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Abstract

West Nile virus remains the most common cause of arboviral encephalitis in North America. Since 

it was introduced, it has undergone adaptive genetic change as it spread throughout the continent. 

The WNV transmission cycle is relatively tractable in the laboratory. Thus the virus serves as a 

convenient model system for studying the population biology of mosquito-borne flaviviruses as 

they undergo transmission to and from mosquitoes and vertebrates. This review summarizes the 

current knowledge regarding the population dynamics of this virus within mosquito vectors.

Introduction

West Nile virus (WNV; Flavivirus; Flaviviridae) is a single-stranded positive sense RNA 

virus that exists in transmission cycles mainly involving Culex species mosquitoes and 

passerine birds. WNV was introduced to the Western Hemisphere in 1999 and was quickly 

spread throughout the US (reviewed by [1]). Understanding the mechanisms that contribute 

to rapid emergence and subsequent persistence of WNV almost 20 years later is critical for 

our understanding of other mosquito-borne outbreaks, such as the recent and ongoing 

epidemics of chikungunya virus (CHIKV) [2] and Zika virus [3] in the Americas. For 

example, molecular epidemiology demonstrated that WNV quickly adapted to local 

mosquito vectors during the invasion process [4–6], which likely enhanced transmission and 

facilitated its success [4,7]. CHIKV followed a similar pattern during the Indian Ocean 

epidemic when it adapted to be more efficiently transmitted by Aedes albopictus [8]. 

However, the current CHIKV epidemic in the Americas and some local emergences of WNV 

were not associated with previously observed vector-adaptive mutations [9,10]. What, then 

are the factors that favor the emergence of adaptive mutations within arbovirus populations? 

While the answer is not entirely clear, experimental evolution studies of WNV are currently 

seeking to define these conditions.

WNV exists in nature as genetically diverse populations [11]. Like other RNA viruses, 

genetic diversity is rapidly formed by error-prone polymerases (~10−4/site/round of 

replication [12–14]), which seem to operate at optimal fidelity [15–17]. Collectively, 
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intrahost virus variants influence population fitness [18,19], alter disease outcome [20,21], 

and provide opportunities for adaptation [22,23]. However, the relationships between viral 

genetic diversity and phenotype become muddled once the temporal aspects of evolution are 

included: Viral populations are in constant flux. In general, WNV genetic diversity in 

mosquitoes is generated by strong diversifying selection [24,25], stochastically rearranged 

by bottlenecks [26,27], and persist due to weak purifying selection [11,28,29]. This produces 

greater diversity in mosquitoes than birds [30] and humans [31]. Here we outline the forces 

of selection and drift that alter WNV populations, microhabitat conditions that can direct the 

evolutionary pathway, and fitness costs during transmission (Figure 1).

Bottlenecks during systemic mosquito infection

Several physical barriers within mosquitoes impede systemic WNV infection and 

dramatically restructure viral populations. These mainly occur during entry and exit of the 

midgut and salivary glands (recently reviewed by [32,33]). Briefly, WNV must first infect 

the posterior portion of the midgut where contents of the bloodmeal are digested and 

absorbed. The virus must then pass through the basal lamina of the midgut and exit into the 

hemocoel to infect the hemocytes (invertebrate immune cells [34]), fat bodies, neurons, and 

muscle tissue [35]. Upon salivary gland infection, mature virions are transported and/or are 

directly released into an extracellular acinus (a holding place for saliva proteins). The 

contents of the acinus, including virus, are expectorated during mosquito probing and 

feeding. In general, Culex mosquitoes can expectorate 104–106 WNV plaque forming units 

during bloodfeeding [36]. Virus populations that pass through these physiological barriers 

are subjected to genetic bottlenecks (small effective population sizes) [26,27,37,38]. This 

process can dramatically alter population demographics through random (i.e. nonselective) 

selection of only a few viruses that establish infection in the next tissue (genetic drift, 

founder’s effects [39]). The number of infectious viruses that pass through a bottleneck is 

associated with the strength of the anatomical barrier; a weak midgut infection barrier tends 

to impose a weaker bottleneck than a strong barrier [26]. Most bottlenecks have a net 

negative effect on the virus population because they randomly fix low fitness mutations in a 

population [40,41]. Furthermore, systematic introductions of deleterious mutations can drive 

the population towards extinction unless mutation and/or recombination [42] can restore 

fitness (see Muller’s ratchet [43]). In some cases, however, bottlenecks may be beneficial. 

For example, high fitness variants may be suppressed and remain at low population 

frequencies when the effective population size remains large [18]. However, if the variant 

can survive a bottleneck, it can reach dominance because it encounters fewer competitors.

RNAi-mediated diversification

Following genetic homogenization caused by bottlenecks during systemic spread, WNV 

populations must rapidly diversify in each tissue to evade the mosquito’s primary antiviral 

response, RNA interference (RNAi) [44–46]. Viral RNA is targeted for degradation by 

sequence complementarity to a small template RNA loaded into the RNA-induced silencing 

complex (RISC). Mutant viruses are poorer matches to common RISC-loaded guide strands 

than are un-mutated viruses and therefore evade silencing. Thus RNAi creates an 

intracellular milieu that promotes diversification by allowing rare viral haplotypes to 

Grubaugh and Ebel Page 2

Curr Opin Virol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



replicate quickly until they are no longer rare [24,25]. This gives more genetically diverse 

populations a competitive advantage in mosquitoes [47].

Weak purifying selection

dN/dS ratios from intra-mosquito WNV populations are consistently greater than 1, 

suggesting that purifying selection is weak [11,26,29]. This could be directly related to the 

RNAi response, where selection happens at the nucleotide level and neither synonymous nor 

nonsynonymous mutations are favored. In addition, coinfection of multiple viral genomes 

within cells may also decrease purifying selection as they permit the persistence of 

deleterious mutations through complementation [26,48,49]. Together, we would expect that 

WNV genetic diversity would increase overtime with continued exposure to RNAi-mediated 

diversification and weak purifying selection. However, WNV diversity does not increase 

with longer extrinsic incubation periods during Cx. quinquefasciautus infection [49]. 

Diversifying selection and weak purifying selection therefore appear to be balanced by other 

forces that shape WNV populations within mosquitoes.

Variables altering the course of evolution

WNV is composed of as many as eight genetically distinct lineages and sublineages 

(reviewed by [1]), is an ecological generalist that can infect many mosquito species, and 

persists in several environments (reviewed by [50]). Therefore, the trajectory of WNV 

evolution is probably influenced by many different virus-, host-, and environment-dependent 

factors at a given time. Several of these are known to alter WNV demographics during 

mosquito infection. First, high frequency variants are more likely to survive bottlenecks [27] 

and the midgut bottleneck severity is inversely proportional to amount of virus in the 

bloodmeal [37]. Taken together, a WNV strain that can cause higher viremia in birds (e.g. 

[51,52]) may be more likely to maintain its diversity during initial mosquito infection. 

Second, we recently described how the species of mosquito involved in transmission can 

also strongly influence virus divergence, which may be associated with host susceptibility 

(virus replication and purifying selection) and the strengths of anatomical barriers (vector 

competence and bottleneck severity) [26]. These factors can be influenced by both the virus 

and the vector. For example, an enzootic pairing of Venezuelan equine encephalitis virus 

(VEEV) and Cx. taeniopus mosquitoes are more likely to maintain viral genetic diversity in 

than an epizootic pairing because more midgut cells become infected allowing for a larger 

effective population size (i.e. a weaker bottleneck) [53]. In addition, factors influencing the 

mosquito immune response, such as mosquito genetics [54] and its microbiome [55,56], can 

significantly alter vector competence. For example, pre-treating Ae. aegypti with antibiotics 

prior to dengue virus exposure increases the midgut viral titers due to lower immune 

activation in the absence of an intact microbiota [57]. In other cases, the presence of certain 

microbes, such as the endosymbiotic bacterium Wolbachia, can increase host resistance to 

WNV [58] and other mosquito-borne infections [59,60]. Third, environmental conditions 

impact virus-vector interactions in several ways. One of the most important of these is 

temperature. Higher temperatures can increase the ability of Culex mosquitoes to transmit 

WNV [61–63]. Given global climate change and that viruses are constantly emerging into 

new ecological niches, determining how temperature can drive mosquito-borne virus 
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evolution is of upmost importance. It may be that the positive correlation between 

temperature and vector competence also helps maintain viral genetic diversity and thus aids 

avoidance of the negative consequences of bottlenecks. Additionally, the frequency of 

spontaneous vesiculovirus mutation doubles when the temperature is raised from just 39 to 

39.8 °C [64], suggesting that the WNV mutation rates could profoundly change during the 

5–10 °C variations in mean temperature during the transmission season [65]. Ultimately, the 

numerous virus-vector-environment interactions that determine vector competence (e.g. [66–

68]) may all slightly redirect WNV evolution and impact virus population structure.

Positive selection

Perhaps due to the requirement to cycle in two different hosts and the strong influences of 

genetic drift in mosquitoes, there is very little evidence for adaptive mosquito-borne virus 

evolution [69–73]. In fact, there are only a few known examples of positive selection the 

enhance virus replication or transmission within mosquitoes. The alphaviruses VEEV and 

CHIKV both utilized single amino acid substitutions in the envelope glycoprotein to 

increase vector competence of Ae. taeniorhyncus [74,75] and Ae. albopictus [8] mosquitoes, 

respectively. During the early years (2001–2003) of the North American WNV invasion, a 

locally derived variant (WN02) rapidly displaced the original (NY99) [4–6]. Again, the 

WN02 variant was demonstrated to contain a single amino acid substitution in the envelope 

protein (A159V) that conferred a fitness advantage by requiring a shorter extrinsic 

incubation period in Culex mosquitoes [4,7]. While the CHIKV E1 glycoprotein mutation 

(A226V) promoting enhanced infectivity in Ae. albopictus was experimentally reproduced 

in the laboratory [76], the same has not been demonstrated for the WN02 mutation. 

Specifically, the key mutation to WNV did not arise after NY99 infection of four species of 

birds [30] and mosquitoes [26]. One possible explanation for this is the homogeneity of the 

clone-derived, NY99 input virus population used in these studies. As demonstrated for 

CHIKV, epistatic interactions of mutations on the same haplotype have resulted in several 

multistep adaptive pathways [76–78]. The inclusion of genetic diversity in the founding 

WNV population may then allow the virus to follow more natural adaptive pathways, which 

may include the A159V mutation. Alternatively, adaptation and fitness are context specific. 

Possibly the conditions used in our experimental evolution studies, such as temperature [62], 

did not resemble the conditions that led to the NY99 displacement. What seems to be 

required is that a variant must have a very high fitness value to overcome its competitors 

within a mosquito. Alternatively, it needs be lucky enough to survive a random bottleneck 

and arrive in a more favorable environment with less competition. To summarize, we are 

critically lacking knowledge of the conditions that favor adaptive virus mutations to arise in 

mosquitoes and how they survive repeated bottlenecks.

Fitness trade-offs during transmission

Fundamental theories of evolution predict that genetic diversity provides viruses with 

opportunities for rapid selection, and therefore adaptation, during host shifts [79,80]. 

Mosquitoes can transmit unique and diverse virus subpopulations in their saliva allowing the 

virus to explore a tremendous amount of sequence space [26,27,49,76]. While the genetic 

Grubaugh and Ebel Page 4

Curr Opin Virol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diversity provided to WNV during mosquito-borne transmission may be beneficial in some 

circumstances [22], in general, there is a fitness trade-off from mosquitoes to birds [81].

Our data suggests that surviving the mosquito environment, including (a) repeated 

bottlenecks imposing genetic drift, (b) RNAi-mediated diversifying selection, and (c) weak 

purifying selection, collectively imposes detrimental effects on WNV [26]. We therefore 

would predict that the WNV population will quickly revert towards the master sequence in 

birds contributing to the observed slow evolutionary rates of mosquito-borne viruses [82,83].

Conclusions

During mosquito infection, WNV populations change rapidly due to genetic drift and 

diversifying selection. The WNV genetic diversity thus produced likely provides 

opportunities for rapid adaptation and the emergence of new virus genotypes, but at the cost 

of lower relative fitness during transmission. Therefore WNV cycles between periods of 

genetic expansion in mosquitoes and selective constraint in birds. We hypothesize that 

periods of rapid transmission, such as during an explosive outbreak, are more likely to 

produce local adaptation because there are more opportunities for selection. Moreover, we 

also hypothesize that certain transmission cycles can increase these odds. For example, 

transmission involving Cx. quinquefasciautus vectors [26] and American robins [30] is more 

likely to allow the virus to explore new sequence space and select for highly fit variants. 

While a tremendous amount of progress has been made towards understanding the dynamics 

of WNV evolution, many questions remain regarding the factors that alter its path.
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Highlights

• WNV populations encounter several bottlenecks during systemic mosquito 

infection.

• Genetic diversity can be rapidly recovered by RNAi-mediated diversifying 

selection.

• Weak purifying selection acts to maintain deleterious WNV mutations.

• Many virus-, vector-, and environment-dependent factors can alter WNV 

evolution.

• WNV populations transmitted to vertebrates encounter a fitness trade-off.
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Figure 1. 
Dynamics of WNV evolution during mosquito transmission. (a) WNV population genetic 

diversity can be immediately reduced upon midgut infection through bottlenecks, 

introducing random genetic drift and founder’s effects. These stochastic events occur during 

each major anatomical barrier to infection: midgut and salivary gland infection and escape. 

(b) WNV population genetic diversity can be rapidly restored through negative frequency-

dependent selection introduced by RNAi. Essentially, common variants are more likely 

targeted by RNAi-mediated degradation while rare variants with mismatches between the 

template RNA loaded into RISC are allowed to replicate, increasing population complexity. 

(c) The influence of repeated random bottlenecks and RNAi-mediated diversification leads 

to the formation of unique subpopulations in different mosquito tissues and compartments, 
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including what is expectorated in saliva. Furthermore, these processes influenced by the 

mosquito species, leading to very different WNV populations transmitted between different 

vectors. (d) The combined effects of bottlenecks, diversifying selection, and weak purifying 

selection lead to the accumulation many deleterious mutations into a population. In addition, 

mosquito-adapted variants are often not as fit in birds. Thus, there are fitness trade-offs in 

birds, which is predicted to remove many of the WNV produced within mosquitoes. (e) 

Together, the input WNV population taken up by mosquitoes during bloodfeeding drastically 

diverges and diversifies during mosquito infection, and weak purifying selection allows for 

many deleterious mutations to persist. During transmission to birds, strong purifying 

selection removes many of the variants, decreasing WNV population genetic diversity and 

maintaining fitness.
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