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SUMMARY

At least some animal species can generate neurons from mesoderm or endoderm, but the 

underlying mechanisms remain unknown. We screened for C. elegans mutants in which the 

presumptive mesoderm-derived I4 neuron adopts a muscle-like cell fate. From this screen, we 

identified HLH-3, the C. elegans homolog of a mammalian proneural protein (Ascl1) used for in 

vitro neuronal reprogramming, as required for efficient I4 neurogenesis. We discovered that the 

CDK-8 Mediator kinase module acts together with a second proneural protein, HLH-2, and in 

parallel to HLH-3 to promote I4 neurogenesis. Genetic analysis revealed that CDK-8 most likely 

promotes I4 neurogenesis by inhibiting the CDK-7/CYH-1 (CDK7/cyclin H) kinase module of the 

transcription initiation factor TFIIH. Ectopic expression of HLH-2 and HLH-3 together promoted 

expression of neuronal features in non-neuronal cells. These findings reveal that the Mediator 

CDK8 kinase module can promote non-ectodermal neurogenesis and suggest that inhibiting 

CDK7/cyclin H might similarly promote neurogenesis.

INTRODUCTION

During bilaterian development, mesoderm and endoderm give rise to primarily non-neural 

tissues, whereas neurons are generated mostly from ectoderm. However, some animals, such 

as jellyfish and sea urchins, have subsets of neural cells derived from non-ectodermal 

origins, such as striated muscle and endoderm [1, 2]. It is not known whether the 

specification of non-ectodermal neural cells involves molecular mechanisms different from 

those of ectodermal neural specification. Also, because generating neurons from non-

ectodermal cells is an important approach in neuroregenerative medicine, understanding 

molecular mechanisms underlying such neurogenesis might identify novel factors useful in 

regenerative medicine.
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The nervous system of the C. elegans adult hermaphrodite consists of 302 neurons, 294 of 

which are derived from the AB blastomere, which primarily generates ectodermal cells [3]. 

By contrast, six pharyngeal neurons are generated from the MS blastomere, which generates 

mostly mesodermal cells (Figure 1A), and two neurons are generated from the C lineage, 

which generates both ectoderm and mesoderm. The MS-derived pharyngeal I4 neuron is 

generated from a progenitor cell that divides to give rise to I4 and a pharyngeal muscle cell 

[3]. Although pharyngeal muscle cells are sometimes considered myoepithelial, because 

these cells function as muscles, have molecular features characteristic of muscle cells, and 

their normal development depends on mesodermal transcription factors, we view them as 

muscles [4, 5]. We hypothesized that I4 might overcome a mesodermal cell fate to become a 

neuron.

Here we report the identification of genetic mutants in which the I4 neuron adopts a muscle-

like cell fate and show that two conserved genetic pathways, a proneural pathway and a 

Mediator pathway, act synergistically to promote I4 neurogenesis from mesoderm. We found 

that HLH-3, the homolog of a mammalian protein (Ascl1) that has been used extensively in 

neuronal reprogramming [6–8], HLH-2, and the evolutionarily conserved Mediator CDK8 

kinase module promote I4 neurogenesis. Overexpression of HLH-2 and HLH-3 together 

promotes partial neuronal transformation of non-neuronal cells, including body-wall muscle 

cells. Our findings reveal that the CDK8 kinase module can promote non-ectodermal 

neurogenesis.

RESULTS

I4 Precursor Cells Transiently Express a Mesodermal Cell-Fate Reporter

We first investigated whether the I4 neuron expresses typical neuronal features by examining 

the expression of two broadly expressed neuronal reporters, for the small GTPase RAB-3 

(gfp::rab-3) [9] and the guanine nucleotide exchange factor homolog RGEF-1 

(Prgef-1::dsRed) [10], in I4. We observed that both reporters were expressed in I4 and other 

MS-derived neurons (Figure 1F and unpublished data); observations by Stefanakis et al. [11] 

similarly suggest that MS- and AB-derived neurons share basic neuronal molecular 

attributes. To determine whether I4 precursor cells express mesodermal characteristics, we 

examined the expression of an hlh-1 reporter during embryogenesis. HLH-1 is the C. elegans 
homolog of the mammalian muscle master regulator MyoD and is expressed exclusively in 

myogenic lineages (Expression Patterns in Caenorhabditis [EPIC]; http://

epic.gs.washington.edu). We found that I4 progenitor cells and the newly generated 

presumptive I4 cell were labeled by the HLH-1 reporter (Figure 1B). Our findings indicate 

that I4 precursor cells are at least to this extent mesodermal.

The I4 Neuron Adopts a Muscle-like Cell Fate in hlh-3 Mutants

To seek mutants in which I4 adopts a muscle cell fate, we used a transgenic strain in which 

the I4 neuronal cell fate is labeled by the neural peptide reporter Pnlp-13::gfp [12] and 

pharyngeal muscle cell fate is labeled by the pharyngeal myosin heavy-chain reporter 

Pmyo-2::mCherry::H2B [13]. We performed genetic screens and identified mutants that 

specifically lost I4 GFP expression (Figures 1C and 1F). Three such mutants carried alleles 
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of the gene hlh-3, which encodes a basic-helix-loop-helix (bHLH) transcription factor 

homologous to the mammalian proneural protein Ascl1/Mash1 (Figures 1D and 1E). Ascl1 

is involved in neural development in Drosophila and mammals, and overexpression of Ascl1 

with other transcription factors drives reprogramming of various types of mesodermal and 

endodermal cells into neurons [6, 8, 14–16].

One hlh-3 allele, n5469, contains an early stop codon that truncates the protein before the 

evolutionarily conserved HLH domain and most likely is a molecular null (Figure 1D). The 

I4 cell in hlh-3 mutants appears to adopt a muscle-cell-like fate: (1) the nuclear morphology 

of I4 as visualized using Nomarski optics was transformed from a neuronal speckled 

morphology to a non-neuronal, fried-egg morphology (Figure 1F); (2) wild-type I4 

expressed neuronal markers Pnlp-13::gfp, Prab-3::gfp::rab-3, and Prgef-1::dsRed, whereas none 

of these markers was expressed in the mutant presumptive I4 cell (Figure 1F); and (3) the 

mutant I4 cell expressed pharyngeal muscle reporters Pmyo-2::mCherry:: His2B and 

Pceh-22::ceh-22::mCherry [4, 17] (Figure 1G). We found that the acetylcholine esterase 

reporter Pace-1::mCherry, which normally labels the I4 sister cell pm5 [18], labeled an extra 

pm5 muscle cell in the hlh-3 mutant pharynx (wild-type, n = 6 pm5; hlh-3, n = 7 pm5) 

(Figure 1G), indicating that the I4 cell in hlh-3 mutants failed to be specified as a neuron and 

instead adopted the cell fate of its sister pm5 pharyngeal muscle cell. We were able to rescue 

the I4 defects by expressing a wildtype copy of the hlh-3 gene in hlh-3 mutants (Figure 

S1A).

HLH-3 Is Mostly Dispensable for Neurogenesis

Of the 20 neurons in the wild-type C. elegans pharynx, only I4 seemed to be affected by the 

disruption of HLH-3 (Figure S2C and data not shown). To further explore a possible role for 

HLH-3 in the neurogenesis of neurons other than I4, we scored the number of neurons 

expressing neurotransmitter reporter transgenes for cholinergic, GABAergic, glutamatergic, 

dopaminergic, serotonergic, and tyraminergic/octopaminergic neurons in hlh-3 double 

mutants that also contained hlh-2 or dpy-22 mutations (we used the second mutation to 

sensitize the strain and potentially increase the magnitude of defects; see below); together, 

these reporters label about 240 of the 302 neurons in C. elegans (Figure S2A). We found that 

approximately 10% of wild-type I4 expressed the glutamate transporter transgene 

Peat-4::eat-4::mCherry (a fosmid-based translational fusion constructed by [19]) but none of 

the other reporters, indicating that I4 might be glutamatergic (Figure S2B). We did not find 

any significant difference in the number of eat-4-expressing neurons between the wild-type 

and hlh-3 double-mutant animals, showing that the fates of most glutamatergic neurons were 

not altered (Figure S2D). (That I4 is transformed to a muscle cell in hlh-3 mutants did not 

result in a lower count for hlh-3 mutants, because only 10% of wild-type I4s express the 

reporter.) We similarly observed no major differences in cholinergic, dopaminergic, 

serotonergic, or tyraminergic/octopaminergic neuron numbers between wild-type and hlh-3 
mutant animals (Figures S2E and S2G–S2I). By contrast, we noticed a mild deficit in 

GABAergic neuron number in hlh-3; hlh-2 double mutants, which had one to five (mean 

1.3) fewer GABAergic ventral cord motor neurons than did wild-type animals (Figure S2F). 

Further analysis indicated that this defect was most likely caused by the hlh-2/3 mutation 

(data not shown). In mammals, knockout of Ascl1 results in impaired neurogenesis in 

Luo and Horvitz Page 3

Curr Biol. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confined neural regions, including the ventral telencephalon, olfactory bulb, and autonomic 

ganglia, whereas neurogenesis in other brain regions remains grossly normal [15, 20]. We 

conclude that, like Ascl1, its homolog HLH-3 promotes neurogenesis of I4 and a few 

GABAergic neurons but is not generally required for neurogenesis.

HLH-3 Is Expressed in the Newly Generated I4 Cell and Most Likely Functions Cell 
Autonomously

We used an HLH-3::GFP fusion protein to examine HLH-3 expression during 

embryogenesis. HLH-3::GFP was expressed in the I4 neuron shortly after its mother divided 

to generate I4; by contrast, the I4 sister, pm5, did not express this protein (Figure 2A). We 

also observed expression of HLH-3::GFP in multiple AB-derived neural precursors (data not 

shown). The broad expression of HLH-3::GFP was mostly confined to embryos and was no 

longer detectable in the I4 neuron in newly hatched L1s (larval stage 1; Figure S1B), 

suggesting that hlh-3 functions primarily in early embryos to promote I4 specification. To 

determine whether HLH-3 functions within the I4 lineage or in neighboring cells to promote 

I4 neurogenesis, we used a laser micro-beam to selectively kill the cells that make direct 

contact with I4 progenitor cells during embryogenesis (Figure 2B). We asked whether 

elimination of any neighboring cells impairs I4 neurogenesis. Laser ablation of the founder 

cells AB, P2, and E, which normally generate neighbors of I4 progenitor cells in early 

embryos, did not affect I4 GFP reporter expression (Figure 2C). By contrast, killing the I4 

progenitor cell ethyl methanesulfonate (EMS) eliminated I4 GFP reporter expression (Figure 

2C). These results suggest that HLH-3 most likely functions cell autonomously to drive I4 

neurogenesis.

HLH-2, the C. elegans Homolog of Daughterless or Tcf3, Functions Synergistically with 
HLH-3 to Promote Efficient I4 Neurogenesis

The neurogenesis of I4 is only partially disrupted in the absence of functional HLH-3: about 

80% of hlh-3 null mutants (n5469 and tm1688) still generate an I4 neuron (Figures 1D and 

1E). Thus, other genes most likely function in addition to hlh-3 to drive I4 neurogenesis. 

HLH-3 can interact and form heterodimers with another bHLH transcription factor, HLH-2, 

the C. elegans homolog of the conserved E2A/Tcf3/Daughterless protein [21, 22]. Tcf3 and 

Daughterless are broadly expressed in developing neural precursors in vertebrates and 

Drosophila, respectively, and disruption of either protein results in loss of neural tissues and 

aberrant morphogenesis [22–25]. Using a reporter transgene that expresses an HLH-2::GFP 

fusion protein [26], we found that HLH-2::GFP was expressed in the I4 neuron shortly after 

its generation but was absent from its sister cell, pm5 (Figure 2D). Also like HLH-3::GFP, 

HLH-2::GFP was broadly expressed in early embryos but was not detectable in most 

neurons, including I4 in newly hatched L1s (Figure S1B), suggesting that hlh-2 most likely 

functions in early embryos to promote I4 specification. We then asked whether HLH-2 is 

required for I4 neurogenesis. Both hlh-2(n5287) null mutants and animals treated with hlh-2 
RNAi displayed embryonic lethality; nonetheless, we did not observe obvious defects in I4 

GFP expression (we note that in both cases maternal HLH-2 was still likely to be present) 

(Figure 2E; Figure S1C). By contrast, the introduction of an hlh-2 partial loss-of-function 

allele (bx115 or tm1768) into an hlh-3 null background significantly enhanced I4 

misspecification, and in about 80% of hlh-2; hlh-3 double mutants the I4 cell adopted a 
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muscle-like cell fate (Figure 2E). Given this genetic enhancement, we conclude that HLH-2 

functions to promote I4 neurogenesis at least partly through a genetic pathway that acts in 

parallel to HLH-3.

Multiple bHLH Proneural Proteins Promote MS Neurogenesis

The C. elegans genome encodes 42 bHLH factors, with multiple bHLH proteins able to form 

dimers with HLH-2 (Figure S3A) [21]. We tested whether any of the proneural bHLH 

proteins, including neurogenin NGN-1 and NeuroD CND-1, are required for I4 

neurogenesis. Examination of the I4 neuron in either ngn-1 or cnd-1 single mutants or hlh-2; 
ngn-1 or hlh-2; cnd-1 double mutants using the reporter transgene Pnlp-13::gfp did not reveal 

any defects in I4 neurogenesis (Figure S3B). Furthermore, we did not observe defects in I4 

neurogenesis in hlh-4, 6, 10, 12, 13, 15, 19, or lin-32 mutant animals using both Nomarski 

optics and the pan-neuronal reporter transgene Prgef-1::dsRed, suggesting that I4 

neurogenesis is specifically dependent on HLH-3 and not on other HLH-2-interacting bHLH 

proteins (Figures S3E– S3L). However, ngn-1 and cnd-1 mutants were disrupted in the 

neurogenesis of other MS-derived neurons: around 40% of ngn-1 mutant animals lacked the 

M1 neuron, and in 25% of cnd-1 mutant animals the I3 neuron adopted a gland cell fate (the 

cell fate of its sister cell) (Figures S3C and S3D). These results indicate that the generation 

of mesoderm-derived neurons in C. elegans involves multiple bHLH proneural proteins, with 

I4 neurogenesis depending specifically on HLH-3 (Figure 3E).

Mediator Subunits Function in the HLH-2 Pathway to Promote I4 Neurogenesis

To search for additional factors that function with HLH-2 and HLH-3 to promote efficient I4 

neurogenesis, we examined other mutant isolates from our screens. We found that five 

mutants carry alleles of dpy-22, and two carry alleles of let-19 (Figure 3A; Figure S4A). 

Like hlh-3 mutations, mutations in dpy-22 and let-19 disrupted I4 specification, and the I4 

cell adopted a pharyngeal muscle cell fate (Figure 3B). dpy-22 and let-19 encode the worm 

homologs of the evolutionarily conserved Mediator sub-units Med12 and Med13, 

respectively. Mediator is a multi-sub-unit complex that bridges DNA-binding proteins 

(transcription factors/coactivators) with the RNA polymerase II transcription machinery and 

is involved in many aspects of gene regulation and animal development [27–29]. Med12 

disruption in mice and zebrafish results in impaired development of the neural crest and of 

non-ectodermal tissues, including heart and gut [30–32]. We found that although disruption 

of LET-19 function in the let-19 mutant n5470 also led to low-frequency (~3%, n = 60) 

neurogenesis defects of the M1 neuron (Figure 3C), disruption of DPY-22 in all five dpy-22 
mutants specifically disrupted I4 neurogenesis (Figure 3D). Because promoter-fusion 

reporter transgenes for dpy-22 and let-19 revealed broad GFP expression in developing 

embryos (Figure 4A), we conclude that DPY-22 and LET-19 most likely cooperate with cell-

specific factors to drive I4 neurogenesis.

Further analysis revealed that the two let-19 alleles contain missense mutations, and all five 

dpy-22 alleles contain nonsense mutations that truncate the C-terminal PQ-rich domain 

(Figure 3A). Because none of these mutations is obviously null, we performed dpy-22 or 

let-19 RNAi to further reduce gene function in dpy-22 and let-19 mutants, respectively. We 

did not observe significant enhancement of the I4 misspecification (Figure S4B). In addition, 
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we used cell-specific RNAi to express dpy-22 or let-19 siRNA under the nlp-13 promoter 

(which is active only after I4 is generated; unpublished data) [33]. I4 appeared normal in 

position and morphology (Figures S4C and S4D), suggesting that Mediator is dispensable 

for the maintenance of the I4 cell fate after mid-late embryogenesis.

In vertebrates, Med12 interacts with transcription factors through its PQ-rich domain to 

promote gene expression and tissue development [34, 35]. To determine whether Mediator 

might promote I4 neurogenesis by interacting with bHLH proneural factors, we performed a 

yeast two-hybrid assay. We found that the DPY-22 PQ-rich domain selectively interacted 

with HLH-2 but not HLH-3, whereas the last 129 amino acids truncated in all five dpy-22 
alleles were required for this interaction (Figure 4B). Further analysis indicated that the PQ-

rich domain interacted with the N-terminal half of HLH-2, the region of a predicted 

transactivation domain important for gene expression and neurogenesis [36, 37] (Figure 4C). 

These findings suggest that Mediator physically interacts with and might function in the 

same pathway as HLH-2 to promote I4 neurogenesis.

To test this hypothesis, we constructed Mediator and bHLH double mutants. All of the 

dpy-22 and let-19 single mutants showed a low frequency of I4 misspecification, and dpy-22 
or let-19 RNAi in dpy-22 or let-19 mutants, respectively, did not significantly enhance I4 

defects (Figures S4A and S4B). Introducing an hlh-2 partial loss-of-function allele into 

dpy-22 or let-19 mutants also did not enhance I4 misspecification (Figure 4D). By contrast, 

disruption of dpy-22 or let-19 in an hlh-3 null (n5469) background significantly enhanced I4 

misspecification, with 77% and 55% of the I4 cells adopting a muscle cell fate, respectively 

(let-19 and hlh-3 are tightly linked, and thus let-19 was tested using RNAi) (Figure 4E), 

indicating that Mediator and HLH-2 act together and in parallel to HLH-3 to promote I4 

neurogenesis.

CDK-8 Most Likely Promotes I4 Neurogenesis by Inhibiting CDK-7/CYH-1

Med12 and Med13 are components of a four-protein Mediator kinase module, with the other 

two proteins being the cyclin-dependent kinase CDK8 and cyclin C [27, 28]. CDK8 is 

involved in cell-fate transformation during tumor generation and progression [38, 39]. To 

investigate whether the C. elegans counterparts of CDK8 and cyclin C are involved in I4 

neurogenesis, we examined I4 development in cdk-8(tm1238) (CDK8) and cic-1(tm3740) 
(cyclin C) mutants. Both mutants contain substantial deletions of coding exons and both are 

most likely null (Figure S5A). cdk-8 and cic-1 single mutants had only very mild (<1%) 

defects in I4 neurogenesis (Figure S5B). Introducing a cdk-8 or cic-1 allele into a Mediator 

(dpy-22) or hlh-2 mutant did not enhance I4 misspecification (Figure S5B). By contrast, 

disrupting cdk-8 or cic-1 in the hlh-3(n5469) null mutant substantially enhanced I4 

misspecification, with 36% of the I4s in hlh-3; cic-1 mutants and 48% of the I4s in cdk-8; 
hlh-3 mutants adopting a muscle cell fate (Figure 5A). Because introduction of the cdk-8 
null allele into cnd-1 or ngn-1 single mutants did not enhance the frequency of I3 or M1 

misspecification (Figures S3C, S3D, S5C, and S5D), we conclude that CDK-8 functions 

together with DPY-22 and HLH-2 and in parallel to HLH-3 to specifically promote I4 

neurogenesis.
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The enhanced I4 misspecification of cdk-8; hlh-3 double mutants could be fully rescued 

with a wild-type, but not a kinase-dead, CDK-8 cDNA, suggesting that the kinase activity of 

CDK-8 is required for promoting I4 neurogenesis (Figure 5B). We noticed that the 

penetrance of I4 misspecification in cdk-8; hlh-3 mutants (~40%) was only about half of that 

in hlh-3; dpy-22 (~80%) mutants; we speculate that DPY-22 functions only partially through 

CDK-8 and CIC-1, with other unidentified proteins downstream of DPY-22 acting in parallel 

to CDK-8 to promote I4 neurogenesis.

We then investigated what molecules act downstream of CDK-8 to promote I4 neurogenesis. 

Mammalian CDK8 phosphorylates several substrates, including serine 10 of histone 3 

(H3S10) [40,41] and the Notch protein [42]. H3S10 phosphorylation promotes the opening 

of chromatin structure by dissociating heterochromatin protein HP1 from trimethylated 

H3K9 (H3K9me3) [43–45], and Notch phosphorylation by CDK8 leads to degradation of 

the Notch intracellular domain [42]. We observed reduced H3S10 phosphorylation in cdk-8; 
hlh-3 double mutants; this reduction was rescued by expressing a wild-type, but not a 

kinase-dead, cdk-8 transgene (Figure S5E). However, overexpression of a phosphomimetic 

form of the replication-independent His3.3 protein HIS-71 (but not of a replication-

dependent His3.1 protein, HIS-9) only partially suppressed the I4 misspecification of cdk-8; 
hlh-3 mutants (Figure S5F). We did not observe a significant effect of Notch disruption on I4 

neurogenesis in wild-type or hlh-3 or cdk-8; hlh-3 mutants (Figures S6E–S6G). These 

observations suggested that CDK-8 might function primarily through one or more other 

mechanisms.

Mammalian CDK8 phosphorylates cyclin H on serines 5 and 304 and suppresses CDK7/

cyclin H-activated gene transcription [46]. Serine 5 of cyclin H is completely conserved 

from C. elegans to mammals, whereas mammalian S304 is probably equivalent to C. elegans 
S327. We asked whether cyclin H might be a primary mediator of CDK-8 function. 

Overexpression of phosphomimetic (S5D S327D; “DD”) CYH-1 cyclin H protein rescued I4 

misspecification in the cdk-8; hlh-3 mutant, whereas overexpression of a non-

phosphorylatable (S5A S327A; “AA”) CYH-1 protein did not rescue (Figure 5C), indicating 

that CDK-8 might promote I4 neurogenesis through inhibiting cyclin H. Because 

phosphorylation of cyclin H inhibits CDK7 kinase activity in the general transcription factor 

complex TFIIH [46], we tested whether mutations that either enhance or reduce CDK7 

kinase activity affect the cdk-8; hlh-3 mutant phenotype. We found that overexpression of a 

kinase-dead version of CDK-7, K34A [47], resulted in full rescue of the cdk-8; hlh-3 mutant 

phenotype, whereas overexpression of a constitutively active mutant of CDK-7, S157E 

T163E (“EE”; T loop double mutations) [47], did not have such an effect (Figure 5D). Our 

findings indicate that CDK-8 most likely promotes I4 neurogenesis by inhibiting CDK-7/

cyclin H function and that H3S10 phosphorylation might also contribute to I4 specification 

(Figure 7).

Ectopic Expression of HLH-2 and HLH-3 Induces Partial Cell-Fate Transformation of 
Muscle Cells

To investigate whether the genes we identified are sufficient to induce the cell-fate 

transformation of presumptive muscle cells to an I4-like fate, we generated transgenic strains 
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that stably express HLH-2, HLH-3, or both using the heat shock promoter Phsp-16.2 [48]. We 

found that ectopic expression of HLH-2 and HLH-3 together (but not of either alone) by 

heat shock induced expression of a pan-neuronal reporter, Prab-3::gfp::rab-3, in several body-

wall muscle cells in 30% of heat-shocked animals (n = 10) (Figure 6A). In an independent 

experiment, 13% of heat-shocked animals(n = 15) expressed both pan-neuronal reporters 

Prab-3::gfp::rab-3 and Prgef-1::dsRed in body-wall muscle and hypodermal cells, indicating 

that these non-neuronal cells indeed exhibit neuronal characteristics (Figure 6B). The 

affected muscle cells displayed neuron-like long processes but retained the muscle-like 

fried-egg morphology of their nuclei (Figures 6A and 6B), suggesting a partial cell-fate 

transformation. By contrast, overexpression of HLH-2 or HLH-3 alone or of HLH-2 and 

HLH-3 together did not eliminate myo-2 reporter expression in pharyngeal muscle cells, 

including pm5 (data not shown), nor did it induce ectopic expression of the muscle reporter 

Pmyo-3::gfp or the intestinal reporter Pelt-2::gfp (Figures 6C and 6D). Together, these 

observations indicate that the combined overexpression of HLH-2 and HLH-3 in L1 larvae 

drives a partial but specific neuronal cell-fate transformation of non-neuronal (body-wall 

muscle and hypodermal) cells.

Adult somatic cells in C. elegans might be more refractory to transcription factor-induced 

cell-fate transformation than cells in younger individuals [49]. We asked whether the ectopic 

expression of HLH proteins is more efficient in inducing cell-fate transformation in early 

embryos than in L1 larvae. Overexpression of HLH-2 and HLH-3 in combination or HLH-2 

alone (but not HLH-3 alone) during early embryogenesis induced the generation of multiple 

cells that express the I4 reporter Pnlp-13::gfp, and in the case of HLH-3 the cells developed 

long processes, suggesting that HLH-2 is sufficient to induce ectopic I4-like neurogenesis 

and that HLH-3 might promote neuronal maturation (Figure 6E). We were unable to 

determine whether the extra I4-like cells were transformed from pm5 pharyngeal muscle 

cells or from any other mesodermal cells, as the heat-shocked embryos arrested 

development. Nevertheless, HLH-2 and HLH-3 overexpression did not eliminate all 

pharyngeal muscle reporter Pmyo-2::mCherry::H2B expression (Figure 6E), suggesting that 

HLH overexpression does not induce transformation of all mesodermal cells. Our findings 

indicate that the expression of HLH-2 and HLH-3 in early embryos can induce ectopic I4 

neurogenesis.

DISCUSSION

Our current understanding of neurogenesis during metazoan development is based primarily 

on studies of ectoderm-derived neurons; little is known about how non-ectodermal cells can 

generate neurons in vivo. Previous studies of a natural epithelial (ectodermal)-to-neuron 

transdifferentiation in C. elegans, Y to PDA, identified the conserved pluripotent factor 

SOX-2, histone-modifying complexes, and Notch signaling as important components for the 

reprogramming [50–52]. All of these factors seem to be dispensable for I4 neurogenesis 

(Figure S6).

Luo and Horvitz Page 8

Curr Biol. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HLH-2 and Mediator Cooperate with HLH-3 to Promote Efficient Neurogenesis from 
Mesoderm

In this study, we analyzed C. elegans mutants in which the pharyngeal I4 neuron adopts a 

muscle cell fate and identified the molecular genetic basis of I4 neurogenesis from 

mesoderm.

We found that HLH-2 and Mediator, both of which are broadly expressed [22] (Figure 4C), 

cooperate with more restrictedly expressed HLH-3 to drive efficient neurogenesis of the I4 

neuron. The kinase activity of the Mediator kinase module subunit CDK-8 is required for 

efficient I4 neurogenesis, and CDK-8 most likely acts by inhibiting cyclin H CYH-1 and 

CDK-7. We speculate that CYH-1 and CDK-7 initiate a myogenic program and that 

phosphorylation of CYH-1 by CDK-8 inhibits muscle differentiation (Figure 7). It is 

interesting that despite their ability to form dimers [21], HLH-2 and HLH-3 appear to 

function in parallel to promote I4 neurogenesis. We speculate that in an HLH-3-deficient 

mutant, HLH-2 forms homodimers to promote neural gene expression in an HLH-3-

independent manner. Given the important role of Ascl1 in promoting neuronal 

reprogramming of various non-ectodermal cells [53], we hypothesize that HLH-2/Tcf3 and 

the CDK-8 kinase complex are candidates to enhance Ascl1-mediated mammalian neuronal 

reprogramming. In addition, because we found that CDK-8 most likely acts by inhibiting 

CDK-7 and CYH-1 cyclin H, we suggest that small-molecule inhibitors of CDK-7 might 

similarly promote neurogenesis.

bHLH Proneural Proteins Are Most Likely Required for Neurogenesis from Both 
Ectodermal and Non-ectodermal Cells

bHLH proneural proteins are evolutionarily conserved transcription factors that consist of 

multiple families, including achaete-scute (Asc), atonal (Ato), neurogenin, and neuroD, all 

of which are evolutionarily conserved in their role of promoting neurogenesis [54, 55]. We 

found that HLH-3/Ascl1 is expressed specifically in I4 and is needed for I4 to express a 

neuronal cell fate (Figure 2),and the proneural proteins neurogenin NGN-1 and neuroD 

CND-1 promote neurogenesis of the M1 and I3 neurons from mesoderm, respectively 

(Figures S3C and S3D). These findings indicate that proneural proteins are important for 

driving neurogenesis from both ectoderm and mesoderm. Consistent with this notion, the 

jellyfish atonal-like gene Atl1 is expressed in proliferating neural precursor cells arising 

from striated muscles during transdifferentiation [56], and mammalian bone marrow stromal 

cells that can be induced to form neurons express the proneural protein NeuroD [57]. We 

propose that evolutionarily conserved bHLH proneural proteins are important for 

neurogenesis whatever the germ-layer origin of the neuron. Unlike ectodermal neurons, non-

ectodermal neurons might also require additional proteins, such as Mediator, to promote 

highly efficient neurogenesis.

Natural Non-ectodermal Neurogenesis Might Be a General Aspect of Animal Development

At least three animals are known to generate neurons from non-ectodermal origins: the sea 

urchin, which generates some pharyngeal neurons de novo from endoderm [1]; the jellyfish 

(hydrozoan medusa), which generates peptidergic neural cells from striated muscle [2]; and 

C. elegans, which generates neurons from mesodermal MS lineages [3]. Non-ectodermal 
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neurogenesis has been observed in these species because they have simple anatomies and are 

mostly transparent, allowing high-resolution cell-lineage tracing. Vertebrates also have the 

potential for a germ layer to generate cells that are conventionally thought to be derived 

from another germ layer. For example, mice generate paraxial mesodermal cells from 

ectodermal neural plate in a process dependent on the T box transcription factor Tbx6 [58]. 

Similarly, avian ectodermal neural crest cells can give rise to multiple mesodermal tissues 

[59]. Conversely, mesoderm-derived bone marrow stromal cells can differentiate into 

neurons under certain conditions in vitro, although it remains unclear whether this process 

occurs naturally during mammalian development [60]. Thus, although the generation of 

neurons from non-ectodermal cells has yet to be reported in more complex animals, 

advances in methodology for cell-lineage tracing might lead to the identification of such 

events in the near future.

EXPERIMENTAL PROCEDURES

Mutagenesis Screen

oxIs322; nIs310 L4 larvae were mutagenized with EMS as described previously [61]. See 

the Supplemental Experimental Procedures for details.

Microscopy

Nomarski differential interference contrast (DIC) and epifluorescence images were obtained 

using an Axioskop 2 (Zeiss) compound microscope and Open-LAB software (Agilent) and 

edited using Photoshop CS4 software (Adobe). For tracing embryonic lineages, two- or four-

cell-stage embryos were dissected from gravid hermaphrodites and mounted on a slide with 

a 5% agarose pad. The embryonic lineages were determined by direct observation of cell 

divisions, and images were taken at appropriate time points. Confocal images were obtained 

using Zeiss LSM 800 (Figures 6A–6D) and LSM 510 (all other confocal images) 

microscopes and processed in Fiji software (NIH) and Photoshop CS4 software (Adobe).

Laser Microsurgery

Laser-ablation experiments were performed as described previously. In brief, two-cell-stage 

embryos were dissected from gravid hermaphrodites and mounted on a slide with a 2% 

agarose pad. The embryos were allowed to divide to generate P2 and E cells, and laser 

ablation [62] of AB, P2, and E was performed. Embryos were recovered, grown at 22°C 

overnight, and examined using a compound microscope for GFP reporter expression.

Full methods are described in the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The generation of the C. elegans I4 neuron from mesoderm depends on 

HLH-3/Ascl1

• HLH-2/Tcf3 cooperates with HLH-3/Ascl1 to drive efficient I4 neurogenesis

• The Mediator Cdk8 kinase module acts genetically downstream of HLH-2/

Tcf3

• Cdk8 kinase most likely promotes I4 neurogenesis by inhibiting Cdk7/cyclin 

H function
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Figure 1. The Mesoderm-Derived I4 Neuron Adopts a Pharyngeal Muscle Cell Fate in hlh-3 
Mutants
(A) Diagram of the MSaa embryonic cell lineage, which generates the I4 neuron. Neuronal 

cells, blue; muscle and other mesodermal cells, red.

(B) A transcriptional reporter for the C. elegans MyoD gene hlh-1 is expressed in the I4 

mother cell and I4 during embryogenesis (arrows and insets).

(C) Schematic illustration of the genetic screen for mutants transformed in the I4 cell fate 

from neural to muscle.
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(D) Schematic showing HLH-3 protein domains and mutations. b, basic domain; HLH, 

helix-loop-helix.

(E) HLH-3 mutants have partial defects in I4 neurogenesis.

(F) The I4 cell in an hlh-3(n5469) mutant adopts a non-neuronal fried-egg-like (in contrast 

to a neuronal speckled) nuclear morphology and does not express the I4 reporter Pnlp-13::gfp 
or the neuronal reporters Prab-3::gfp::rab-3 and Prgef-1::dsRed2 (boxes and insets).

(G) The I4 cell in hlh-3 mutants expresses a pm5-specific reporter, Pace-1::mCherry, as well 

as pharyngeal muscle reporters Pmyo-2::mCherry::H2B and Pceh-22::ceh-22::mCherry, none 

of which is expressed in wild-type I4 (boxes and insets).

Scale bars, 20 μm. See also Figure S1.
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Figure 2. HLH-3 Functions Cell Autonomously and Synergistically with HLH-2 to Promote I4 
Neurogenesis
(A) An HLH-3::GFP fusion protein is expressed in wild-type I4 (arrows and insets), but not 

in its sister pm5 (arrowheads), shortly after their generation.

(B) Diagram of the first several embryonic cell divisions in wild-type embryos, with I4 and 

the I4 progenitors shown in blue and the I4-neighboring progenitors boxed and shown in red.

(C) Laser ablation of AB, P2, and E does not affect I4 reporter Pnlp-13::gfp expression 

(arrows). By contrast, ablation of EMS (which generates I4) eliminates Pnlp-13::gfp 
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expression. Number of embryos: –AB, n = 5; –AB–P2, n = 3; –AB–P2–E, n = 3; –AB–

EMS, n = 1.

(D) An HLH-2::GFP fusion protein is specifically expressed in wild-type I4 (arrows and 

insets), but not in its sister pm5 (arrowheads), shortly after their generation.

(E) Even though a null allele of hlh-2, n5287, does not disrupt I4 development (possibly 

because of a maternal contribution of HLH-2 to arrested homozygotes), introducing weaker 

hlh-2 alleles into an hlh-3 null mutant (n5469 or tm1688) significantly enhances I4 

misspecification.

Scale bars, 20 μm. See also Figures S1–S3.
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Figure 3. Disruption of the Mediator Subunits LET-19 and DPY-22 Leads to I4 Misspecification
(A) Schematics showing DPY-22 and LET-19 protein domains and mutations.

(B) The I4 cell in dpy-22 and let-19 mutants adopts a non-neuronal, fried-egg-like nuclear 

morphology and expresses the pharyngeal muscle reporter transgene Pmyo-2::mCherry::H2B, 

but not the I4 neuronal reporter transgene Pnlp-13::gfp (boxes, arrows, and insets).

(C) let-19 mutants have impaired neurogenesis of the I4 and M1 neurons (red).

(D) dpy-22 mutants that lack the C-terminal PQ-rich domain have impaired neurogenesis of 

the I4 neuron (red).

(E) Diagram showing the requirement of bHLH and Mediator proteins for the expression of 

a neuronal cell fate of the MS-derived neurons. Mislocalization: M5, dorsal right (rather than 

dorsal left); M1, abnormally anterior; I6, abnormally dorsal medial (rather than dorsal left); 

I4, abnormally ventral, i.e., closer to the M2 neuron.
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Scale bars, 20 μm. See also Figure S4.
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Figure 4. The Mediator Subunits DPY-22 and LET-19 Function in the Same Pathway as HLH-2 
and in Parallel to HLH-3 to Promote I4 Neurogenesis
(A) A GFP reporter transgene driven by the dpy-22 or let-19 promoter is expressed 

ubiquitously in developing embryos.

(B) Yeast two-hybrid assays showing that the DPY-22 PQ-rich domain interacts with HLH-2 

(shown by the yeast growth on the –Leu–Trp–His–Ade quadruple-dropout plates). The C-

terminal 129 amino acids are required for this interaction. Δ129, last 129 amino acids 

deleted; c129, only last 129 amino acids; BD, bait vector control; AD, prey vector control; 

SD, synthetic dropout.

(C) The DPY-22 PQ-rich domain interacts with the N terminus of HLH-2. Abbreviations are 

as in (B).

(D) Introducing the hlh-2 partial loss-of-function allele bx115 into dpy-22 or let-19 mutants 

does not enhance I4 misspecification.

(E) Disruption of dpy-22 or let-19 in the hlh-3 null mutant n5469 significantly enhances I4 

misspecification.

Scale bar, 20 μm.
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Figure 5. CDK-8 Functions Together with Mediator Complex Proteins and in Parallel to HLH-3 
to Promote I4 Neurogenesis, Most Likely by Inhibiting CYH-1 and CDK-7
(A) Disruption of cdk-8 or cic-1 in the hlh-3 null mutant n5469 enhances I4 

misspecification.

(B) Expressing a wild-type (WT), but not a kinase-dead (KD), copy of cdk-8 cDNA using 

the dpy-22 promoter rescues I4 misspecification in cdk-8; hlh-3 double mutants.

(C) Overexpression of phosphomimetic CYH-1DD, but not non-phosphorylatable 

CYH-1AA, using the dpy-22 promoter suppresses I4 defects in cdk-8; hlh-3 mutants.

(D) Overexpression of kinase-dead CDK-7KD, but not phosphomimetic CDK-7EE, using 

the dpy-22 promoter rescues I4 defects in cdk-8; hlh-3 mutants. o.e., overexpression. Mean 

± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test. See also Figures S5 and S6.
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Figure 6. bHLH Overexpression Induces Neuronal Cell-Fate Transformation of Non-neuronal 
Cells
(A) Confocal images of heat-shocked transgenic animals showing ectopic expression after 

HLH-2 and HLH-3 coexpression of the neuronal reporter Prab-3::gfp::rab-3 (arrowheads), 

but not of the muscle reporter in body-wall muscle nuclei identified by Nomarski and 

labeled by Pmyo-3::mCherry::H2B in the wildtype (arrows).

(B) HLH-2 and HLH-3 overexpression induces ectopic expression of a second neuronal 

reporter, Prgef-1::dsRed (red), in addition to Prab-3::gfp::rab-3 (green) in both body-wall 

muscle nuclei (upper row, arrowheads) and hypodermal cells (lower row, arrowheads).

(C and D) After HLH-2 and HLH-3 co-overexpression, only normal expression patterns are 

seen for (C) the muscle reporter Pmyo-3::gfp and (D) the intestinal reporter Pelt-2::gfp in heat-

shocked animals.

(E) Co-overexpression of HLH-2 and HLH-3 or HLH-2 alone in early embryos induces 

formation of multiple cells expressing the I4 reporter but does not eliminate muscle reporter 

expression. The presence of HLH-3 appears to promote complex neurite formation 

(arrowhead and inset). I4 reporter, Pnlp-13::gfp; muscle reporter, Pmyo-2::mCherry::H2B.

Two representative animals are shown for each experiment, except in (E). Scale bars, 20 μm.
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Figure 7. Model
The HLH-2 proneural protein and the CDK-8 Mediator complex kinase module act with the 

HLH-3 proneural protein to promote I4 neurogenesis. HLH-2 and CDK-8 most likely act by 

inhibiting the CYH-1/CDK-7 complex and might also act secondarily by phosphorylating 

serine 10 of histone H3. CYH-1/CDK-7 might negatively regulate I4 neurogenesis by 

promoting a myogenic program, whereas H3S10 phosphorylation might facilitate 

neurogenic gene expression.
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