
REPORT

Subunit mass analysis for monitoring antibody oxidation
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ABSTRACT
Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs).
Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is
commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-
throughput, automated subunit mass analysis method was developed to monitor antibody methionine
oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three
individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed
phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass
spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted
mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated
well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit
method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this
application allows automated data acquisition and processing, which makes this method suitable for high-
throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the
different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it
attractive for investigating the root cause of oxidation.

Abbreviations: CDR, complementarity-determining region; DP, drug product; DTT, dithiothreitol; FcRn, neonatal Fc
receptor; HC, heavy chain; HIC, hydrophobic interaction chromatography; HPLC, high-performance liquid chroma-
tography; IEX, ion-exchange chromatography; IgG, immunoglobulin G; LC, light chain; LC-MS, liquid chromatogra-
phy-mass spectrometry; mAb, monoclonal antibody; MS, mass spectrometry; PTM, posttranslational modification;
RP-UPLC, reversed phase-ultra performance liquid chromatography; RSD, relative standard deviation; scFc, single
chain Fc
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Introduction

Oxidation is a common posttranslational modification (PTM)
of monoclonal antibodies (mAbs). While oxidation of thera-
peutic antibodies can occur on tryptophan, lysine, cysteine, or
histidine residues, methionine (Met) residues are often the
most susceptible to oxidation. Oxidation in the complementar-
ity-determining region (CDR) can reduce the antigen binding
and potency of mAbs.1 In addition, oxidation of heavy chain
(HC) Met252 and HC Met428 residues in the Fc domain is
known to affect the higher order structure,2 thermal stability,2,3

protein A binding,4,5 and FcRn binding of mAbs,2,4,6-8 which
can lead to reduced serum half-life.9

Traditional methods used for oxidation analysis have limita-
tions. For example, peptide mapping with mass spectrometry (MS)
analysis can provide multi-attribute analysis with residue-specific
quantitation,10-13 but requires lengthy sample preparation and
complicated analysis.14 Reversed phase liquid chromatography
(RP-LC),15-18 hydrophobic interaction (HIC)19-21 and protein A

chromatography,22 or more recently, mixed-mode chromatogra-
phy with size exclusion and HIC23 have also been used to monitor
oxidation. Methionine oxidation located in the Fab domain has
been also shown to be detectable by IEX-HPLC.24 These techniques
provide faster turnaround, but in some cases, lack the specificity or
sensitivity for reliable quantitation of oxidation levels.

In recent years, middle-down LC-MS approaches using anti-
body fragments (light chain (LC), scFc and Fd’ subunits) gener-
ated by digestion with protease IdeS have gained popularity.
Specific digestion of mAbs with IdeS generates smaller subunits
(»25 kDa), which allows high-resolution mass analysis and eas-
ier data interpretation.25-30 These IdeS-based approaches facili-
tated development of more sensitive and specific methods for
detecting and monitoring quality attributes of mAbs, including
identity,15,31-33 glycosylation,26,32,34-37 glycation,38 oxidation,15,16

C-terminal lysine26,39 and cysteinylation.40 Studies also explored
IdeS as a useful tool for quick and robust characterization of
drug-to-antibody ratios in antibody-drug conjugates.41,42
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Although oxidation analysis using the subunit mass method
has been explored in the past, the quantiation of oxidation lev-
els relied mainly on chromatographic separation with UV-
based quantitation.15-18 As a result, gradient conditions need to
be optimized for each product to ensure good resolution of the
oxidized and non-oxidized forms. Direct quantiation of oxida-
tion levels using mass spectrum remains a challenge due to the
potential interference of water (C18 Da) and sodium (C23 Da)
adducts. Here, we describe for the first time the development
and qualification of a subunit mass analysis method that is
capable of quantifying the oxidation levels based on mass spec-
trum alone. This platform method has higher throughput than
peptide mapping, requires little sample preparation, which
minimizes method artifacts, and can be used to measure oxida-
tion of mAb products. Samples can be prepared and analyzed
in 15 min, which makes it suitable for at-line process monitor-
ing or product characterization support. More importantly, MS
hardware and software used in this application are compliant
with good manufacturing practices, which makes them suitable
to use in a regulated environment.

Results

Analytical workflow for subunit mass analysis

As shown in Fig. 1A, samples were first treated with the EndoS
and IdeS enzymes. IdeS cleaves mAbs in the lower hinge region
between two glycine residues, creating a F(ab’)2 and two single
chain Fc (scFc) domains.28,43 EndoS cleaves between the first
two N-acetylglucosamine residues of N-linked sugars on the
heavy chain and eliminates the mass heterogeneity due to N-
linked glycosylation.44,45 Dithiothreitol (DTT) was then added
to reduce the protein fragments and generate the three subunits
(LC, Fd’ and scFc). Digested samples were analyzed by reversed
phase-ultra performance liquid chromatography (RP-UPLC)/

MS using Waters I-class ACQUITY UPLC coupled to Xevo
G2-XS quadrupole time-of-flight mass spectrometer. Mass
spectra were deconvoluted by the MaxEnt1 function using the
Waters UNIFI software as shown in Fig. 1B. The spectra col-
lected across a chromatographic peak were summed, deconvo-
luted and centered using an automated workflow. Peaks were
identified by matching the experimental masses with the theo-
retical masses for oxidized and non-oxidized subunits and
quantitated from the peak height intensities of the deconvo-
luted and centroid spectra. To determine the percentage oxida-
tion, results for the oxidized species were divided by the total
peak intensities of oxidized and non-oxidized species using the
following equation: % oxidation D (summed intensity of the
oxidized species/summed intensities of the oxidized and non-
oxidized species)�100. Summarized results can be presented in
customized PDF reports using the UNIFI software.

Separation of mAb subunits by RP-UPLC

A quick and robust UPLC method was developed to separate
the IgG subunits for routine mass analysis of methionine oxida-
tion. As shown in Fig. 2, RP-UPLC could effectively separate
the Fd’, scFc and LC subunits from IgG1, IgG2 and IgG4 anti-
bodies. In each case, the scFc subunit eluted first, followed by
the LC and Fd’ subunits. These results indicated that the same
15 min platform RP-UPLC method could be used for subunit
mass analysis of mAbs from the three major IgG subclasses.
Furthermore, high levels of oxidation had little effect on the
elution profiles of three subunits. As shown in Fig. 3, the RP-
UPLC elution profiles of an untreated mAb-A control sample
and oxidized samples treated with 250 mM and 750 mM perace-
tic acids were very similar. Therefore, mass spectra for the oxi-
dized and non-oxidized species can be averaged, deconvoluted
and centered together in order to calculate the relative percent-
age of oxidation.

Figure 1. Workflow for subunit mass analysis: sample preparation (A) followed by automated RP-UPLC-MS analysis (B).
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Subunit mass analysis to monitor methionine oxidation

Methionine oxidation leads to a 16 Da mass increase, which
can be easily resolved and detected using subunit mass analysis.
To generate the oxidized samples for analysis, mAb-A was
incubated for 2 hr at 30�C with increasing concentrations of
peracetic acid (0-500 mM), which specifically oxidizes methio-
nine residues. Peptide mapping experiments confirmed that
only 3 methionines in the Fc region of mAb-A, Met257,
Met363 and Met433, were susceptible to oxidation by peracetic
acid (data not shown), similar to previous studies using H2O2

or tert-butyl hydroperoxide as the oxidizing reagent.3,14,15,46,47

The chemically oxidized mAb-A samples were digested with
IdeS and EndoS, reduced with DTT and analyzed by RP-
UPLC-MS. Masses corresponding to the unmodified scFc sub-
unit (scFc non-ox) and the scFc subunit with one oxidized
methionine (scFc C 1-ox), two oxidized methionines (scFc C
2-ox) and three oxidized methionines (scFc C 3-ox), were
detected after deconvolution of the mass spectrum for the scFc
peak. The observed mass increases associated with oxidation of
one methionine, two methionine and three methionine residues
were 16 § 2 Da, 32 § 2 and 48 § 2 Da, respectively. As shown

in Fig. 4A, the relative percentages of the 1-ox, 2-ox and 3-ox
species increased with increasing concentrations of peracetic
acid. Furthermore, there was a strong linear correlation (R2 of
0.98) between total oxidation of the scFc subunit measured by
subunit mass analysis and the concentration of peracetic acid
(Fig. 4B).

Importantly, total scFc oxidation measured by subunit mass
analysis correlated well with the HC Met257, HC Met363 and
HC Met433 oxidation measured by peptide mapping (Fig. 5).

The method worked equally well for measuring oxidation on
the other IgG subunits. There are multiple methionine residues
on all three subunits of mAb-B that were susceptible to

Figure 2. RP-UPLC analysis of IgG subunits from IgG1 (mAbs-A, B, and C), IgG4 (mAbs-D and E) and IgG2 (mAb-F).

Figure 3. Impact of oxidation on the elution profiles of mAb subunits. UPLC pro-
files are presented for the mAb-A control sample and samples treated with 250mM
and 750 mM peracetic acid for 2 hr at 30�C (top to bottom).

Figure 4. Overlaid deconvoluted mass spectra of the scFc subunit from mAb-A
treated with different concentration of peracetic acid (A). To generate oxidized
samples for analysis, mAb-A was incubated for 2 hr at 30�C with increasing con-
centrations of peracetic acid (0–500 mM). The sum of 1-ox, 2-ox and 3-ox species
shown in panel A was plotted as a function of peracetic acid concentration (B).
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oxidation by peracetic acid, and oxidized species were detected
in all three subunits (Fig. 6A). Using subunit mass analysis, we
were able to establish strong correlations between the concen-
tration of peracetic acid and the percentage oxidation on all
three subunits (Fig. 6B). Thus, results for oxidation of multiple
residues on all three subunits can be obtained from a single
experiment.

Similar to results presented in Fig. 5, subunit mass results for
oxidation at multiple sites on the LC correlated well with pep-
tide map results. As shown in Fig. 7, the total levels of LC oxi-
dation measured by subunit mass analysis correlated well with
the levels of LC Met32 and LC Met50 oxidation measured by
peptide mapping.

Qualification of the subunit mass analysis method for
measuring oxidation

For routine usage, results obtained by subunit mass analysis
should have good precision. As shown in Table 1, the relative
standard deviation (RSD) for column-to-column, day-to-day
and analyst-to-analyst variabilities were less than 10% and the
overall intermediate precision of the method was only 8.4%.
These results demonstrated that the subunit mass assay is a reli-
able assay for the routine quantitation of methionine oxidation.

Quantitation of methionine oxidation induced by photo
and chemical stress

One unique advantage of the subunit mass method is that mul-
tiple modifications on the same IgG subunit can be monitored
simultaneously. Such information cannot be obtained via pep-
tide mapping analysis, since HC Met257 and HC Met433 are
located on two different tryptic peptides. Consistent with previ-
ous reports,15,48 scFc oxidation induced by chemical stress such
as peracetic acid primarily produced scFc C 1-ox species (theo-
retical mass 24152 Da, observed mass 24153 Da) (Fig. 8B),
whereas oxidation induced by photo stress primarily produced
scFc C 2-ox species (theoretical mass 24168 Da, observed mass
24169 Da) (Fig. 8C). These results suggested that oxidation
induced by peracetic acid occurred at both methionines inde-
pendently, whereas oxidation induced by free radical–induced
photo degradation at one site led to rapid oxidation of two
adjacent methionine residues on the antibody HC (Fig. 8D).

The different pattern of scFc oxidation induced by chemical
and photo stress suggested that subunit mass analysis can help
to diagnose the root cause of methionine oxidation. In one case
study, mAb-A drug product (DP) vials stored in the front rows
of semi-translucent trays turned slightly yellow after extended

Figure 5. Correlation of scFc oxidation results by peptide mapping and subunit
mass analysis. Levels of Met257, Met363 and Met433 oxidation quantified by pep-
tide mapping were plotted as a function of total oxidation on scFc quantified by
subunit mass analysis.

Figure 6. Three subunits of mAb-B with indicated methionine residues and corresponding deconvoluted mass spectra for the sample treated with 500mM peracetic acid
(A). The sum of 1-ox and 2-ox species in Panel A was plotted as a function of peracetic acid concentration (B).
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storage in a lighted warehouse, whereas vials stored in the mid-
dle and back rows remained colorless. Visual inspection of the
overlaid deconvoluted scFc subunit mass spectra (Fig. 9) indi-
cated that the front row sample had an oxidation profile similar
to the photo stressed sample. This sample contained 8.8% 2-ox
species and only 3.2% 1-ox species, which suggested that two
methionine residues simultaneously oxidized under the photo
stress condition due to excessive light exposure (Table 2). On
the other hand, the oxidation profiles and oxidation levels of
the middle and back row samples were similar to the unstressed
control. These results indicated that DP oxidation and the asso-
ciated color change was caused by excessive light exposure, use-
ful information that could not be obtained directly from
peptide mapping analysis. This finding was later confirmed by
another analysis, which indicated the photo degradation as the
root cause for protein oxidation and DP color change.

Discussion

A high-throughput and automated subunit mass analysis
method was developed and qualified to monitor antibody oxi-
dation. Automation of data acquisition combined with short
sample preparation and chromatography steps allows the anal-
ysis of nearly 96 samples per day.

Although subunit-based oxidation analysis has been previ-
ously reported,15-17 most of these methods relied on chro-
matographic separation of the oxidized species and UV-based

Figure 7. Correlation between percent total oxidation on LC quantified using subunit
mass analysis and percent oxidation on LCMet32 andMC50 by peptidemapping.

Table 1. Summary of assay qualification results. The average results § 3 SDs and
the RSDs are presented from subunit mass experiments using two different col-
umns performed on three different days by two different analysts.

Non-oxidized
scFc (%)

Total Oxidized
scFc (%)1

Parameter Average § 3SD RSD Average§ 3SD RSD n

Column-to-Column Variability 97.9 § 0.5 0.2 2.1§ 0.6 9.8 12
Day-to-Day Variability 98.0 § 0.5 0.2 2.0§ 0.5 7.9 18
Analyst-to-Analyst Variability 98.0 § 0.2 0.1 2.0§ 0.2 3.1 12
Intermediate Precision 97.9 § 0.5 0.2 2.1§ 0.5 8.4 30

1The sum of all oxidized species is expressed as a percentage of total scFc (non-oxi-
dized C oxidized species). n D number of experiments.

Figure 8. Comparison of scFc methionine oxidation induced by chemical and
photo stress. Deconvoluted mass spectra for the scFc subunit of mAb-A are pre-
sented for the unstressed control (A), peracetic acid stressed sample (B) and photo
stressed sample (C). Structural model of the CH2:CH3 interface showing close prox-
imity of HC Met257 and HC Met433 in mAb-A (D).

Figure 9. Deconvoluted spectra of mAb-A DP samples. Overlaid deconvoluted
mass spectra of mAb-A scFc subunits are presented for samples collected from dif-
ferent positions in the vial tray along with results from photo and chemically
stressed samples.
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quantitation. Mass spectrometry was mainly used for peak
identification of the oxidized and non-oxidized species. These
methods are effective, but lack the resolution and specificity of
mass spectrometry, and the elution gradients to resolve the oxi-
dized and non-oxidized species need to be optimized for each
mAb. The subunit mass analysis method described here, pro-
vides direct quantitation of oxidation levels based on relative
intensities of oxidized species in the deconvoluted mass spectra.
In addition, deglycosylation using EndoS reduces scFc hetero-
geneity by removing N-linked glycosylation, which further
improves method sensitivity. Importantly, results from subunit
mass analysis correlated well with those from peptide mapping
analysis.

The subunit mass analysis method has several other
advantages compared with the alternative methods for
measuring oxidation. This method is generally applicable
to all IgG mAbs, and it can be used to simultaneously
measure oxidation on all three IgG subunits (LC, Fd’ and
scFc) with good precision and linearity. Moreover, subunit
mass analysis can distinguish Fc methionine oxidation
induced by chemical stress, such as hydrogen peroxide
from those induced by photo stress. This is a unique
advantage of the subunit analysis, since methionine resi-
dues are located in different tryptic peptides, and such cor-
relation is lost during peptide mapping analysis. Finally,
although developed as a platform method to quantify oxi-
dation, this method can be extended to multi-attribute
analysis of other critical quality attributes (glycosylation,
glycation, C-terminal lysine clipping, N-terminal cyclization
etc.) of mAb products.49

Materials

Reagents

IdeS (FabRICATOR�) and EndoS (IgGZERO�) were pur-
chased from Genovis. Trypsin was purchased from Prom-
ega. All other reagents were purchased from Thermo Fisher
Scientific or Sigma-Aldrich unless stated otherwise. All
reagents were analytical reagent grade or mass spectrometry
grade and were used without further purification. All solu-
tions were prepared with Milli-Q water. All IgGs (IgG1
(mAbs-A, B, and C), IgG4 (mAbs-D and E) and IgG2
(mAb-F)) were manufactured by Janssen Research & Devel-
opment, LLC.

Methods

Sample preparations

Samples were diluted with 100 mM Tris buffer, pH 7.5 to a final
concentration of 1 mg/mL. IdeS and EndoS enzymes were
added (half unit / mg of protein) and the samples were incu-
bated at 37�C for 30 min. The digested samples were reduced
with 50 mM DTT at 37�C for 15 min in the dark and the reac-
tion was quenched with 10% (v/v) of 1 M HCl.

RP-UPLC-MS for subunit mass analysis

One mg mAb sample was analyzed using Waters ACQUITY
UPLC BEH C4 column (300A

�
, 1.7 mm, 2.1£50 mm) at 60�C

on a Waters ACQUITY I-class UPLC. Proteins were eluted
from the column with a 7 min linear gradient of 25–40% B at a
flow rate of 200 mL/min. Mobile phase A was 0.1% formic acid
in H2O. Mobile phase B was 0.1% formic acid in acetonitrile.
Online MS analysis was performed on a Waters Xevo G2-XS
mass spectrometer (Waters Corporation) in positive ion sensi-
tivity mode. The capillary was set at 2.5 kV and the sampling
cone at 40 V. The desolvation and source temperatures were
set at 350�C and 100�C, respectively. Data were acquired in an
m/z range of 800–3000. The Xevo G2-XS mass spectrometer
was calibrated daily using a 1 mg/mL solution of cesium iodide
in 50% acetonitrile/water. Mass/charge data collected across
the chromatographic peaks were summed and then deconvo-
luted using the MaxEnt1 algorithm. Oxidation was quantitated
using the peak height intensities of the deconvoluted and cen-
tered spectra.

Preparation of oxidized mAbs

Oxidized mAbs were prepared by chemical stress with peracetic
acid or photo stress with UV and white light as described in the
figure legends.

Peptide mapping

Oxidized mAbs samples were denatured with a solution of 6 M
guanidine-HCl, 100 mM Tris, and 2.5 mM EDTA, pH 8.0. Pro-
teins were then reduced with 1 M DTT at 37�C for 1h, followed
by alkylation with 1 M sodium iodoacetate for 40 min in the
dark. Reduced and alkylated proteins were buffer exchanged
using NAP5TM column (GE Healthcare) into digestion buffer:
50 mM Tris, pH 8.0 (mAb-A) or 50 mM Tris, 1 mM CaCl2 pH
8.0 (mAb-B). Eluate from column was subsequently digested
with Lys-C for 4 h at 37�C (mAb-A) or trypsin for 2 h at 37�C
(mAb-B). The resulting peptides were analyzed by RP-HPLC-
MS on an HPLC (Agilent) coupled to an ion trap mass spec-
trometer (Thermo Fisher Scientific). The RP-HPLC separation
was performed using a gradient of 0.1% trifluoroacetic acid in
water to 0.1% trifluoroacetic in acetonitrile at a flow rate of 0.2
mL/min on a BioSuite C18 2.1 mm £ 250 mm column
(Waters) at 40�C. Relative quantification was performed by
using the total intensity of an extracted ion chromatogram of
the peptides of interest. Post-translational modifications were
calculated as a relative percent of the native peptide.

Table 2. Quantitation results of mAb-A DP samples. Results are presented for
mAb-A samples collected from different positions in the vial tray along with results
from photo and chemically stressed samples.

Relative Abundance (%)

mAb-A Sample Non-ox 1-ox 2-ox 3-ox Total Oxidized�

Control 97.5 1.9 0.6 ND 2.5
Back Row 97.0 2.2 0.8 ND 3.0
Middle Row 96.8 2.2 1.0 ND 3.2
Front Row 86.7 3.2 8.8 1.2 13.3
UV 4h WL 30h (20% ICH) 83.1 3.1 11.7 2.0 16.9
100 mM Peracetic Acid 80.9 12.4 4.1 2.6 19.1

Total oxidizedD Sum of 1-ox, 2 –ox and 3-ox.
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