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Abstract: Soft tissue sarcomas (STSs) are a heterogeneous group of tumors originating from the 

mesenchyme. Even though they affect individuals in all age groups, the prevalence of subtypes 

of STSs changes significantly from childhood through adolescence into adulthood. The mainstay 

of therapy is surgery, with or without the addition of chemotherapy and/or radiation therapy. 

These treatment modalities are associated, in many cases, with significant morbidity and, given 

the heterogeneity of tumor histologies encompassed by the term “STS”, have not uniformly 

improved outcomes. Moreover, some subgroups of STSs appear to be more, and others less, 

responsive to conventional chemotherapy agents. Over the last two decades, our understanding 

of the biology of STSs is slowly increasing, allowing for the development of more targeted 

therapies. We review the new treatment modalities that have been tested on patients with STSs, 

with a special focus on adolescents and young adults, a group of patients that is often under-

represented in clinical trials and has not received the dedicated attention it deserves, given the 

significant differences in biology and treatment response in comparison to children and adults.
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Definition and demographics of 
STSs
STSs, as defined by the WHO, are soft tissue tumors with 

malignant potential, that is, a propensity for locally destruc-

tive growth, risk of recurrence, and risk of distant metastasis.1 

A common feature of this group of tumors is that they derive 

from mesenchymal cells that normally give rise to connec-

tive tissue. Annually, ~900 children aged <20 years and 1500 

AYAs between the ages of 15 and 29 years are diagnosed with 

STSs (excluding Kaposi’s sarcoma) in the USA.2,3 Histori-

cally, data regarding the prevalence of these tumors in AYAs 

have been sparse. Over the last decade, however, efforts to 

fill this gap have started to shed light on this age group. The 

AYA population is most often defined as those in the 15- to 

29-year-old age group. The incidence of cancer in this group 

is 2.7 times higher than that in the first 15 years of life, and 

~3% of tumors in the AYA group are STSs.4 It is important 

to note that the prevalence of STS types dramatically changes 

from childhood to the age of 30 years, and this holds true even 

in the short interval between 15 and 30 years.2,3 In children 

younger than 15 years, RMS constitutes the most common 

STS. Even though RMS occurs less frequently in the 15- to 

29-year-old age group, the survival of AYA patients with 

RMS is significantly worse than that of younger patients 

with similar features. In contrast, in older adults (>29 years) 

with STS, high-grade pleomorphic sarcoma, liposarcoma, 

leiomyosarcoma, synovial sarcoma, and MPNST together 

comprise about three-fourths of tumors seen. Although AYA 

patients most commonly present with tumors in the ICCC 

(International Classification of Childhood Cancer) category 

of fibrosarcomas and related fibromatous entities (30%), 

patients in this age range can also present with tumors more 

common in young children and older adults.

A multitude of diverse tumor histologies are grouped 

together within the class of STSs. Based on WHO recom-

mendations, STSs are divided as follows: adipocytic tumors, 

f ibroblastic/myofibroblastic, so-called fibrohistiocytic 

tumors, smooth muscle tumors, pericytic (perivascular) 

tumors, skeletal muscle tumors, vascular tumors of soft tis-

sue, chondro-osseous tumors, GIST, nerve sheath tumors, 

tumors of uncertain differentiation, and undifferentiated/

unclassified sarcomas.1 With increasing understanding of the 

molecular drivers of cancer, these histologic distinctions have 

undergone numerous changes over the past several decades. 

Following this trend, tumors are increasingly being classified 

based on molecular characteristics rather than histopathologic 

appearance, starting with the 2002 classification and then 

further more in the 2013 updated version.1,5 RMS is a prime 

example of this trend, as it has been classified historically 

as either embryonal or alveolar based on histopathology but 

more recently as either translocation positive or transloca-

tion negative, based on the presence or absence of a fusion 

transcript involving the FOXO1 gene. This change reflects 

recent data suggesting that this molecular characteristic 

more accurately predicts disease biology and outcomes, with 

translocation-negative patients usually having less aggressive 

disease and better outcomes regardless of histopathologic 

classification.6–9 In comparison to RMS, many NRSTSs are 

still lacking clearly defined molecular characteristics. NRSTSs 

in adults are usually classified based on the aforementioned 

WHO classification, but ICCC is traditionally used for the 

classification of childhood tumors. This classification system 

is used in the  SEER program, and some of the STS tumors 

are not represented in this ICCC classification, because they 

do not appear in young children, even though they do occur 

in the AYA population, further complicating our ability to 

estimate STS incidence in the AYA population. Because of 

the diverse classification schemes and the overlapping age 

ranges in different epidemiologic studies, the exact distribu-

tion of STS subtypes in this age group is not known, but we 

have endeavored to compile the best available data, leaving 

out such entities as GIST and Kaposi’s sarcoma (Figure 1).

In addition to the variability in tumor classification sche-

mas, there is also variability in the staging systems used for 

the AYA group of patients. In pediatric studies, STSs are 

classified as low-risk, intermediate-risk, or high-risk tumors. 

There is no consensus yet whether the COG or the FNCLCC 

system is more predictive of clinical outcome, hence this 

evaluation is part of the most recent COG study for NRSTS 

(ARST0332). In contrast, in adults, STSs are usually staged 

based on the TNM classification following the AJCC10 or 

the UICC.11 Given these diverse classification and staging 

systems, characterization of STS in the AYA population is 

far from uniform, which often makes comparison of results 

between different studies difficult.

The etiology of NRSTS in AYA patients is rarely known, 

and the majority of these tumors are thought to be sporadic. 

Germline cancer predisposition syndromes, such as Li–Frau-

meni syndrome, neurofibromatosis, and Beckwith–Wiedeman 

syndrome, are sometimes associated with the development of 
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NRSTS. In utero exposure to marijuana or cocaine has been 

associated with childhood RMS,12 but it is unclear if this 

applies to the AYA group, given the delay between exposure 

and tumor initiation. In rare cases, radiation therapy, viral 

infections, or immune deficiency may play a causative role in 

the development of STS.1 In addition to the diversity in STS 

etiology, histology, and staging in AYA patients, this age group 

encompasses a large ethnic/racial and gender diversity in can-

cer incidence and distribution. Despite all of the differences 

between children and AYA patients, and between adults and 

AYA patients, historically, AYA patients are usually merged 

in clinical trials with either children (1–18 years), or adults 

(>16 years). The overall treatment outcomes are worse in AYA 

patients than in the pediatric population, and the AYA group 

is underrepresented in clinical trials.13,14 Among the proposed 

explanations for this observation is that these patients are being 

treated by either adult or pediatric oncologists, who may vary 

in their familiarity/unfamiliarity with studies in the “other” 

field; alternatively, there may be differences in biology (some 

tumors may respond better to adult protocols, while some may 

respond better on pediatric protocols). Only recently has the 

AYA cancer population received dedicated attention in study-

ing the incidence, biology, and outcomes of their cancers and 

their treatment. There is now an effort to specifically study the 

AYA population in clinical trials, but results are not yet readily 

available. Review of every STS histology in detail goes beyond 

the scope of this review. We review the therapies targeting the 

most common groups of STS (leaving out RMS and GIST, 

since treatment of these tumors differs radically from the treat-

ment of most NRSTSs), keeping in mind that much of the data 

presented here is extrapolated either from pediatric trials or 

from adult trials, rarely from AYA-focused trials.

Current state of the field
Despite our increasing understanding of the biology of these 

tumors, treatment options for NRSTSs are still limited. 

For most STSs, resection with 1–2  cm negative margins 

is the primary treatment modality.15 In a pediatric multi-

institutional study, patients with complete resection had the 

best outcome, with an OS of 85.1%, versus 35.3% for those 

who had incomplete resection. In this study, XRT increased 

OS in patients with incomplete resection to 68.7%.16 These 

findings are in agreement with adult Phase III studies where 

limb-sparing surgery in combination with XRT yields simi-

lar survival as amputation alone and, therefore, represents 

the current standard approach.17–19 Local recurrences can 

again be surgically approached.20 It has been shown that 

the likelihood of death is higher in unresectable tumors,21 

nevertheless local control is not always achievable despite 

aggressive surgical therapy. Definitive radiation therapy is 

Figure 1 Incidence of cancer (A) and soft tissue sarcomas (B) in the AYA population.
Notes: (A) Cancer incidence in 15–29-year-olds in the USA based on SEER data, 1975–2000. (B) STS incidence (excluding Kaposi sarcoma) in 15–29-year olds in the USA 
based on SEER data, 1975–2000. Miscellaneous includes STS with <1% incidence of total; small cell sarcoma 0.9%, chondrosarcoma (soft tissue) 0.8%, giant cell sarcoma 0.6%, 
desmoplastic small round cell tumor 0.6%, and others 7%. Modified from Bleyer et al.3

Abbreviations: ASPS, alveolar soft part sarcoma; AYA, adolescent and young adults; CNS, central nervous system; MPNST, malignant peripheral nerve sheath tumor; PNET, 
peripheral neuroectodermal tumor; SEER, Surveillance, Epidemiology, and End Results; STS, soft tissue sarcoma.
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recommended for patients in whom the tumor cannot be 

surgically removed, but with radiation as the primary treat-

ment modality, recurrence-free survival is only in the range 

of 30–40%.22–24 If the STS is unresectable, then neoadjuvant 

therapy with radiation therapy and/or chemotherapy is often 

recommended.25,26 Overall, it appears that some STS histolo-

gies are more chemosensitive than others. Clear classification 

regarding chemotherapy sensitivity and resistance has not 

been published, but, for example, synovial sarcoma is thought 

to be relatively chemotherapy sensitive, whereas MPNST is 

thought to be relatively chemotherapy resistant. More insight 

on this issue will hopefully emerge from the most recently 

completed COG trial for treatment of patients with NRSTS, 

ARST0332, since this was a primary aim of the study.

First-line chemotherapy regimens for treatment-naive 

patients usually consist of doxorubicin with or without 

addition of ifosfamide. Treatment of STS patients with 

doxorubicin alone showed similar OS but lower response 

rate and PFS compared to patients treated with doxorubicin 

in combination with ifosfamide.27,28 Similar studies showed 

higher antitumor activity, but not OS, with combination 

therapy. Based on the general notion that combination 

therapy is tolerable and potentially superior, the most recent 

NRSTS COG study, ARST0332, used doxorubicin with 

ifosfamide.29–32 As upfront therapy, docetaxel was found to 

be inferior to doxorubicin,33,34 but the combination of gem-

citabine with docetaxel has been successfully used as therapy 

for recurrent disease with or without bevacizumab.35–39 Also 

high-dose ifosfamide- and cyclophosphamide-based thera-

pies can be used in this setting; superiority of either has not 

yet been shown.40,41 In some cases of STS, even rechallenge 

with ifosfamide can be successful.42

Newer agents are being explored, including trabectedin, 

which causes DNA damage by binding to the N2 of guanine 

and affecting transcription regulation. Mechanisms of action 

are reviewed elsewhere.43,44 Trabectedin was approved in 

Europe in 2007 and by the US FDA in December 2015 for 

treatment of unresectable or metastatic liposarcoma and leio-

myosarcoma, based on several studies that showed encour-

aging results in patients with STS.45–48 In a Phase III trial of 

patients with metastatic liposarcoma or leiomyosarcoma who 

failed conventional chemotherapy, trabectedin was superior 

to therapy with dacarbazine.49 Maintenance therapy has also 

been investigated but has not improved outcomes. Recently, a 

Phase III trial of the mTOR inhibitor (ridaforolimus) versus 

placebo given as maintenance therapy showed an improved 

PFS but not OS.50 Because current therapy is very toxic and 

nonspecific and patients with chemotherapy resistant STS 

histologies might not derive any benefit at all, while experi-

encing adverse effects, it is crucial to investigate drugs that 

are more selective, hopefully less toxic, and that improve the 

survival of our patients with STS.

Definition of targeted therapy
The National Cancer Institute defines targeted therapies 

as “drugs or other substances that block the growth and 

spread of cancer by interfering with specific molecules (ie, 

‘molecular targets’) that are involved in the growth, progres-

sion, and spread of cancer”.51 Targeted therapy should not 

be mistaken as an invention of the past decade, even though 

agents have only been labeled “targeted” more often recently. 

Targeted therapies have been used in cancer therapy since 

the development of methotrexate, which specifically targets 

folate metabolism. Subsequently developed chemothera-

peutics more directly induced cell death via DNA damage, 

acting on all fast-dividing cells. Although this approach to 

chemotherapy has been successful for many malignancies, it 

has unfortunately so far not translated into high cure rates in 

high-risk sarcomas and carries the risk for significant adverse 

events. Furthermore, AYA patients are more prone to toxici-

ties from these nonspecific agents because they often require 

treatment intensification due to the biology of their disease 

and additionally experience more side effects with the same 

therapy than younger children.52 Moreover, AYA survivors of 

STS experience significant long-term side effects, including 

cardiotoxicity, infertility, and secondary malignancies.53–56 

Therefore, new therapies are urgently needed to improve 

short-term as well as long-term outcomes of AYA patients 

with STS. For the purpose of this review, we discuss targeted 

therapies as any therapy that directly targets a specific cell 

mechanism or cell surface marker unique or at least more 

prominent in cancer cells compared with normal tissue.

Several reports have shown the importance of tumor-

infiltrating macrophages in cancer in general and in STS in 

particular.57–61 Recently, the field of cancer therapy has broad-

ened to not only target the tumor cell itself but also target the 

microenvironment that helps the tumor thrive. One of these 

agents is mifarmutide or MTP-PE, a macrophage activator 

that has been studied mostly in bone sarcomas. The addition of 

MTP-PE to standard chemotherapy did not result in a statisti-

cally significant improvement in PFS in the study design used 

in the Intergroup 0133 trial,62 although in a post hoc analysis, 

the drug did appear to improve OS with a trend for improved 

event-free survival in nonmetastatic osteosarcoma.63 The anal-

ysis of the group of metastatic patients followed the same trend 

but did not reach statistical significance.64 A Phase II study 
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undertaken by the EORTC Soft Tissue and Bone Sarcoma 

Group did not show responses in patients with STS.65 Given the 

infancy of these tumor microenvironment-modifying agents 

in clinical studies, we will not include them in our review. The 

term “targeted therapy” could also be expanded to include 

nanoparticle and liposomal packaging of chemotherapeutic 

agents, as well as antibody-mediated drug delivery. The former 

has recently been reviewed in the context of osteosarcoma.66 

Even though these groups of agents present interesting treat-

ment approaches for patients with STS, discussion of these 

agents goes beyond the scope of this review. A summary of 

targeted therapies in STS can be found in Table 1.

Table 1 Summary of results of targeted therapies in STS

Class of drugs Drug studied Phases Main results References

TKI Imatinib II Response in GIST, not in other histologies 69,70
Dasatinib II Response in undifferentiated pleomorphic sarcoma, currently 

being studied in more indolent types of STS
71

Semaxinib II No significant anti-STS activity 75
Pazopanib II and III Approved by the US FDA for the treatment of STS as second-

line treatment. Pediatric and adult trials ongoing
76,77

Regorafenib II Improved OS and PFS in LMS and improved PFS in other 
sarcomas

86

Sunitinib I and II Activity in ASPS 92–94
Cediranib I/II Activity in ASPS 97
Vandetanib, gafetinib,  
and erlotinib

Preclinical and 
early clinical

Appeared promising in STS, but no conclusive studies yet 100–102

Sorafenib II No objective responses 105
Tivozanib II Response in metastatic and nonresectable STS (median 

follow‑up 5.5 months)
106

mTOR inhibitors Temsirolimus I Tolerable in combination with chemotherapy or other targeted 
agents. Phase II study results pending

108,109

Sirolimus II In combination with cyclophosphamide or pazopanib some 
patients with PR or SD

110,118

Everolimus I and II Investigated as monotherapy and in combination with 
figitumumab, or imatinib without RECIST response

115–117

Other pathways Histone deacetylase 
inhibitors; multiple agents

I and II SB939, abexinostat with or without doxorubicin, vorinostat 
with bortezomib: tolerable and indication of potential clinical 
benefit; panobinostat: 36% SDs and no CRs or PRs. Preclinical 
data encouraging

122–124, 
126,128,129

Heat-shock protein 90 
inhibitors; multiple agents

I Retaspimycin hydrochloride: SD (60% at 6 weeks and 18% 
at 12 weeks). AAG tolerable in children. Ganetespib with 
sirolimus under investigation

135,137

SINE I preclinical Tolerable, preliminary evidence of activity 139,141
Immunotherapy IGF-1R; multiple agents I and II Promising preclinically, but no consistent benefit in Phase II 

trials. Currently no further clinical studies
113,143–148

Bevacizumab I Alone and in combination with several traditional 
chemotherapeutics tolerable but clinical benefit unclear

35,150,151

Olaratumab I/II In combination with doxorubicin, improved PFS and OS, but 
mostly older adults

154

Ipilimumab Pilot Stopped early due to low accrual 156
Checkpoint inhibition Anti-PD-1 therapy promising in several solid tumors. First 

clinical trial in STS currently ongoing. Additional molecules 
targeting LAG2, Tim3, and BTLA4 emerging

Tumor vaccines; multiple 
targets

I Vaccine against SS18, GD2, GD3, and NY-ESO showed 
antibody induction. Phase II clinical data pending

170,171, 
173,174

Autologous T cell 
transfer (NY-ESO T cell 
receptor)

I In synovial sarcoma promising (four out of six with response). 
Follow-up study currently ongoing

176

CAR T cells Mostly tested in hematologic malignancies and some bone 
sarcomas, but potentially promising modality especially in 
combination with immune-modulatory therapeutics

Abbreviations: AAG, 17-N-allylamino-17-demethoxygeldanamycin; ASPS, alveolar soft part sarcoma; CAR, chimeric antigen receptor; CRs, complete remissions; FDA, 
Food and Drug Administration; GIST, gastrointestinal stromal tumor; IGF-1R, insulin-like growth factor-1 receptor; LMS, leiomyosarcomas; mTOR, mechanistic target of 
rapamycin; OS, overall survival; PFS, progression-free survival; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease; SINE, selective 
inhibitors of nuclear export; STS, soft tissue sarcoma; TKI, tyrosine kinase inhibitor.
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TKIs
Tyrosine kinases are enzymes involved in signal transduction 

and regulation of many cellular processes. These enzymes can 

be overactive in cancers, often through mutational activation, 

genetic rearrangements, or amplification. TKIs have been 

used in the treatment of several cancers and are currently 

being tested for the treatment of STSs. Imatinib (a multitar-

geted TKI) is most well known for its effects in Ph+ chronic 

myelogenous leukemia;67 further promising results were then 

seen in patients with GIST.68 Similarly, the EORTC Soft Tis-

sue and Bone Sarcoma Group conducted a Phase II trial of 

imatinib where responses were seen in patients with GIST but 

not in other types of STS.69 Later, imatinib was evaluated in 

ten histologic subtypes of sarcoma by SARC. Despite suffi-

cient patient numbers in each group and some rare responses, 

evaluation via a Bayesian hierarchical model did not support 

further evaluation of imatinib as monotherapy for STS.70 

Dasatinib is a TKI (with activity against BCR-ABL, Src, and 

others), which has also been evaluated in STS. Among the 

more aggressive STS histologies, responses were seen only in 

undifferentiated pleomorphic sarcoma,71 but results of a study 

investigating dasatinib in more indolent types of STS, includ-

ing ASPS, chondrosarcoma, chordoma, epithelioid sarcoma, 

and solitary fibrous tumor, are expected to be available soon. 

Angiogenesis plays an important role in tumor growth and 

metastasis,72 and VEGF has been shown to be overexpressed 

in some STSs.73,74 Therefore, VEGF inhibition through TKI 

and monoclonal antibodies (discussed below) has been 

pursued as one avenue to target STS. Even though SU415 

(semaxinib) did not provide significant antitumor activity,75 

pazopanib, a multikinase inhibitor with strong antiangiogenic 

effects, was found to have a more favorable profile. The PAL-

ETTE study, a Phase III study evaluating 369 adult patients 

with nonadipocytic STS who failed standard chemotherapy, 

showed prolonged median PFS and OS with pazopanib com-

pared to placebo.76,77 Pazopanib was approved by the FDA in 

2012 for the treatment of patients with STS who have received 

prior therapy. Based on these encouraging results, a Phase I 

study was performed by COG in pediatric patients; this study 

demonstrated tolerability in children with sarcoma.78 A Phase 

II study in pediatric patients with relapsed or refractory solid 

tumors is currently ongoing (NCT01956669). The combina-

tion of pazopanib with standard chemotherapy or radiation 

appears promising. Pazopanib in combination with paclitaxel 

in breast cancer patients in the neoadjuvant setting follow-

ing doxorubicin and cyclophosphamide treatment showed 

activity but was associated with significant toxicity.79 A study 

evaluating pazopanib in combination with cyclophospha-

mide in ovarian cancer patients has been completed, and the 

results are currently pending.80 Pazopanib in combination 

with gemcitabine and docetaxel as neoadjuvant therapy for 

STS showed increased toxicity, but firm conclusions cannot 

be drawn since this study consisted of five patients only and 

closed early due to slow accrual.81 A randomized Phase II 

study treating STS patients with gemcitabine in combination 

with either pazopanib or docetaxel is ongoing and accruing 

well (NCT01593748). Furthermore, the addition of pazo-

panib to ifosfamide and doxorubicin in combination with 

radiation therapy is being studied in a COG trial enrolling 

pediatric and adult NRSTS patients (ARST1321). Finally, 

serum cytokines and angiogenic factors at baseline associated 

with pazopanib-specific toxicities and efficacy that might 

serve as biomarkers in future clinical trials or in routine 

clinical treatment of patients with STS have been reported.82

Regorafenib is another multitargeted TKI, with activity 

against angiogenic, stromal (VEGFR1–3, TIE2, FGFR1, and 

PDGFR-β), oncogenic (KIT and RET), and intracellular sig-

naling (RAF1 and B-RAF) kinases among others, currently 

in Phase II trial (REGOSARC) for STS83 after showing 

activity in both colorectal cancer and GIST in Phase III tri-

als.84,85 Preliminary results from REGOSARC demonstrated 

improved PFS and OS in patients with leiomyosarcoma and 

improved PFS in those with other sarcomas.86 Sunitinib is 

a TKI-targeting kinases in the PDGFR family, VEGFR and 

RET.87–89 Sunitinib was initially studied in renal cell carci-

noma90 and GIST.91 It has activity as a single agent in a small 

group of patients with ASPS92,93 and in STS when combined 

with radiation.94,95

Cediranib is a TKI with activity against VEGFR1–3 and 

KIT that has been investigated in GIST and STS and caused 

reduced FDG-PET activity in four out of six patients with 

ASPS but no overall reductions in SUVmax.96 A larger Phase 

II prospective trial found an ORR of 35% and a disease control 

rate of 84% at 24 weeks in patients with ASPS treated with 

single-agent cediranib.97 Cediranib is tolerable in children 

and adolescents with solid tumors.98 In the PPTP, cediranib 

appeared to have an effect in combination with mTOR inhibi-

tion.99 Several other TKIs are in the early stages of evaluation. 

Vandetanib and gefitinib appeared promising in preclinical 

models.100 Gefitinib, a small molecule inhibitor of EGFR, was 

shown to be well tolerated in children in a Phase I study.101 

Gefitinib tested in patients with solid tumors other than STS 

increased the bioavailability of oral irinotecan,102 which might 

benefit the group of patients with STS. Erlotinib, another small 

molecule inhibitor of EGFR, in combination with doxorubicin, 

seemed favorable in preclinical studies.103 Erlotinib as a single 
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agent followed in combination with temozolomide was toler-

ated in a Phase I study that included 18 pediatric patients with 

STS.104 Sorafenib used in Wilms tumor and RMS was tolerated, 

but no objective responses were observed.105 Tivozanib, a TKI 

with activity against VEGFR1–3 was well tolerated and showed 

some responses in a Phase II study in patients with metastatic 

and nonresectable STSs.106 One has to keep in mind that tar-

geted therapies might harbor side effects specific to the AYA 

group. Antiangiogenic agents, for example, in addition to their 

nonspecific side effects (skin, hepatic, and gastro-intestinal), 

were found to have an effect on the development of the growth 

plate.107 Although it is tempting to believe that these “targeted” 

agents are more tumor specific and therefore less toxic to 

patients, these hopes have not been borne out in clinical trials 

and in routine use, and toxicity remains a major concern.

mTOR inhibitors
Additional agents target specific pathways that are known to be 

upregulated in STS. mTOR is a part of two multiprotein com-

plexes, mTORC1 and mTORC2, that signals downstream of 

PI3K/AKT, affecting many processes important for cancer cell 

survival. Rapamycin and its analogs (rapalogs) inhibit mainly 

mTORC1, and only after long-term treatment, mTORC2 as 

well. A full review of this pathway and its inherent complexity, 

including feedback mechanisms, goes beyond the scope of this 

review. A Phase I study of temsirolimus in combination with 

irinotecan and temozolomide in children and adolescents with 

relapsed and refractory solid tumors included RMS patients. 

The combination was tolerable in children and adolescents.108 

Temsirolimus was further tested in combination with liposo-

mal doxorubicin in patients with recurrent and refractory bone 

sarcomas and STSs. Here, increased exposure to sirolimus 

(active metabolite of temsirolimus) was seen when patients 

were concurrently treated with liposomal doxorubicin.109 

Results of the Phase II study are forthcoming. Another 

Phase II study evaluated sirolimus and cyclophosphamide 

in the treatment of advanced sarcoma. A majority of patients 

had STS. Though the regimen resulted in PR or SD in some 

patients, it was overall deemed not superior to other “active” 

regimens.110 Based on the notion that mTORC2 is minimally 

affected by rapalogs and that negative feedback mechanisms 

exist, combinations with upstream signaling pathways have 

been tested. Temsirolimus was tested in a Phase I trial in 

combination with EKB-569, an EGFR inhibitor, in patients 

with unresectable tumors. This study included one patient with 

ASPS who reached a PR for three cycles. Overall, no CRs 

were seen and the combination caused significant toxicity.111 

Temsirolimus in combination with cixutumumab (an antibody 

against IGF-1R) was first tested in an adult Phase I trial112 and 

subsequently in pediatric and AYA patients with recurrent and 

refractory sarcomas and showed tolerability.113

Another mTOR inhibitor, everolimus, was tested in com-

bination with figitumumab, a monoclonal antibody against 

IGF-1R, in advanced sarcomas and other solid tumors. Similar 

to other IGF-1R studies, overall response was limited, without 

CRs, but strong PRs were seen in a small number of patients.114 

Everolimus monotherapy again was tolerable in sarcoma 

patients after the failure of anthracyclines and ifosfamide but 

had only moderate antitumor activity.115 Combining everolimus 

with imatinib appeared beneficial in a case report in synovial 

sarcoma,116 but a Phase Ib/II study failed to achieve responses 

based on RECIST in synovial and other STS patients (though 

three patients had SD), so this combination might be effective 

in a subgroup of patients.117 When sirolimus was added to 

pazopanib in nine patients with metastatic unresectable high-

grade STS who had previously failed pazopanib monotherapy, 

one PR, four SDs, and four PDs were seen, with a median PFS 

of 5.5 months. This combination might prolong the effective 

phase of pazopanib but has to be evaluated in larger clinical 

trials.118 These trials are currently ongoing in solid tumors 

(NCT01072890 and NCT01184326). Ridaforolimus was 

tested as monotherapy in patients with STS and showed clini-

cal benefit responses (defined as CR, PR, or SD) in 21.1% of 

patients, but only one patient in the cohort of other STS showed 

a PR and there were no CRs observed.119

Drugs that target other pathways
AYA sarcomas are distinct from adult carcinomas in their 

genetic and epigenetic characteristics. While adult carcino-

mas often have a significant mutational burden, gene muta-

tions in sarcomas appear to be less frequent,120 and therefore, 

epigenetic alterations might have a stronger influence on 

sarcomagenesis.121 HDAC inhibitors are a particularly prom-

ising group of epigenetic modifiers. These drugs have been 

used more in the setting of hematologic malignancies but are 

increasingly being evaluated in patients with solid tumors. 

A Phase II trial using SB939 in patients with recurrent or 

metastatic translocation-associated STS showed tolerability, 

but efficacy could not be evaluated due to unavailability of 

the drug.122 The same drug was tested in a Phase I pediatric 

trial in patients with refractory solid tumors. The majority of 

patients had Ewing’s sarcoma, but the drug appeared to be 

well tolerated.123 Another Phase I study again showed toler-

ability of abexinostat in combination with doxorubicin.124 

The combination of vorinostat with bortezomib (a protea-

some inhibitor) was tested in a Phase I study of patients with 
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advanced solid tumors and appeared to have a favorable side 

effect profile, with some clinical responses.125 Panobinostat 

was evaluated in a Phase II trial in patients with advanced 

previously treated STS. A total of 36% of patients achieved 

SD, while no PRs were seen.126 General tolerability of HDAC 

inhibitors in the pediatric population has been shown in a 

Phase I study of vorinostat.127 Preclinical studies in epithe-

lioid sarcoma128 and MPNST129 are encouraging, providing 

further impetus to explore these drugs in the clinical setting.

Hsp90 is a member of the heat shock group of molecular 

chaperones involved in the maintenance of protein folding 

and assembly.130,131 Due to the ubiquitous requirement for heat 

shock protein function in signal transduction pathways, and 

in the proliferation and maintenance of cancer cells, agents 

targeting Hsp90 have been developed.132–134 One Phase I study 

of an Hsp90 inhibitor, retaspimycin hydrochloride (IPI-504), 

included STS patients. A total of 60% of patients with STS 

showed SD for at least 6 weeks, but only 18% at 12 weeks.135 

Severe hepatic toxicity was noted in a Phase III trial of the 

same drug (NCT00688766), which prompted change in dos-

ing.136 The Hsp90 inhibitor 17-AAG was found to be well 

tolerated in pediatric patients, though the study included only 

one patient with STS (DSRCT).137 Ganetespib in combina-

tion with the mTOR inhibitor sirolimus is currently under 

investigation for patients with unresectable sarcomas and 

MPNST, in a SARC Phase I/II study (NCT02008877).

SINE inhibitors are a new group of small molecules that 

target nucleocytoplasmic transport.138 Selinexor has shown 

preclinical activity in sarcomas,139 with preliminary evidence 

of activity in STS patients,140 and furthermore appears to be 

tolerable in children.141

Immunotherapy
Immunotherapy to treat cancer has been explored for sev-

eral decades and was initially restricted to immunogenic 

tumors. In the early stages, IL-2 therapy was considered 

as a breakthrough in melanoma therapy. When applied to 

sarcomas, some responses were seen in osteosarcoma but 

not in STSs.142 Cancer immunotherapy has since expanded, 

and antitumor immunity can be achieved by several means: 

transfer of preformed antibodies (which can either be 

directly therapeutic, for example, trastuzumab, or can indi-

rectly target cancer cells, for example, immune checkpoint 

inhibitors), vaccine strategies that activate host T cells 

in vivo, or adoptive transfer of in vitro activated T cells. 

Recently, several new immunotherapeutic targets were 

found in STS that may allow more widespread application 

of immunotherapy to sarcomas.

Monoclonal antibodies
Therapy with monoclonal antibodies, such as alemtuzumab 

(CD52), trastuzumab (HER2), brentuximab vedotin (CD30), 

rituximab (CD20), and blinatumomab (CD19 and CD3), 

has revolutionized the treatment of many cancers. IGF-1R 

is a target that was thought to be ideal in bone sarcomas and 

was therefore tested with much enthusiasm in STSs as well. 

One antibody targeting IGF-1R, cixutumumab, was used 

in a Phase II trial for children with refractory or recurrent 

solid tumors. Of the 20 patients with RMS, one patient had 

a PR, and none of the ten patients with synovial sarcomas 

responded.143 Since it had previously been seen that cixu-

tumumab had better efficacy in combination with mTOR 

inhibitors,144,145 it was combined with temsirolimus in an adult 

Phase II study enrolling AYA patients with chemotherapy-

refractory sarcomas. Even though the primary endpoint of 

PFS at 12 weeks was reached in 31–39% of patients, no CRs 

were seen and only 2–3% of STS patients achieved a PR.112 

A Phase II COG study of the same combination showed 

equally disappointing results, and based on limited drug 

availability (related to the failure of these agents in clinical 

trials treating a variety of carcinomas), no further studies of 

this combination are currently underway.113

Based on these initial exciting preclinical data, sev-

eral other agents targeting IGF-1R were tested as single 

agents in Phases I and II clinical trials. Most of them 

showed great responses in singular patients, but no benefit 

overall in larger cohorts. These agents include R1507,146 

AVE1642,147 MK-0646,148 and ganitumab alone or in combi-

nation with conatumumab (death receptor 5 agonist).149 These 

results suggest that agents targeting IGF-1R might benefit 

a small subset of patients, but our current understanding of 

the biology of these tumors does not allow for selection of 

these patients yet.

Additional monoclonal antibodies with different targets 

have also been tested. As discussed earlier, inhibition of angio-

genesis is thought to be a promising approach to treating STS. 

Bevacizumab, an anti-VEGF antibody, was tested in combina-

tion with docetaxel and gemcitabine in chemotherapy-naive 

patients. It was well tolerated, but its clinical effect was 

unclear in this Phase Ib study.35 Pediatric studies have evalu-

ated bevacizumab in combination with irinotecan alone,150 

or in combination with VOIT (vincristine, oral irinotecan, 

and temozolomide).151 In these studies, the treatments were 

tolerable, but benefit was unclear. Among STS, HER2 expres-

sion was found in synovial sarcomas152 and trastuzumab was 

found to be tolerable in the pediatric age group in a Phase II 

study of patients with Ewing’s sarcoma and osteosarcoma, but 
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efficacy in STS remains controversial153 and there have been 

no other prospective clinical trials published in STS patients.

In a Phase Ib/II study, olaratumab, a PDGFR-a inactivat-

ing monoclonal antibody, in combination with doxorubicin 

was compared with doxorubicin monotherapy in patients with 

unresectable or metastatic STS without prior anthracycline 

treatment. The olaratumab arm showed improved median PFS 

and median OS.154 Although encouraging, these results might 

be difficult to apply to children and AYA patients since the 

youngest patient in the study was 22 years old, with a median 

age of 58.5 years, with a slightly different spectrum of STS 

histologies than one would expect in the AYA population.

PD-1 and CTLA-4 mediate T-cell-inhibiting signals 

and have been found to be present in tumors, impairing the 

natural immunity against cancer. Inhibition of these pathways 

leads to T-cell activation. This approach showed promising 

results in melanoma and was translated successfully to sev-

eral other solid tumors. Initially, ipilimumab, an antibody 

against CTLA-4, was developed for therapy in metastatic 

melanoma.155 Ipilimumab was then tested in synovial sarcoma 

patients in a pilot study, but the study was stopped due to 

slow accrual, no response based on RECIST, and lack of an 

immune response (only six patients enrolled).156

TILs have been demonstrated in sarcomas, and while 

PD-L1 expression did not correlate with aggressive features 

or clinical outcome,157 targeting this pathway might prove use-

ful in STS. Monoclonal antibodies were designed that block 

the inhibitory signal of PD-1 on T cells, thereby activating 

T-cell responses. Pembrolizumab, an anti-PD-1 antibody, 

demonstrated activity in melanoma and was approved by the 

FDA in September 2014.158 The results of the first trial of anti-

PD-1 monotherapy utilizing pembrolizumab in patients with 

advanced sarcomas (SARC028) were presented at the annual 

meeting of the American Society for Clinical Oncology in 

2016 (Chicago, IL, USA) and showed limited activity, with 

infrequent responses seen in patients with osteosarcoma, pleo-

morphic sarcoma, liposarcoma, and chondrosarcoma. Another 

PD-1 inhibitor, nivolumab, was initially approved for the treat-

ment of melanoma by the FDA in 2014.159,160 Several trials 

show activity in other solid tumors,161,162 and it gained approval 

in non-small-cell lung cancer, renal cell carcinoma, and Hodg-

kin lymphoma shortly thereafter. In melanoma, it has been 

shown that the combination of anti-PD-1 and anti-CTLA-4 

therapy is superior to monotherapy with either agent and also 

caused increased toxicity.163 Chan et al found that responders 

and nonresponders to anti-PD-1 therapy in melanoma can be 

grouped based on their mutation and neoepitope signatures.164 

This approach might increase our ability to select patients with 

higher likelihood of responding to immune checkpoint therapy. 

New checkpoint inhibitors are currently under investigation, 

including molecules targeting LAG3, Tim3, and BTLA4. One 

could also envision the combination of immune checkpoint 

blockade and vaccine trials (decrease immune evasion and 

increase cytotoxic T cells),165 conventional chemotherapy (eg, 

doxorubicin, which is thought to result in immunogenic cell 

death and already proven to be useful in many STSs), HDAC 

inhibitors,166 or radiation therapy.167

Tumor vaccines
Synovial sarcoma is an attractive tumor for immunotherapeutic 

approaches because it expresses the cancer testis antigen NY-

ESO-1 at a frequency approaching 100%.168,169 Other tumor 

antigens overexpressed in STSs are SSX2/3, MAGE, GAGE, 

and WT1. Also, fusion protein expression in STS (such as 

SS18-SSX in synovial sarcoma, PAX3/7-FOXO1 in RMS, 

TLS-CHOP in myxoid liposarcoma, and EWSR1 in clear cell 

sarcoma, myxoid chondrosarcoma, DSRCT, and others) can 

potentially be used as selective immunotherapy targets. Vac-

cine trials targeting SS18 in patients with synovial sarcoma 

showed immunologic responses,170 and a subsequent clinical 

trial showed SD in vaccination groups.171 Gangliosides GD2 

and GD3 are expressed in many sarcomas,172 and vaccine tri-

als in sarcoma patients targeting these antigens elicit immune 

responses.173 A randomized Phase II clinical trial examining 

a trivalent GM2, GD2, and GD3 vaccine in patients with 

metastatic disease, rendered disease-free after surgery, showed 

antibody induction but no change in PFS. Follow-up for OS 

is ongoing, and results so far have only been published as an 

abstract.174 Dendritic cell vaccines have been tested in a Phase 

I clinical trial in children with solid tumors and sarcomas and 

appear to be well tolerated and result in responses in some of 

the children.175 As an alternative to relying on active immu-

nization, autologous T cells transduced with an NY-ESO-1 

T-cell receptor have been adoptively transferred to six patients 

with synovial cell sarcoma. Four had a response and one had 

a durable response for 18 months.176 A follow-up study is 

currently recruiting patients with sarcomas (NCT02319824).

CAR T cells
Another targeted therapy approach pioneered in hematologic 

malignancies is the use of CAR T cells. These are T cells 

that have been transduced with a genetically engineered 

T-cell receptor with a specific, targeted extracellular anti-

gen recognition domain, a transmembrane domain, and an 

intracellular signaling domain.177 Even though CAR T cells 

have shown great promise in hematologic malignancies, 
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this success has not yet been translated to solid tumors 

or sarcomas. Thus far, the CAR T cell experience in STS 

is limited. CAR T cells directed at the fetal acetylcholine 

receptor to target RMS have been developed but have not 

gone beyond the preclinical testing phase.178–180 CAR T 

cells are under investigation in bone sarcomas targeting 

GD2 in Ewing’s sarcoma and osteosarcoma and HER2 in 

osteosarcoma.181,182 One Phase I trial that included mostly 

patients with bone sarcomas, but one patient with DSRCT, 

showed tolerability of HER2 CAR T cells.183 In solid tumor 

CAR T cell therapy, the tumor microenvironment seems 

to interfere with proper T cell function184 and this might 

also apply to sarcomas.179 New approaches incorporating 

immune-modulatory strategies, such as PD-1 or gamma 

delta T cells into CAR T cell therapeutic approaches,185–187 

are being investigated.

Conclusion
STSs in pediatric and AYA patients remain a therapeutic chal-

lenge. Many targeted agents are on the horizon, but none have 

provided the long anticipated breakthrough direly needed 

for these patients. For now, therapy is still mostly based on 

surgery, radiation therapy, and traditional chemotherapy 

approaches. Especially in our pediatric and AYA population, 

even when cure can be achieved, long-term side effects are 

significant. Obstacles to improvements in the field are low 

patient numbers (and therefore slow accrual to clinical tri-

als) and tremendous differences in tumor biology among 

histologic subtypes (grouping of tumors in clinical trials with 

vastly different responses to therapy). Our knowledge of the 

biology of these tumors has increased tremendously over the 

last two decades, and there is hope that further advances in our 

understanding will continue to produce targeted agents that 

can be tailored to the molecular drivers in various histologic 

subtypes of STSs.
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