-RP; [6]) to examine their replicability.

Table 9. Required sample size computed with snapshot hybrid based on characteristics of the origi-

nal study as described in Maxwell et al. [8]; ro = .243 and N = 80.

With original study Without original study

ρS = 0 587 645

ρS = 0.1 709 664

ρS = 0.3 223 215

ρS = 0.5 284 116

Sample size was computed with snapshot hybrid for a desired posterior model probability of a = 0.75 and the

desired probability of observing a posterior model probability larger than a was b = 0.8. The hypothesized

effect size was equal to ρS = 0 (no effect), 0.1 (small), 0.3 (medium), and 0.5 (large). The penultimate column

refers to the required sample size where information of the original study is included and the last column

where this information is excluded.

https://doi.org/10.1371/journal.pone.0175302.t009
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Characteristic of all these projects is that most effects were originally statistically significant,

but not significant in the replication. Problems with traditional methods to analyze these

results are that (1) NHST is not informative for the magnitude of the true effect size, (2) no evi-

dence can be obtained for a true zero effect, and (3) they do not take into account the statistical

significance of the original study. To solve these problems we developed a method (snapshot

Bayesian hybrid meta-analysis method, snapshot hybrid for short) that computes the posterior

model probability for a set of effect sizes (no, small, medium, and large effect) by statistically

combining the original study and replication, while at the same time taking the statistical sig-

nificance of the original study into account. Desirable properties of snapshot hybrid are its few

assumptions, its straightforward interpretation as the probability that the true effect size is

zero, small, medium or large, and the ease with which posterior model probabilities can be

recalculated using different sets of prior model probabilities.

Researchers can apply snapshot hybrid with the R function “snapshot” in the “puniform”

package (package can be installed with the following R code devtools::install_github(“Robbie-

vanAert/puniform”). The “req.ni.r” function which is also in the “puniform” package can be

used for computing the required sample size of the replication to achieve a certain posterior

model probability for hypothesized effect sizes equal to zero, small, medium, and large, akin to

power analysis. Researchers not familiar with R can use the web application (https://rvanaert.

shinyapps.io/snapshot/) for applying snapshot hybrid and computing the required sample size

of the replication.

We examined the performances of snapshot hybrid and a method that does not take into

account that the original study is statistically significant (snapshot naïve). Our analysis shows

that snapshot naïve hardly ever can provide evidence in favor of a true zero effect; even if both

original and replication effect have a sample size of 1,000, the expected posterior model proba-

bility in favor of a small effect is close to the prior model probability of .25. Hence, we recom-

mend not using any method that does not take into account statistical significance of the

original study (including fixed-effect meta-analysis) when the goal is examining if a nonzero

true effect size exists. Snapshot naïve outperformed snapshot hybrid for medium true effect

size and sample sizes of 300 per study, and for large true effect size and sample sizes of 31.

Thus, we only recommend using methods that do not correct for statistical significance in the

original study when true effect size is strongly suspected to be large, or medium in combina-

tion with large sample sizes (> 300) of both the original study and the replication.

By taking the statistical significance of the original effect into account snapshot hybrid

yields accurate evaluations of not only zero true effect size, but larger true effect size as well.

The probability of making the correct decision with snapshot hybrid, based on posterior prob-

abilities larger than .75, is at least 0.8 (akin to a power of 0.8) for sample sizes in between 300

and 1,000 when ρ = 0 or ρ = 0.1, between 96 and 300 when ρ = 0.3, and between 55 and 96

when ρ = 0.5. Due to its accurate evaluations, particularly if true effect size is zero, we recom-

mend using snapshot hybrid when evaluating effect size based on a statistically significant orig-

inal study and a replication. Importantly, our results also confirm previous research (e.g., [8,

22]) that it is hard to obtain conclusive results about the magnitude of the true effect size in sit-

uations with sample sizes that are illustrative for current research practice.

Several conclusions can be drawn from the application of snapshot hybrid to the data of

RPP and EE-RP. First, in the majority of study-pairs in RPP no evidence was found for any of

the true effects, as opposed to in EE-RP where evidence was found for one true effect size con-

sidering a zero, small, medium, or large true effect size in about 80% of the study-pairs. This

shows that sample sizes of the original study and replication in RPP were generally often not

large enough to draw definite conclusions about the magnitude of the true effect size (e.g., [8,

22]). Second, true effect size was generally higher in EE-RP than in RPP. However, evidence in
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favor of the null hypothesis was found for only 13.4% of the study-pairs in RPP, as opposed to

the much higher percentage of statistically nonsignificant replications in RPP (73.1%). This is

in line with the argumentation of Maxwell et al. [8], who argue that sample sizes of the replica-

tions in RPP are generally too small to draw conclusions on the absence of a true effect. Finally,

within RPP true effect size was generally lower for study-pairs in social than cognitive

psychology.

Our study and snapshot hybrid have several limitations. First, we analytically evaluated the

statistical properties of the snapshot hybrid and snapshot naïve by assuming equal sample sizes

of the original study and replication. Most often their sample sizes are somewhat different,

with the replication generally having larger sample size than the original study. Hence, our

results on statistical properties should be considered as illustrations of the effect of sample size

on the performance of both snapshot naïve and snapshot hybrid. Note that our web applica-

tion can be used to examine what the effect is of different sample sizes of the original study

when calculating the required replication sample size.

A limitation of snapshot hybrid seems to be the requirement that the original study is statis-

tically significant. However, most studies in the social sciences contain statistically significant

results; about 95% of the studies in psychology contain significant results (e.g., [1, 3]) and 97%

and 89% of the original findings in RPP [5] and EE-RP [6] were statistically significant.

Another apparent limitation of snapshot hybrid is that it assumes that the same true effect is

underlying the original study and replication. However, an exact replication is highly similar

to an original study and no or a small amount of heterogeneity in true effect size may be

expected. Furthermore, two studies are not sufficient to estimate the amount of heterogeneity

(e.g., [12, 31]).

Our current implementation of snapshot hybrid assumes discrete values of hypothesized

effect size, rather than distributions of hypothesized effect size as in continuous Bayesian anal-

yses. A disadvantage of using discrete values is that if the true effect size is in between these val-

ues, the results of our analysis on statistical properties do no longer apply. That is, higher

samples sizes are needed to obtain evidence in favor of the discrete value closest to the actual

true effect size. Other hypothesized effect sizes can be used as a sort of sensitivity analysis to

examine whether the true effect size is in between the originally proposed hypothesized effect

sizes. For example, if the true effect size is ρ = 0.2 and thus between ρ = 0.1 and ρ = 0.3, the

highest posterior model probability will be observed for ρ = 0.2 when hypothesized effect sizes

ρ = 0, ρ = 0.1, ρ = 0.2, and ρ = 0.3 are chosen. Snapshot hybrid could also be implemented

using intervals of hypothesized effect size, say 0, 0–0.1, 0.1–0.3, 0.3–0.5, > 0.5, while keeping

all of its desirable properties except for one: The posterior model probabilities can no longer

be easily updated using Eq (4) when assuming other than equal prior model probabilities.

However, we chose for discrete hypothesized effect size values in the current implementation

of snapshot hybrid because we believe most researchers think in terms of zero, small, medium,

and large effect size, and wish to carry out power analyses assuming these effect sizes as in our

web application.

Another limitation of snapshot hybrid in its current implementation is that it can only deal

with one (statistically significant) original study and one replication. Including more than one

original study or replication will usually yield more divergence in the posterior model proba-

bilities of the set of effect sizes and enable researchers to draw more reliable conclusions. We

will extend the current snapshot hybrid method such that it can deal with multiple original

studies and replications in the future. A final limitation is that the results of snapshot hybrid

will be biased in case of questionable research practices or p-hacking in the original study.

Questionable research practices bias the p-values (e.g., [15, 18, 19, 32, 33]) and therefore also

the truncated density of the original study. The extent to which the results of snapshot hybrid
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becomes biased due to questionable research practices may be subject for further study. We

note, however, that no existing method can deal with questionable research practices.

To conclude, the unrealistic high rate of statistically significant findings in the published lit-

erature and the results of RPP and EE-RP suggest that the literature is distorted with false posi-

tive findings and too high effect size estimates. We propose and recommend snapshot hybrid

for evaluating the magnitude of the true effect size underlying an original study and replication

that computes the posterior model probability for a zero, small, medium, and large hypothe-

sized effect. The method has the advantage over other existing methods, because it is the first

method that adjusts for publication bias by taking statistical significance of the original study

into account. Moreover, the method can also be used for determining the sample size in the

replication akin to power analysis in NHST. The snapshot hybrid method is easy to understand

and to apply and provides useful insights in evaluating an original study and replication.
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