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Abstract

Pregnancy in placental mammals places unique demands on the insulin-producing β-cells in the 

pancreatic islets of Langerhans. The pancreas anticipates the increase in insulin resistance that 

occurs late in pregnancy by increasing β-cell numbers and function earlier in pregnancy. In 

rodents, this β-cell expansion depends on secreted placental lactogens that signal through to the 

prolactin receptor. Then at the end of pregnancy, the β-cell population contracts back to its pre-

pregnancy size. In the current review we focus on how glucose metabolism changes during 

pregnancy, how β-cells anticipate these changes through their response to lactogens, and what 

molecular mechanisms guide the adaptive compensation. In addition, we summarize current 

knowledge of β-cell adaptation during human pregnancy and what happens when adaptation fails 

and gestational diabetes ensues. A better understanding of human β-cell adaptation to pregnancy 

would benefit efforts to predict, prevent and treat gestational diabetes.
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Glucose metabolism in pregnancy

During pregnancy, the proper growth and development of the fetus depends on appropriate 

nutrient flow from mother to fetus across the placenta. Glucose provides a substantial 

fraction of fetal energy needs [1,2], but its transport across the placenta is a passive process 

and utilizes facilitative glucose transporters [3]. Therefore, glucose delivery to the fetus 

depends on the concentration gradient between the fetal and maternal circulations.

Early in pregnancy, the fetal β-cells establish this gradient by maintaining low glucose in the 

fetal circulation through their high basal insulin secretion and relative glucose insensitivity 

[4,5]. In the later stages of pregnancy, however, the growing fetus diverts an increasing 

fraction of maternal glucose across the placenta and thereby threatens the gradient by 

lowering glucose in the maternal circulation. In counterbalance to the fetal glucose 

diversion, the placenta secretes hormones that increase maternal insulin resistance and 

hepatic glucose production, thus raising glucose levels in the maternal circulation and 

maintaining the gradient [6,7].

To prevent excessive nutrient delivery to the fetus, the increase in maternal insulin resistance 

must be balanced by an increase in the capacity of the maternal β-cells to respond to meals. 

The change in maternal β-cell capacity results from growth of both the pool of maternal β-

cells and their ability to secrete insulin in response to glucose [8–17]. In rodents, expansion 

of maternal β-cell mass in pregnancy results predominantly, if not entirely, from 

proliferation of preexisting β-cells [18–21].

This balance in the mother between insulin resistance and an enlarged, hyperdynamic β-cell 

pool ensures a steady flow of nutrients from mother to fetus up to the end of pregnancy. 
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Then, starting shortly before parturition and extending into the postpartum period, the β-cell 

mass shrinks back to its pre-pregnancy size [22,23].

The β-cell response to lactogens

Studies in rodents have shown that β-cell compensation in the mother precedes the 

development of insulin resistance, and thus is not simply a response to increased insulin 

demand [13,14]. Instead, the increased β-cell proliferation during pregnancy parallels the 

rise of pituitary and placental lactogens [13]. Further, treatment with prolactin and placental 

lactogens efficiently drives rodent β-cell proliferation and increases glucose-stimulated 

insulin secretion in vitro and in vivo [14,24–26]. Finally, the β-cell changes during 

pregnancy in mice require an intact β-cell prolactin receptor (PRLR) [27–31], which 

functions as the receptor for both prolactin and placental lactogen and is induced on the β-

cell during pregnancy [32,33].

The prolactin receptor (PRLR) belongs to the cytokine class-1 receptor superfamily, which 

also includes the closely related growth hormone receptor [34]. When bound by ligand, the 

receptor engages and is phosphorylated by the Janus Kinase 2 (JAK2), thereby allowing the 

recruitment and phosphorylation of Signal Transducer and Activator of Transcription 5 

(STAT5), which then moves to the nucleus where it regulates the expression of target genes 

[35].

Lactogen induction of serotonin and serotonin signaling in β-cells

Among the genes activated by PRLR signaling in the β-cell are the genes encoding the 2 

isoforms of the enzyme that controls the rate-limiting step of serotonin synthesis, tryptophan 

hydroxylase 1 and 2 (TPH1 and 2); Tph1 RNA increases by as much as 3 orders of 

magnitude in islets during pregnancy in mice [33,36–38]. β-cells contain all of the additional 

machinery needed for serotonin synthesis, storage, and secretion [39], and thus fill with 

serotonin, and co-secrete it with insulin during pregnancy [33,37,40]. Interestingly, among 

the many serotonergic tissues, this pregnancy-induced activation of the TPH genes is unique 

to islets [33,37].

Since serotonin commonly acts locally, either as a neurotransmitter or paracrine hormone 

[41,42], it is a reasonable assumption that the remarkably high levels of serotonin secreted 

within the maternal islet during pregnancy may affect the biology of the cells within the 

islet. Historically, investigators have described a range of contradictory effects of serotonin 

on islet cell function. These differences may reflect the variety of different models (different 

species, different ages, different physiologic states) and experimental conditions used in 

these studies [43]. Further confusion may be caused by the large repertoire of serotonin 

receptors expressed in mammals [44], many of which are expressed on various cells within 

the islet. In addition, receptor expression levels change during pregnancy: expression of the 

Gq-coupled GPCR Htr2b goes up during pregnancy, while the Gi-coupled GPCR Htr1d goes 

down during pregnancy but rebounds above pre-pregnancy levels at the end of pregnancy 

and postpartum [33].
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Evidence in mouse models suggests that the increased serotonin in islets during pregnancy 

drives β-cell expansion [33]. Reduction in dietary tryptophan; pharmacologic inhibition of 

TPH, serotonin signaling broadly and Htr2b signaling specifically; and targeted disruption of 

the Htr2b gene all reduce β-cell expansion and impair glucose tolerance during pregnancy in 

mice. Furthermore, treatment of mouse islets in vitro with serotonin induces β-cell 

proliferation [33] (Figure 1A).

A role for serotonin in driving β-cell compensation during pregnancy makes some 

teleological sense. Much as glucokinase acts as a glucose sensor in the β-cell, TPH can act 

as a dietary protein sensor. As the essential amino acid with the lowest level in most diets, 

tryptophan acts as an indicator of dietary protein intake. Because TPH has a Km for 

tryptophan close to its normal tissue concentration, and controls the rate-limiting step in 

serotonin synthesis, production of serotonin in β-cells during pregnancy reflects dietary 

protein intake. Furthermore, co-secretion of serotonin with insulin [33,37,45,46] provides an 

additional check on the system by modulating serotonin release and signaling in the islet in 

parallel with insulin demand.

Other pathways involved in β-cell expansion in pregnancy

Loss of serotonin signaling in the islet does not completely block the proliferative response 

to pregnancy in the mouse β-cell [33], and other signals almost certainly contribute as well. 

Given the critical importance of nutrient balance during pregnancy, multiple pathways that 

provide redundancy, constraint and refinement should be expected. For example, as the 

pregnancy progresses, and insulin resistance begins to develop, changing glucose levels and 

insulin demand may modulate the serotonin-driven β-cell expansion [47]. Similarly, 

autonomic neural inputs controlled by central regulators of feeding and metabolism could 

also provide input [48,49].

Several other genes and signaling pathways have been implicated in the β-cell expansion 

during pregnancy. In addition to the role of the JAK2/STAT5 cascade, PRLR signaling also 

activates other signaling pathways, including the Ras/Rap/MAPK and PI3K/AKT/mTOR 

signaling cascades, although their relative roles remain unclear [35]. Several studies have 

shown that pregnancy and lactogen signaling activate IRS1, IRS2, PI3K, AKT, p70S6K, and 

mTOR in rodent β-cells [28,50–52]. Treatment with Rapamycin, an inhibitor of mTOR 

signaling, limited β-cell expansion and replication in pregnant mice, but did not alter glucose 

tolerance [51]. Pregnancy and PRLR signaling also activate the Raf/MEK/ERK signaling 

cascade in rodent β-cells. However, the necessity of this pathway in maternal β-cell 

proliferation has not been tested, and phosphorylation of ERK does not impact β-cell 

proliferation in non-pregnant mice [53].

Expression of a dominant negative epidermal growth factor receptor (EGFR) blocks β-cell 

expansion during pregnancy in mice [54], without impacting lactogen-induced TPH 

expression [55]. However, it should be noted that the dominant-negative EGFR impaired β-

cells in non-pregnant mice as well [56]. These studies also identified survivin/BIRC5, a cell-

cycle protein and anti-apoptotic factor, as a lactogen-induced factor that depends on EGFR, 

mTOR and MEK/ERK signaling [55].
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In pregnant rats, investigators showed that proliferation of islet endothelial cells precedes β-

cell mass expansion, and when these endothelial cells were grown in culture, their 

conditioned media could induce β-cell proliferation [57]. During pregnancy, the maternal 

islet endothelial cells secrete abundant hepatocyte growth factor (HGF), and anti-serum 

against HGF blocked the ability of the conditioned media to dive β-cell proliferation [57]. 

Furthermore, deletion of the gene encoding the HNF receptor (c-met) in the pancreas 

reduced β-cell proliferation and β-cell mass expansion. In addition, loss of c-met signaling 

in the pancreas reduced β-cell proliferation in pregnant mice [58]. Interestingly, these mice 

also failed to increase PRLR expression on the β-cell during pregnancy and had other signs 

of decreased PRLR signaling, suggesting that proper PRLR signaling in the β-cell requires 

intact c-met signalling [58].

Studies in pregnant mice have demonstrated that levels of endocrine tumor suppressor 

Menin (gene name MEN1) decrease during pregnancy [15] downstream of PRLR signaling 

[52], and overexpression of menin induces gestational diabetes [15]. It should be noted, 

however, that whole transcriptome screens of gene expression in islets from pregnant rodents 

have not confirmed the reduction in Men1 gene expression during pregnancy [33,36–38].

Increasing evidence shows that microRNAs have important roles in modulating β-cell gene 

expression and thereby modify β-cell differentiation, proliferation, function, and death [59]. 

The expression of a number of β-cell miroRNAs change during pregnancy. Investigators 

showed that one of the miroRNAs downregulated during pregnancy, miR-338-3p, is 

inhibited by estrogen signaling through the Gpr130 estrogen receptor. Inhibiting miR-338-3p 

with an antisense oligonucleotide in β-cells led to an increase in proliferation [60].

Several transcription factors have been implicated in the β-cell expansion of pregnancy. 

Targeted deletion in the pancreas of the gene encoding Foxd3, a transcription factor 

implicated in proliferation in embryonic development and stem cells, also reduced β-cell 

expansion during pregnancy, although these animals also have decreased β-cell mass prior to 

pregnancy. Interestingly, expression of Foxd3 actually decreases during pregnancy [61]. In 

contrast, expression of the cell-cycle-associated transcription factor FoxM1 increases in the 

mouse β-cells in parallel with cell-cycle induction during pregnancy, and in mouse islets in 
vitro in response to lactogens [62]. Targeted deletion in the pancreas of the gene encoding of 

FoxM1 reduced β-cell expansion both during normal postnatal growth [63] and in pregnant 

female mice [62].

Finally, targeted deletion in β-cells of the gene encoding nuclear receptor HNF4α also 

resulted in decreased β-cell proliferation and mass in pregnant mice [64]. Heterozygous 

mutations in the human ortholog of this gene cause MODY1 (maturity onset diabetes of the 

young type 1); and prior studies of the mutant HNF4 mice demonstrated a number of β-cell 

defects in non-pregnant mice [65,66]. The effects of HNF4a on β-cell proliferation in 

pregnancy were attributed, at least in part, to its activation of Ras/MEK/ERK signaling 

through downregulation of Suppressor of Tumorigenicity 5 (ST5), a direct transcriptional 

target of HNF4a in β-cells [64].
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Postpartum β-cell mass contraction

At the end of pregnancy in mice, the expression levels of the key metabotropic serotonin 

receptors on the maternal β-cell switch, with levels of Gq/11-coupled Htr2b decreasing and 

Gi/o-coupled Htr1d increasing [33] (Figure 1b). Because circulating prolactin and β-cell 

serotonin levels in the mother persist in the early postpartum period, this loss of Htr2b and 

switch to a predominantly Gi/o-coupled signaling pathway for serotonin could be expected 

to inhibit β-cell proliferation [33,48] and possibly even increase β-cell apoptosis, and 

contribute to the contraction of maternal β-cell mass postpartum [22,23]. However, again, 

other mechanisms contribute as well, since the high levels of circulating progesterone from 

the placenta at the end of pregnancy can block the pro-proliferative effects of lactogens on 

the β-cell and thus initiate the decline in β-cell proliferation in the latter half of pregnancy 

[67].

Enhanced insulin secretion

Serotonin also plays a role in the increase in glucose stimulated insulin secretion induced by 

pregnancy. In addition to its effects on the Htr2b and Htr1d receptors, serotonin secreted by 

the maternal islets binds to the Htr3a receptors on the β-cells during pregnancy [68]. The 

ionotropic Htr3a receptor functions as a serotonin-gated cationic ion channel. When bound 

by serotonin, Htr3a allows a leak of extracellular Na+ ions down the concentration gradient 

into the β-cell, thus mildly depolarizing the membrane and lowering the threshold for 

glucose-stimulated insulin secretion. Blocking Htr3a signaling reduces β-cell insulin 

secretion and impairs glucose tolerance in pregnant mice, but not non-pregnant mice [68].

In addition to the role of serotonin signaling, pregnancy also induce other changes that 

enhance insulin secretion in islets. Levels and activity of glucokinase, the β-cell glucose 

sensor, increase in β-cells in response to pregnancy and lactogen signaling [69], as do cAMP 

levels [70], intercellular junctional coupling [71], and the proteins involved in the fusion of 

insulin granules to the cell membrane in the final steps of insulin secretion [72].

All of these maternal β-cell changes may not occur independently, but instead act as 

different components of the same signaling pathways coordinated by PRLR signaling. For 

example, both glucokinase activity and serotonin signaling can regulate cAMP levels, which 

in turn could impact cell coupling and levels of the SNARE proteins. In sum, all of these 

enhancements in β-cell glucose sensing and insulin secretion, together with an expanded 

number of β-cells, provide a counterbalance to the decrease in maternal insulin sensitivity 

late in pregnancy, and control the steady flow of nutrients from mother to child.

β-Cell compensation in mice and women

Most of our understanding of pregnancy-mediated β-cell changes derives from studies in 

rodent models; our knowledge of the human β-cell in pregnancy is much more limited. What 

we do know, suggests both similarities and important differences between rodents and 

humans.
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The rapid evolution of the placenta complicates the use of non-human animals to model 

human pregnancy [73]. The placental lactogens provide a special example of this problem 

[74]. Among placental mammals, placental lactogens have evolved independently in at least 

three different lineages, – anthropoid primates (monkeys, apes, and humans), muroid rodents 

(including mice and rats) and ruminants (including cows, sheep, and goats) – either through 

multiple duplications of the pituitary growth hormone gene (in primates) or the pituitary 

prolactin gene (rodents and ruminants), while many mammals (pigs for example) do not 

express any growth hormone or prolactin genes in the placenta, and thus must depend on 

pituitary prolactin alone during pregnancy. In conjunction with these gene duplications, the 

ancestral and duplicate genes and the genes encoding the growth hormone and prolactin 

receptors have undergone accelerated evolution.

Therefore, conclusions regarding the activities of mammosomatotropic hormones and their 

receptors developed from non-human models may not apply to human pregnancy. 

Furthermore, the rapid evolution of these hormones and their receptors has altered their 

specificity in heterologous systems. Human growth hormones (both ancestral and 

duplicates), for example, bind and signal efficiently through all mammalian prolactin 

receptors. Therefore studies of these hormones and their receptors should use both the 

correct ortholog and correct paralog.

Islets and β-cells also show distinct differences between humans and rodents. These 

differences include the distribution of islets, β-cell clusters and isolated β-cells in the 

pancreas, the composition and organization of the individual islets, and the patterns of the 

islet vasculature and neural innervation [75]. Of particular importance for our discussion 

here, adult human β-cells are more resistant to cell cycle entry than rodent β-cells, and have 

earned a reputation for rarely, if ever, dividing [76].

Similar to mouse β-cells, the number of maternal β-cells increases during human pregnancy 

by a factor of 1.4 to 2.4 fold, based on two autopsy series [12,16]. The mechanisms for this 

β-cell expansion in human pregnancy remains uncertain. A. Butler and colleagues detected 

no difference in β-cell proliferation as assessed by Ki67 staining when samples from 

pregnant women were compared to age-matched non-pregnant women, and concluded that 

the increase in β-cells must be due to neogenesis of β-cells from some other cell type [16]. 

However, neogenesis cannot be not assessed directly on autopsy samples. Furthermore, 

because the gestational dates of the samples spanned the full length of pregnancy, and rodent 

β-cell proliferation rates vary sharply with time during the pregnancy (with rates dropping 

below those of non-pregnant females late in pregnancy [13,15]), assessing the mean 

proliferation rates of these samples may have missed a proliferation peak. Also, since human 

pregnancy lasts for 9 month, humans require a much lower β-cell proliferation rate than 

rodents, which have a gestation period of 3 weeks. To achieve a 1.4 fold increase in β-cells 

over 9 months, the proliferation rate only has to be 0.125% per day (assuming no cell loss).

Tests of lactogen treatment of human β-cells have given varying results. Brelje and 

colleagues [26] treated cultured human islets with human prolactin, human placental 

lactogen and human growth hormone. All three hormones increased glucose stimulated 

insulin secretion from the cultured human islets. Significantly increased proliferation in islet 
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cells (islets were not co-stained for insulin) as measured by BrdU incorporation was detected 

with hPL and hPRL treatment of islets from one donor, and with all three hormones in islets 

from a second donor. In contrast, Parnaud and colleagues [77] reported that hGH did not 

induce proliferation of human β-cells sorted and cultured in monolayers, or in intact islets, 

but the data was not shown, and insulin secretion was not tested. More recently, Chen and 

colleagues [78] tested hPRL on human islets cultured as dispersed cells, and detected no 

increase in β-cell proliferation. They did not test for effects on insulin secretion. They 

attributed this lack of response in part to low expression of the hPRLR on human β-cells. 

However, adenoviral overexpression of mouse STAT5a in human β-cells activated 

downstream targets of PRLR signaling and β-cell proliferation, but similarly expressed 

hPRLR (plus hPRL treatment) or human STAT5a failed to increase proliferation. They 

concluded that human β-cells have at least two defects in PRLR signaling, but did not 

explain why lactogens increase insulin secretion from human β-cells.

These studies demonstrate the dangers of trying to translate to humans the results of studies 

of pregnancy and the β-cell adaptation to pregnancy performed in rodent models. Although 

difficult, future studies in this field need to increasingly focus on the biology of human 

placenta and human β-cells.

Consequences of inadequate β-cell compensation: Gestational diabetes

Currently, the American Diabetes Association gestational diabetes as “diabetes diagnosed in 

the second or third trimester of pregnancy that is not clearly overt diabetes” [79]. However, 

this definition is confusing, and encompasses a heterogeneous group of women with a wide 

spectrum of glycemia and pathophysiology, and fails to distinguish hyperglycemia that is 

unique to pregnancy from permanent diabetes – diabetes that predates the pregnancy but was 

previously unrecognized, or diabetes that persists after pregnancy [80]. Perhaps a simpler 

definition might be “diabetes unique to pregnancy”.

Furthermore, the field continues to struggle to set broadly accepted criteria for diagnosing 

gestational diabetes [81]. Clearly hyperglycemia in pregnancy is associated with adverse 

pregnancy outcomes for both the mother and child, including fetal macrosomia, 

preeclampsia, shoulder dystocia, and cesarean section [82]. The risks of these outcomes 

increase as maternal fasting plasma glucose levels increase and as the one-hour and two-

hour oral glucose tolerance test (OGTT) values increase. This effect is continuous, and there 

is no clear threshold that defines patients at increased risk of adverse outcome [82]. In 

addition, glucose-lowering interventions, even in pregnancies with mild hyperglycemia, 

improve outcomes [83].

Long-term outcomes of gestational diabetes

Women with gestational diabetes have an increased risk of developing type 2 diabetes in the 

years following their pregnancy. The data regarding incidence of diabetes after gestational 

diabetes come mostly from small studies and/or racially/ethnically homogeneous 

populations [84]. A 2009 systematic review and meta-analysis of 20 cohort studies 

demonstrated that women with gestational diabetes have at least a seven-fold increased 
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future risk of developing type 2 diabetes relative to those who had a normoglycemic 

pregnancy [85]. Individual studies vary widely in their estimates of risk, ranging from 2.6% 

to 70%. Aside from genetic differences among populations, this large variation in the 

subsequent development of type 2 diabetes likely reflects the use of diverse tests for glucose 

tolerance in pregnancy, selection bias and, in particular, duration of follow-up. Taken 

together, however, the high risk of type 2 diabetes associated with gestational diabetes 

combined with observations that the two disorders share common risk factors and prevalence 

rates, suggests that gestational diabetes and type 2 diabetes might have overlapping 

etiologies. This line of thought has led to the prevailing view of gestational diabetes as a 

portent of type 2 diabetes, revealed by the increased insulin resistance during pregnancy.

However, while a significant percentage of women with GDM go on to develop type 2 

diabetes, many do not. When stratified by duration of follow-up, the evidence shows that 

most of this risk of type 2 diabetes presents within 5–10 years postpartum in pregnancies 

complicated by gestational diabetes. After 10 years, the risk of type 2 diabetes decreases to 

the background rates in the population. In O’Sullivan’s original cohort of patients with 

gestational diabetes, approximately 50% of subjects did not develop diabetes during follow-

up for as long as 28 years after their index pregnancies. Thus, while the diagnosis of 

gestational diabetes can be considered a risk factor for type 2 diabetes after pregnancy, for 

many women this is not true. For women with gestational diabetes who do not develop type 

2 diabetes, particularly those without risk factors traditionally associated with type 2 

diabetes, we contend that the development of gestational diabetes represents a problem that 

is pregnancy-specific, and most likely involves pathways driving gestational changes in the 

β-cell.

Summary

In conclusion, we have made recent progress in understanding the basic biology of the β-

cell’s adaptations to pregnancy, especially non-primate models. However, much of this new 

understanding may not apply to human pregnancy and the human β-cell.

At the same time, current controversies in the clinical approach to gestational diabetes 

complicate our approach to this important disorder. Establishing a uniform approach to 

diagnosing and managing GDM would benefit patients, caregivers, and policymakers. A 

better understanding of the underlying pathophysiology of GDM in humans would help 

guide these efforts to detect, prevent and treat GDM. Unfortunately our current limited 

knowledge of the interactions between the human placenta and human β-cells hinder these 

efforts.
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CALLOUTS

Glucose metabolism in pregnancy

β-cells anticipate the increased insulin demand that occurs late in pregnancy by increasing 

their number and insulin secretory capacity early in pregnancy.

Lactogen induction of serotonin and serotonin signaling in β-cells

Placental lactogens drive the synthesis of serotonin in β-cells, which in turn drives beta-cell 

proliferation and glucose-stimulated insulin secretion in rodents.

β-cell compensation in mice and women

Although we know that the net effects of pregnancy on rodent and human β-cell mass and 

secretion are similar, the mechanisms driving these effects may be very different.

Long term outcomes of gestational diabetes

Epidemiologic studies suggest that many women with gestational diabetes may have a 

pregnancy-specific defect in the placental-β-cell axis.
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Figure 1. 
A proposed model is shown for the role of serotonin in the adaptation of β-cells to 

pregnancy. Panel (A) outlines the effects of increased expression of the serotonin synthetic 

enzyme TPH and the serotonin receptor Htr2b at mid gestation. Panel (B) shows the effects 

of decreased expression of Htr2b and increased expression of Htr1d at the end of pregnancy 

and during the postpartum period. Trp, tryptophan; 5HT, 5 hydroxytrytomine, serotonin; 

TPH, tryptophan hydroxylase; PRLR, prolactin receptor.
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