Table 3.
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
All (n=216) | Stratification by OW status at T1
|
All (n=216) | Stratification by OW status at T1
|
|||
Non-OW (n=167) | OW (n=49) | Non-OW (n=167) | OW (n=49) | |||
|
|
|||||
Change in diet quality (DQIT2-T1) | ||||||
Larger Negative change ≤ − 7.7 | 0 | 0 | 0 | 0 | 0 | 0 |
Smaller Negative change]− 7.7; 0] | −0.09 (−0.24; 0.07) | −0.07 (−0.27; 0.13) | −0.15 (−0.33; 0.03) | −0.09 (−0.24; 0.07) | −0.03 (−0.23; 0.16) | −0.25 (−0.47; −0.03) |
Positive change | −0.09 (−0.27; 0.08) | −0.08 (−0.32; 0.15) | −0.14 (−0.30; 0.02) | −0.10 (−0.27; 0.07) | −0.07 (−0.29; 0.15) | −0.22 (−0.44; −0.01) |
P-trend | 0.31 | 0.49 | 0.078 | 0.26 | 0.52 | 0.035 |
Diet quality at T1 (DQIT1) | −0.0004 (−0.007; 0.006) | −0.0009 (−0.01; 0.007) | 0.002 (−0.01; 0.01) | 0.004 (−0.003; 0.01) | 0.005 (−0.003; 0.01) | 0.006 (−0.006; 0.02) |
P-value | 0.90 | 0.82 | 0.78 | 0.28 | 0.22 | 0.31 |
zBMI at T1 (zBMIT1) | 0.91 (0.83; 0.98) | 0.93 (0.82; 1.04) | 1.05 (0.82; 1.28) | 0.88 (0.82; 0.95) | 0.90 (0.80; 1.01) | 1.10 (0.86; 1.33) |
P-value | <0.0001 | 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Gender | ||||||
Male | 0 | 0 | 0 | 0 | 0 | 0 |
Female | 0.10 (−0.03; 0.24) | 0.10 (−0.07; 0.27) | 0.11 (−0.03; 0.25) | 0.14 (−0.03; 0.31) | 0.14 (−0.07; 0.35) | 0.21 (−0.004; 0.41) |
P-value | 0.12 | 0.24 | 0.11 | 0.11 | 0.19 | 0.054 |
Age at T1 | 0.02 (−0.02; 0.05) | 0.04 (−0.001; 0.07) | −0.04 (−0.10; 0.01) | 0.02 (−0.02; 0.05) | 0.04 (−0.01; 0.08) | −0.04 (−0.12; 0.03) |
P-value | 0.28 | 0.059 | 0.10 | 0.42 | 0.11 | 0.22 |
MVPA at T1 | ||||||
Low | 0 | 0 | 0 | |||
Intermediate | 0.13 (−0.01; 0.28) | 0.12 (−0.05; 0.29) | 0.23 (−0.01; 0.48) | |||
High | 0.11 (−0.11; 0.34) | 0.11 (−0.14; 0.36) | 0.24 (−0.08; 0.56) | |||
P-trend | 0.28 | 0.36 | 0.10 | |||
Accelerometer wearing time at T1 | 0.0002 (−0.0006; 0.001) | 0.0002 (−0.0008; 0.001) | 0.00001 (−0.001; 0.001) | |||
P-value | 0.56 | 0.67 | 0.91 | |||
Screen sedentary behaviour at T1 | ||||||
Low | 0 | 0 | 0 | |||
Intermediate | 0.13 (−0.04; 0.29) | 0.13 (−0.05; 0.32) | 0.15 (−0.06; 0.35) | |||
High | 0.22 (0.04; 0.40) | 0.28 (0.06; 0.49) | 0.20 (−0.0002; 0.40) | |||
P-trend | 0.017 | 0.012 | 0.091 | |||
Maternal education level | ||||||
Low | 0 | 0 | 0 | |||
Intermediate | 0.01 (−0.16; 0.18) | 0.04 (−0.15; 0.24) | −0.13 (−0.31; 0.04) | |||
High | −0.11 (−0.29; 0.07) | −0.09 (−0.32; 0.13) | −0.33 (−0.62; −0.04) | |||
P-trend | 0.19 | 0.36 | 0.030 |
Multivariable regression analyses were performed to investigate the longitudinal relationships between zBMIT2 (as the outcome) and change in diet quality between T1 and T2 (DQIT2-T1, categorical variable), adjusting for zBMIT1, DQIT1, child’s age and gender (Model 1). In Model 2, we also controlled for child’s MVPA, accelerometer wearing time, screen time and maternal education (all measured at T1). Both models accounted for clustering by suburb.
DQI, Diet Quality Index; MVPA, Moderate and Vigorous Physical Activity; OW, Overweight; T1, baseline; T2, follow-up; zBMI, BMI z-scores.