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Abstract Phosphorus (P) is a vital nutrient for plant growth
and development, and is absorbed in cells with the help of
membrane-spanning inorganic phosphate transporter (Pht)
protein. Symbiosis with arbuscular mycorrhiza (AM) also
helps in transporting P from the soil to plant and Pht proteins
play an important role in it. To understand this phenomenon in
Finger Mille plant, we have cloned four Pht genes from Finger
millet, which shares the homology with Pht1 protein family of
cereals. Expression pattern analysis during the AM infection
indicated that EcPT4 gene was AM specific, and its expression
was higher in roots where AM colonization percentage was
high. The expression level of EcPT1-4 gene under the phos-
phorous (Pi) stress in seedlings was found to be consistent with
its role in acquisition of phosphorus. Homology study of the
EcPt proteins with Pht proteins of cereals shows close rela-
tionship. The findings of the study indicate that Phtl family
genes from finger millet can serve to be an important resource
for the better understanding of phosphorus use efficiency.
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RT Reverse transcription

gRT-PCR Quantitative real-time PCR

Introduction

Finger millet (Eleusine coracana L.) is grown in many parts
of the world with a wide range of environmental conditions.
Its production ranks sixth in India after wheat, rice, maize,
sorghum and pearl millet. It is a good source of mineral
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nutrients like calcium, phosphorus and also provides amino
acids like lysine and methionine for the peoples from Asian
and African regions (Dida et al. 2008). The grains are being
used for preparation of traditional foods, such as roti (bread),
mudde (dumpling) and ambali (thin porridge). It shows
antimicrobial, antioxidant and anti-diabetic properties
because of the presence of polyphenols in seeds of this
millet (Devi et al. 2014). It is the main food grain for many
peoples, especially in areas with soil having poor nutrient
level (Kumar et al. 2016; Upadhyaya et al. 2007).

Along with other nutrient, phosphorus (Pi) is one of the
essential mineral nutrients for proper growth and devel-
opment of plant. Being a structural component of nucleic
acids and phospholipids, it plays an important role in
biological processes like photosynthesis, energy transfer
reactions, and signal transduction (Li et al. 2010; Versaw
and Harrison 2002). The phosphorus is abundantly present
in the soil but not in readily available form due to its high
fixation rate in the soil. This is a worldwide problem and a
limiting factor in agriculture production (Sanchez-Cal-
derdn et al. 2010); as 70% of the global cultivated land,
including acidic and alkaline calcareous soils, suffers from
inorganic phosphate (Pi) deficiency, making Pi nutrition a
research area of great priority (Lopez-Arredondo et al.
2014). With the increasing demand for food (http://faostat.
fao.org/), the uncontrolled fertilization has given rise to
many environmental problems. Hence, developing the eco-
friendly technologies for effective use of P under P-limited
conditions will be of major importance for agricultural
sustainability. The plants acquire phosphorus from the soil
solution either directly via absorption by roots or indirectly
through a mycorrhizal symbiosis (Richardson 2001;
Walder et al. 2015). The past studies have indicated the
presence of a mineral transport system in plants that consist
of membrane-spanning phosphate transporter family pro-
teins (Phtl family). The members of this gene family are
identified from various plants like Arabidopsis thaliana
(Bayle et al. 2011; Remy et al. 2012), rice (Ai et al. 2009;
Campos-Soriano et al. 2012; Sun et al. 2012; Wang et al.
2014; Wu et al. 2013), wheat (Davies et al. 2002; Duan
et al. 2015; Guo et al. 2014), tomato (Chen et al. 2014; Liu
et al. 1998a), tobacco (Tan et al. 2012), maize (Nagy et al.
2006; Su et al. 2014), barley (Schiinmann et al. 2004),
Medicago truncatula (Javot et al. 2007; Liu et al. 1998b),
Populus trichocarpa (Loth-Pereda et al. 2011), and soy-
bean (Inoue et al. 2014; Song et al. 2014).

In our previous study, we have found that some geno-
types of finger millet showed differential response in term
of growth and yield in the presence of mycorrhizal sym-
biosis (Unpublished data). This differential response may
be due to different genetic factors involved in better
establishment of AMF symbiosis. Mainly, the phosphate
transporter genes from root have been reported to be
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involved in nutrient exchange during symbiosis with AMF
(Walder et al. 2015). With objective for better under-
standing of mechanism of phosphate uptake in finger mil-
let, we cloned phosphate transporter genes and studied their
expression pattern in association with AMF and in phos-
phorus stress condition.

Materials and methods
Plant material and cultivation conditions

Seeds of finger millet were surface sterilized with 1%
sodium hypochloride for 5 min, followed by 70% ethanol
for 1 min. The traces of ethanol were removed by repeated
washing with sterilized distilled water. Sterile seeds were
then germinated on solidified agar without any salt. For
colonization with mycorrhiza, 1-week-old uniform seed-
lings were transplanted to sterile sand: soil mix (4:1) along
with 1 g of inoculum of Glomus intraradices consisting of
spores (50 spores/g), extracellular hyphae, and colonized
root fragments. Six seedlings were grown in each pot. The
culture of G. intraradices was established with maize plant
by growing it in vermiculite supplied with Hogland’s
solution (Hoagland and Arnon 1950) that is devoid of
phosphorus for three cycles of 60 days each. Three vari-
eties of finger millet (Ragi Korchara Local, Khairna, and
VHC3611) were grown in greenhouse with and without
mycorrhiza. The seedlings were supplemented with
Hoagland’s nutrient solution with 1/4th strength of phos-
phorus. All six seedlings were harvested after 30 days. Half
of the plant roots were used for mycorrhiza infection study
using trypan blue staining (Phillips and Hayman 1970).
The remaining roots and leaves were immediately frozen in
liquid nitrogen and stored at —80 °C for RNA extraction.

For the study of Pi stress, 7-day-old seedlings of finger
millet (Ragi Korchara Local) were first transferred to
sterile vermiculite supplemented with Hoagland’s nutrient
solution. After 15 days of growth in vermiculite, the
seedlings were transferred to the hydroponic float system in
a tray containing 3 1 of Hoagland’s nutrient solution with
aeroponic pumps. For phosphorus stress, after 1 week the
Hoagland’s nutrient solution was replaced with fresh
nutrient solution with 1/4th of KH,PO,4. The potassium
ions (K) were compensated using K,SO,4 to fulfill the
shortage of K. The roots and leaves were harvested in the
morning (09.00-10.00 h) after every 2 days (up to 6 days)
following the initiation of phosphate starvation. The har-
vested tissues were immediately frozen in liquid nitrogen
and stored at —80 °C until further analysis. All the
experiments were repeated with three biological replicates,
with six seedlings used for harvesting leaves and roots at a
defined time span.


http://faostat.fao.org/
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Table 1 Primers used for cloning of full-length EcPT genes and expression study

Use

Code Sequence

EcPT1-F 5" CCGCCTCTACTACAGCGAGCCTAACA 3
EcPT1-R 5" ACACCACCATGAGAATGAGCGTGAA 3’
EcPT1-3 N 5" GTCTGAGTACGCCAACAAGAGAAC 3’
EcPT1-5 N 5" ACCGCATAGGGCGACACCGTTCA 3’
EcPT2-F 5" ACACGCCTAAGAGCGTCATTG3'
EcPT2-R 5" CCACAATTGTGCCGAAGAGGATG3'
EcPT2-3 N 5" TCTGAGTACGCCAACAAGAAGAC 3’
EcPT2-5 N 5" GAGCCAGAACCTGAAGAAGCAGAGC 3’
EcPT3-F 5" CCGGTCAGCTCTTCTTCGGGTGGCT 3’
EcPT3-R 5" CGGCGGAGATGATGAGCGTGACAAT 3’
EcPT3-3 N 5" ACCTACTACTGGCGGATGAAGAT 3
EcPT3-5 N 5'CGAGCCAGAAGCGGAAGAAGCAGAG 3
EcPT4-F 5" ACGCCTACGACCTATTCTGCATCACC 3
EcPT4-R 5" GCCGAACACGAG CTGGCCTATCA 3’
EcPT4-3 5" GACATGACCAATGTGATGGAGATC 3/
EcPT4-3 N 5" CTAGTAGTAACTTCCTTGCTCCAGC 3’
EcPT4-5 N 5" CGCCACGCCGATGACCATGTTGT 3’
EcTub-F 5" CTCCAAGCTTTCTCCCTCCT 3

EcTub-R 5" GCATCATCACCTCCTCCAAT 3’

Real-Time Q-PCR

For 3’ RACE PCR
For 5 RACE PCR
Real-Time Q-PCR

For 3’ RACE PCR
For 5 RACE PCR
Real-Time Q-PCR
For 3’ RACE PCR
For 5 RACE PCR
Real-Time Q-PCR

For 3' RACE PCR

For 5 RACE PCR

Internal Control for expression study

Detection of AMF colonization

After 30 days of co-culturing, the finger millet plants were
harvested and roots were gently washed under running
water to remove the adhering potting mixture. After
cleaning, roots were immersed in 10% KOH solution and
kept in the water bath at 100 °C for 15 min; and later
washed with distilled water thrice and dipped in 1 N HCL
The samples were stained with trypan blue, followed by
destaining (Phillips and Hayman 1970). The roots were
then stored in lactic acid, glycerol, and water (1:1:1 by
volume) and checked for AM colonization under a
microscope (Olympus BX40, Japan). Magnified line-in-
tersect method (McGonigle et al. 1990) was used for col-
onization rating.

RNA isolation and cDNA synthesis

Total RNA was isolated from roots and leaves of finger
millet by RNA Express reagent according to the manu-
facturer’s instructions (Himedia, Mumbai, MS, India).
The isolated RNA was treated with RQ1-DNase (Pro-
mega, Madison, WI, USA) to ensure that all genomic
DNA contamination was removed. First-strand cDNA was
synthesized using 2 pg of total RNA with of Oligo (dT;s)
primer (500 ng/pl) and M-MLV reverse transcriptase
according to the manufacturer’s protocol (Promega,
Madison, WI, USA). The resulting cDNA mixture was
diluted to 20 times by adding nuclease-free water and

stored at —20 °C until further use. PCR with Tubulin gene
(CX265249) primers (Gupta et al. 2011) (Table 1) was
conducted to ensure that synthesis of cDNA was suc-
cessful. The amplified PCR fragments were detected by
agarose gel electrophoresis. To confirm the complete
digestion of genomic DNA by DNAse I, PCRs with
EcTub gene primers were also performed with non-re-
verse transcribed total RNA. The failure to amplify the
fragment confirmed the removal of genomic DNA from
RNA samples.

Cloning of phosphate transporters genes from finger
millet

For cloning of putative phosphate transporters gene (EcPT)
from finger millet, all available full-length sequences of
rice PT genes were downloaded from GenBank database
(Benson et al. 2008). These sequences were compared by
Bioedit software (Hall 1999) for sequence similarities.
Based on the sequence analysis, required primers were
designed and used for amplification of putative fragments
of EcPT genes. The resultant PCR products were cloned
into pGEM-T vector (Promega, Madison, WI, USA) and
sequenced. The resulted cDNA sequences were used for
searching the homology with phosphate transporter genes
using BlastX (McGinnis and Madden 2004). To amplify
the full-length cDNAs of partial EcPT genes, FirstChoice
RLM-RACE Kit (Invitrogen, Grand Island, NY, USA) and
gene-specific primers were used (Table 1).
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In silico analysis of EcPT genes

Multiple alignments of deduced EcPT amino acid
sequences were carried out using Multalin software (http://
bioinfo.genopole-toulouse.prd.fr/multalin/). Different sta-
tistical parameters used during multiple sequence align-
ment were: sequence input format, fasta; protein weight
matrix, Blosum-62-12-2; gap penalty at opening, default;
gap penalty at extension, default; gap penalty at extremi-
ties, none; one iteration only, no; high consensus value,
90%, and low consensus value, 50%. Transmembrane
helices prediction was conducted using the online server
TMHMM Server v. 2.0 (Krogh et al. 2001). Molecular
modeling of all the phosphate transporter proteins was
conducted using online server of SwissModel automatic
modeling mode (Schwede et al. 2003). The phylogenetic

Table 2 Deduced amino acid and protein information of EcPT
proteins

Mol. wt.
(kDa)

PT
proteins

No. of amino
acids

pl

57.093
44.171
51.034
59.384

7.80
9.14
9.19
8.31

EcPT1
EcPT2
EcPT3
EcPT4

524
397
470
549

ECPT1
0sPT3
0sPT1
0sPT2
0sPT4
0sPT5
0sPT8

0sPT12
0sPT6
0sPT7
ECPT3
EcPT4

0sPT11
0sPT9
0SPT10
EcPT2

EP---NS--P NPGSLPPNVS AAVNGVALC!
PNVS AAVNG

--D TPGALPENVS

ARVT

D AYDLEC ARVT

JIARN

IARN AKQ

ALCG TLAGOLI

AQHARANMSQ VLN----TEI
DMSK VLX----TEI QE

relationships of deduced amino acid sequences with dif-
ferent phosphate transporter protein family members of
rice, maize, and arabidopsis were analyzed using MEGA6
(Larkin et al. 2007; Tamura et al. 2007). Different statis-
tical parameters used to construct the phylogenetic tree
were: analysis, phylogeny reconstruction; statistical
method, maximum likelihood; no. of bootstrap replicate,
1000; substitution type, amino acid; model/method, Jones-
Taylor-Thornton (JTT) model; rates among sites, uniform
rates; gaps/missing data treatment, partial deletion; and
branch swap filter, very strong.

qRT-PCR expression analysis of EcPT genes

The transcript abundance levels of cloned EcPT genes were
investigated by quantitative real-time PCR (qQPCR) using an
MX3005P Real-time PCR system (Stratagene, Santa Clara,
CA, USA). The 25.0 pl of reaction mixture contained 12.5 pl
Maxima SYBR Green/ROX gqPCR master mix (Fermentas,
Maryland, USA), 1.0 pl of each primer at 10 uM, 8.5 ul
ddH20, and 2.0 ul (80 ng) cDNA. Full-length gene
sequences for EcPT genes were used for designing the
specific primer pairs (Table 1). Tubulin gene is considered as
a housekeeping gene as it is expressed all tissues irrespective
of its stages, so it was selected as internal control in qRT-
PCR (Gupta et al. 2011). Each sample was amplified in

‘G DTPTSVMATL
‘G HTPTGVIAT:
KSPRAVMGTL

SFG HTPKSVIGTL C

IGLFSP QFLRR
R QFVRRHGVI

IARN AK(

DMSK VLH-

F RAGFPAPAYQ DDRA
F QAAFPAPAYE VNAAAST-VP QADYY
G EDPVAST-PP C

TFFFA NFGPNSTTE

OsPT6

0sPT7 LTFFFA NFGENATT
ECPT3

EcPT4

OsPT11

0sPT9
0SPT10
ECPT2

Fig. 1 Multiple sequence alignment of EcPT proteins. Multiple
sequence alignment shows presence of several conserved domains
including A-1-V-I-A-G-M-G-F-x-F-T-D-x-Y-D-L-F-S-I, G-R-x-Y-
Y, L-C-F-F-R-F-x-L-G-x-G-I-G-G-D-Y-P-L-S-A-T-I-M-S-E-Y-A-
N-K, R-G-A-F-I-A-A-V-F-x-M-Q-G, T-Y-Y-W-R-M-x-M-P-E-T-A-
/§%
A
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VARN AKOAARDMSK VLH-
VAKN AKORARDMTOQ V!
VAKN DKKAAADMAR V!
VAKN AKORARDMSK V!
VAKD AKQASSDMAK V!
VANN AKOAAADMSK V!
VAKN AERAAADMSK VI
VAKN AKQAARDMSK V!
IEGN AKQAATDMTN V1
IDGN AKQAANDMOK V!
VERD VVKATNDIGR VLADLDLAAV
ALVERD VVKATNDIGR VLADLDLGAV
ALIARN TKQAAADMSK VLH----KDI

GFTFFFA NFGPNSTTFI VPR
FFFA NFGPNATTFI

DTFTSTHW IPKARTMS!
OKDTFSAVGH 1PKAATMSAL
OKDTFSATGW 1PEAKTMSAL

PE TSKPFG
SATARG
PPNDYPLLSH
AARNNYPLLSM EFARRH
PRPSYGLFSR RFVRQHGRDL FACARAWFLL D
PRPSYGLLSR REVRQHGRDL FACAAAWFLL D
VVA TGDTWGLFSK QFLRREGLHL LATTTTWFLL D

IFLL D

YRP--L FPAPGLINAF
OKDIFTKVGW IPAGRTMNAT

540

\ FGFLYAAQDP HKP--EA-GY SPGIGIRNAL FVLAGINFLG MIMTL-LVPE SKGLSLEEIS
\ FGFLYAAQDP HKP--EA-GY KPGIGIRNAL FVLAGTXFLG MLMTL-LVPE
A FGFLYAAQDQ HKP--EP-GY PRGIGIKNAL FVLAGTNFLG TIMTL-LVPE
A FGFLYAAQDQ HNP--DA-GY SRGIGIRNAL FVLAGTNFLG MLMTL-LVP
FGFLYAAQST DASKTDA-GY PPGIGVRNSL FFLAGCNVIG FFFTF-LVP
FGFLYAAQST DPSKTDA-GY PRGT L FLLAGCNVVG FLFTF-LVPI
FGFLYAAQDP HKP--DA-GY KPGI L FVLAGCNLLG FICTF-LVP]
\TIGA FGFLYAAQPQ DKAHVDA-GY KPGIGVRNAL FVLAGCNLVG FLMTWMLVE

RATCHGISAA SGKLGAIVGS FGFLYLAQSP DRSKTE-HGY PPGIGVRNSL FLLAACNLLG LLFTF-LVPE SKGKSLEEM:
\TVGS FGFLYLAQSP VPAKAAARHGY PPGIGVRNSL FALAGCSLLG FLLTF-LVPE PKGKSLEEMS
\I1GS FGFLYAAQDP DI
YGVOSLTLNG Q

IFPARL R
IYPARL R
IYPARL R
IFPARL R
IFPARL

PAEIFPARL

PARL
1 VPAEIFPARL
VPAEIYPARL

DIKKAL IILSITNMLG FFFTF-LVPE TMGRSLEEIS
FGIQKLTYNS Q SIKKAL IILSITNMLG FFFTF-LVPE TMGRSLEEIS
IGFLE K DGA---AAGH LPGIGMMYAL FVLGGICLLG LALTYAFTPE TMTRSLEENE

WASQQOK DGA---AAGH LPGIGMMYAL FVLGGICLLG LALTYVFTPE TMMRSLEENE

R-Y-T-A-L-I/V, and N-x-G-P-N-x-T-T-F-I-x-P-A-E-x-F-P in EcPT
proteins (Underlined by solid line). Besides these conserved domains,
EcPT proteins also contain several conserved motifs and amino acids.
Multiple sequence alignment of EcPT proteins was conducted using
Multalin software (http://multalin.toulouse.inra.fr/multalin/)
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Fig. 2 Molecular structures of EcPT proteins. Molecular structure of
EcPT proteins was modeled by swiss-model workbench automatic
modeling server  (http://swissmodel.expasy.org/workspace/index.
php?func=modelling_simple1&userid=USERID&token=TOKEN).

Deduced protein sequences were used to model the molecular

triplicate using an equal amount of cDNA template. The PCR
temperature profiles were as follows: an initial step for
10 min at 95 °C; followed by 40 cycles of 30 s at 95 °C,
30 s at 60 °C, and 40 s at 72 °C. Expression levels of the
putative phosphate transporter gene (Ct) were calculated
using the 2~**“Tmethod (Livak and Schmittgen 2001) using
the accompanying software of MX3005P real-time PCR
detection system (Stratagene, Santa Clara, CA, USA).

Results

Cloning of four phosphate transporter genes
(EcPT1, 2, 3 and 4)

The rice phosphate transporter genes available in public
domain (Jia et al. 2011; Paszkowski et al. 2002) were used
to design the Phtl family gene-specific primers in Eleusine
coracana. The PCR was carried out with different set of
primes (data not shown) that resulted in amplification of
four cDNA fragments from E. coracana (EcPTI, 2, 3 and
4). The sequencing results of these fragment showed

structure. Molecular structure shows the presence of 12 alpha helices
in EcPT protein that contains a central cytosolic tunnel that is
required to transfer the phosphate molecule. The molecular structure
of EcPT protein resembles the molecular structure of eukaryotic
phosphate transporter protein

identity with phosphate transporter genes of other organism
when compared by BlastX (Altschul et al. 1990). The full-
length cloning of those four cDNA fragments by Rapid
amplification of cDNA ends (RACE) technique was tried to
achieve using the adaptor and gene-specific primers. The
sequencing results revealed that EcPT1 was 1886 bp long,
including a 5’ and 3’ un-translated region (UTR), and is
predicted to contain an open reading frame of 524 amino
acids (GenBank accession number KJ842583). The second
and third genes, called EcPT2 and EcPT3, were partial with
1274 and 1478 bp in length, respectively, with a predicted
3’ truncated open reading frame of 396 and 470 amino
acids (GenBank accession number KJ842584 and
KJ842585). The fourth gene EcPT4 was of 2066 bp in
length with a predicted open reading frame of 546 amino
acids (GenBank accession number KJ842586).

EcPTI1-4 shares sequence identity with other
members of phosphate transporter family

The four EcPT genes had a significant sequence identity
among themselves at the nucleic acid level (from 40.75 to
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Fig. 3 Prediction of transmembrane domain in EcPT using TMHMM server. Result shows the presence of membrane-spanning transmembrane

domain in all four EcPT proteins

63.81%) and at the deduced amino acid level (from 43.7 to
69.5%). The estimated molecular masses of EcPTI, EcPT2,
EcPT3 and EcPT4 were 57.09, 44.17, 51.03 and 59.38 kDa,
respectively (Table 2). Multiple sequence alignment of
EcPT protein shows the presence of several conserved
domains. The conserved domains were A-I-V-I-A-G-M-G-
F-x-F-T-D-x-Y-D-L-F-S-1, G-R-x-Y-Y, L-C-F-F-R-F-x-L-
G-x-G-I-G-G-D-Y-P-L-S-A-T-I-M-S-E-Y-A-N-K, R-G-A-
F-I-A-A-V-F-x-M-Q-G, T-Y-Y-W-R-M-x-M-P-E-T-A-R-
Y-T-A-L-I/'V, and N-x-G-P-N-x-T-T-F-I-x-P-A-E-x-F-P
(Fig. 1). The molecular structure of EcPT proteins was
modeled using Swiss automatic modeling program (Fig. 2).
All the four structures resemble the molecular structure of
eukaryotic phosphate transporter protein. The EcPT contains
12 transmembrane helices that contain a central cytosolic
tunnel to transfer the phosphate molecule (Fig. 3). Ram-
chandran plot analysis shows the presence of alpha-helix
and beta strand in the favored region (Fig. 4).

biglhate cllo iy .
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The proteins were found to be hydrophobic in nature and
were predicted to be localized to membrane (WoLF
PSORT prediction) (Yu et al. 2010). EcPTI, EcPT2,
EcPT3 and EcPT4 were containing 12, 9, 6 and 11 mem-
brane-spanning domains, respectively, as reported by
TMHMM (http://www.cbs.dtu.dk/servicess TMHMM/)
prediction (Fig. 3). The BlastP searches against GenBank
data base indicate that EcPT1-4 share 82 to 92% similarity
in amino acid with phosphate transporters from Sorghum
bicolor (Accession number XP_002467158) (Zheng et al.
2011), Zea mays (Accession number NP_001183901)
(Soderlund et al. 2009), Sorghum bicolor (Accession
number XP_002464558) (Zheng et al. 2011), and Zea mays
ZmPT6 (Accession number NP_001105776) (Soderlund
et al. 2009). When phylogenetic tree analysis was carried
out to compare the EcPT genes with the rice, maize and
Arabidopsis phosphate transporter genes (Fig. 5); it was
found that EcPT I and 2 was located in group of OsPT- 1,


http://www.cbs.dtu.dk/services/TMHMM/
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18Ggq

- 150

o EcPTI1

Fig. 4 Ramchandran plot of EcPT proteins. The Ramchandran plot
of modeled EcPT protein was generated by Swiss PDB viewer. The x-
axis represents ¢ angle and y-axis represents 'V angle. The plot shows

2, 3, and GRMZM2G070087 while EcPT3 was found on
separate branch of phylogenetic tree along with OsPT-
8,12, GRMZM2G326707, and GRMZM2G154090. EcPT4
was in the group of OsPT 11 and GRMZM5G881088.

Expression of EcPT1-4 under the AMF symbiosis

Results of real-time qRT-PCR with gene-specific primers
(Table 1) showed the increased relative transcript abun-
dance of EcPTI in roots of Ragi Korchara Local roots
and leaves of Khairna variety seedlings when colonized
with mycorrhizal fungi. However, the transcript

the presence of favorable alpha-helices and beta sheet (white).
Majority of amino acids were felled in the region which indicates the
stability of the structures of EcPT proteins

abundance hardly changed in VHC3611, as it was same
with and without mycorrhiza (Fig. 6a). The relative
transcript abundance levels of EcPT2 were significantly
higher in roots of AM plants of Ragi Korchara Local and
Khairna than in non-mycorrhizal plants, and its expres-
sion was similar in case of VHC3611 as it was same in
roots with and without mycorrhiza. We were unable to
detect EcPT2 transcripts in leaves of all three varieties
(Fig. 6b). Transcript accumulation pattern of EcPT3 was
similar to EcPT1, where its transcript abundance was six
times more in leaves of mycorrhizal seedlings of
Khairna as compared to non-mycorrhizal plants. Its
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expression level did not change in roots and leaves of  expression study in three varieties under mycorrhizal
VHC3611 (Fig. 6¢). The expression pattern of EcPT4  colonization revealed that the expressions of EcPTI-4
indicated that it was a mycorrhiza-specific phosphate = showed variable pattern, and their expression was found
transporter of finger millet and expressed only in myc-  related to percent colonization of roots by mycorrhiza.
orrhizal roots of all three varieties (Fig. 6d). The  Percentage of total colonization by G. intraradices after
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«Fig. 5 Phylogenetic tree for amino acid sequences of phosphate
transporter family members of rice and EcPT proteins. The phylo-
genetic tree was generated by MEGA 4.0 based on a ClustalW2
alignment and the neighbor-joining method for construction of
phylogeny (Goujon et al. 2010; Tamura et al. 2007). The branch
lengths are proportional to the phylogenetic distances. The sequences
of Oryza sativa (Paszkowski et al. 2002), Zea mays (Alexandrov et al.
2009; Schnable et al. 2009) and Arabidopsis thaliana (Erfle et al.
2000; Mayer et al. 1999) phosphate transporter genes have accession
number as OsPT1 (Q8H6H4), OsPT2 (Q8GSDY), OsPT3 (AAN3904
4), OsPT4 (QOIMWS), OsPT5 (AAN39046), OsPT6 (NP_00106252
7), OsPT7 (AAN39048), OsPTS (AAN39049) OsPT9 (AAN39050),
OsPT10 (AAN39051), OsPT11 (AAN39052), OsPT12 (AAN39053),
OsPT13 (AAN39054), GRMZM2G070087 (NM_001196972), GRM
ZM2G326707 (NM_001279426), GRMZM2G154090 (NP_00110581
6), GRMZM2G112377 (NP_001105817), GRMZM2G045473 (NP_00
1132684), GRMZM2G075870 (NP_001151202), GRMZM2G139639
(NP_001149892), GRMZM5G881088 (NP_001105776), GRMZM2G
170208  (NP_001266911), GRMZM2G159075 (AFW57855),
GRMZM2G041595 (DAA64043), GRMZM2G009779 (XP_0086696
51), GRMZM2G009800 (DAA38524), AtPT1 (NP_199149), AtPT2
(NP_181428), AtPT3(NP_199150), AtPTS(NP_180842), AtPT6
(NP_199148), AtPT7 (NP_191030), AtPT8 (NP_173510), AtPT9
(NP_177769). The accession number for AtCaM1 is NP_001154755.
The accession numbers of EcPT1, EcPT2, EcPT3 and EcPT4 are
KJ842583, KJ842584, KJ842585 and KJ842586, respectively

30 days of infection was 95, 60, and 50% in Ragi
Korchara Local, Khairna and VHC 3611, respectively.
The colonization level of was more in case of Ragi
Korchara Local and Khairna as compare to VHC3611,
and also the higher expression of PT genes (Fig. 6).

Regulation of EcPT1-4in response to phosphorus
stress

To determine whether the expression of the EcPT genes
cloned in this study is related to phosphorus stress, the
transcription was analyzed by qRT-PCR in the root and
leaves of seedlings grown under the Pi stress. Figure 7
shows the expression level and it indicates that the tran-
script level of the phosphate transporters in finger millet
was highly variable. A comparison of the normalized
EcPT] transcript levels revealed that transcripts
were ~ fivefold higher in roots and leaves when grown at
lesser P level for 6 days, compared with the control treat-
ment (Fig. 7a). This shows that the EcPT1 gene was highly
active due to Pi starvation. EcP72 transcripts were unde-
tectable in leaves of seedlings when grown under normally
and also under Pi stress. But its transcripts had shown a
significant increase in roots of the seedlings grown under Pi
stress (Fig. 7b). EcPT3 gene was found to be more
responsive to phosphate stress and its transcript level was
significantly increased in the beginning of treatment in both
leaves and roots, but reduced over the period of time of

treatment (Fig. 7c). EcPT4 expression was not detected in
Pi stress (Data not shown). The results indicated that there
was a significant induction of phosphate transporter tran-
scripts in response to phosphate starvation in seedlings.

Discussion

Based on the sequence of rice phosphate transporter genes,
two complete and two partial phosphate transporter genes
were cloned from finger millet. Compared with conserved
domain database at NCBI (Marchler-Bauer et al. 2011), it
was found that Phtl family members of finger millet con-
tain the characteristic domains specific to the Major
Facilitator Superfamily (MFS) protein family which is a
major class of membrane proteins (Abramson et al. 2003).
The genes cloned in this study also showed conserved
multi-domains of phosphate uptake transporter subfamily
of the MFS (Marchler-Bauer et al. 2011), and this indicates
that the cloned genes were members of phosphate trans-
porter protein family. The phylogenetic tree analysis
showed that EcPT genes showed homology with PT genes
of rice and maize (Fig. 5), where EcPT-1 and 2 were found
in the group of OsPT- 1, 2, 3, and GRMZM2G070087,
while EcPT3 was found along with OsPT- 8, 12,
GRMZM?2G326707, and GRMZM2G154090. EcPT4
showed closeness to OsPT 11 and GRMZM5G881088, and
interestingly OsPTI11 has reported to be mycorrhiza
specific (Paszkowski et al. 2002). The same results were
found in our study, which confirm that physiological pro-
cesses involved in AMF- plant symbiosis seem to be
conserved during the process of evolution. The presence of
conserved domains in EcPT and OsPT protein showed that
the proteins are monocot specific and might have evolved
from their common ancestors. The molecular structure of
EcPT protein resembles the molecular structure of
eukaryotic phosphate transporter protein. This signifies that
these proteins are evolved for common functionalities of
phosphate transportation in plant lineage.

We investigated root colonization, and transcription of
genes EcPTI-4 after inoculation with G. intraradices and
Pi stress in finger millet. From the results, it was clear that
the rate of colonization by mycorrhiza was variety specific
and some varieties of finger millet are more responsive to
mycorrhiza infection (Unpublished data). Also, the
increase in root colonization was related with the increased
expression of phosphate transporter genes cloned in this
study. The previous studies have supported our findings
that AM can increase the phosphate transport in plants by
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a 03 «Fig. 6 Relative expressions of EcCPT1-4 genes in Finger millet leaves
and roots of non-mycorrhizal roots and mycorrhizal plants of three
g 0251 varieties (Ragi Korchara Local, Khairna and VHC 3611) after
2 0.2 inoculation with G. intraradices. a—d Represents the relative expres-
5 ’ sions of EcPTI-4, respectively. Gene expression was analyze
£ f EcPTI-4, tesp ly. G p lyzed by
..E 0.15 - Real-Time qRT-PCR for three biological replicates of uninoculated
2 o1 plants (M—) and of AM plants (M+) using the specific primers listed
- ’ in Table 1. The Ct values (threshold cycles) of the samples were
& 0.05- normalized by the Ct values of housekeeping gene EcTub. The data
| for each condition are presented as the mean £ SD and were obtained
0 from three biological and three technical replicates
Leaf ‘ Root ‘ Leaf ‘ Root ‘ Leaf ‘ Root increasing the activity of host phosphate transporter genes
Ragi Korchara ‘ Khairna ‘ VHC3611 (Nagy et al. 2005; Tan et al. 2012).
EcPT1 During the expression study, a change in the expressions
b 0.04 of EcPTI-4 was detected in three different varieties of
o 0.0351 finger millet with AMF infection. EcPT4 did not express in
g 0.03 - leaves and roots of non-mycorrhizal seedlings of all three
£ 0.025- varieties, but only expressed in roots infected with AM.
'{E 0.02 Under the Pi stress also we were unable to detect its
£ 0.015 transcript in Ragi Korchara Local. Previous studies have
g 001 shown that in plants some of the PT genes are induced by
0'0:5’ AM colonization in roots (Karandashov et al. 2004; Nagy
T PP T P T Y et al. 2005; Paszkowski et al. 2002; Siciliano et al. 2007,
‘ ‘ ‘ ‘ Tan et al. 2012; Wegmuller et al. 2008). The results of our
Leaf Root Leaf Root Leaf Root . Lo
) ‘ . ‘ transcript abundance study indicated that EcPT74 was
Ragi Korchara Khaima vheasl mycorrhiza-specific finger millet phosphate transporter
¢ EcPT2 gene and expressed with inoculation of with G.
s S intraradices.
2 The finger millet seedlings grown in the liquid nutrient
g media with lower P concentrations have shown a different
E expression pattern of phosphate transporter genes. The
5 variable rate of transcript abundance may be due to various
= factors like promoter controlling the responsiveness to Pi
stress (Liu et al. 1998a). Results of the expression in leaves
Leaf ‘ Root ‘ Leaf ‘ Root ‘ Leaf ‘ Root in all three varieties indicated that various genetic and
Ragi Korchara ‘ Khairna VHC3611 spatial factors influence phosphate transporter activity
EcPT3 during the plant P uptake (Inoue et al. 2014). These results
d o3 suggested that the cloned genes might be involved in
. 025 diverse processes alqng with the direct uptake pathway of P
2 by membrane-spanning phosphate transporters (Bayle et al.
g 0.2
£ 2011; Inoue et al. 2014).
& 0.15-
[
>
£ 014
& 05 Conclusion
0

M+{M»{M+{M—{M+{M—{M+{M—{M+‘M—{M+‘M—

Leaf ‘ Root Leaf ‘ Root Leaf ‘ Root

RagiKorchara Khairna VHC3611
EcPT4
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In the present study, cloning of four phosphate transporter
family genes EcPTI-4 from finger millet was achieved, and
expression study under the mycorrhiza colonization and Pi
stress was conducted to characterize them. The results
showed that out of four genes cloned in this study, EcPT4



3 Biotech (2017) 7:17

Page 11 of 13 17

a 0.0007

0.0006

0.0005

0.0004

0.0003

Relative Expression

0.0002

0.0001

on|zo|4o|so|oo|zo 4D | 6D

Leaf Root

EcPT1

=2

0.005
0.0045 -
0.004 4
0.0035
0.003
0.0025 -
0.002 -
0.0015
0.001 -
0.0005 -

Relative Expression

on|zo|4n|eo|on 2D | 4D | 6D

Leaf Root
EcPT2

Cc 0.09
0.08+
0.07+
0.06+
0.05+
0.04+
0.03+
0.02+
0.014

Relative Expression

Leaf Root

EcPT3

Fig. 7 Relative expression of four EcPTI-4 genes in Finger millet
leaves and roots under Pi stress. a—c Represents the relative
expressions of EcPTI-3, respectively. Gene expression was analyzed
by Real-Time qRT-PCR for three replicates of plants harvested at
0-6 days of Pi stress using the specific primers listed in Table 1. The
expression study was unable to detect the transcript of EcPT4 gene.
Tubulin gene (EcTub) was used as internal control

is the mycorrhiza-specific PT gene and its expression level
is correlated with the percentage of root colonization by
AM. Additionally, we found that the pattern of the
expression of these genes under Pi stress was different and
needs to be further investigated to check out the causes for
this differential expression during phosphorus uptake and
plant growth. Our results support the conservation of

functional role of some of the family genes during the
period of evolution, which was the case for EcPT4.
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