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Abstract: AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of 
tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated 
the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal ad-
enocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological 
tumor features, and assessed the functional role of ARID1A. In the ampullary adenocarcinomas, the frequency of 
KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% 
of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). 
There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 
25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma 
group. In vitro studies indicated the tumor suppressive role of ARID1A. Our results warrant further investigation 
of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic 
targets in ARID1A mutated ampullary cancers.
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Introduction 

Ampullary cancers form a group of rare neo-
plasms [1]. These tumors arise in the area 
known as the ampulla of Vater. This is a unique 
and complex anatomic region found at the con-
fluence of the common bile duct and main pan-
creatic duct that opens into the duodenum 
through the papilla of Vater. The area where the 
ampulla Vater is located is covered by three 
types of epithelia: duodenal, pancreatic and 
biliary [2]. Therefore, neoplasms arising from 
this region can be classified as either pancrea-

tobiliary, intestinal and mixed or ambiguous 
type [3, 4]. The intestinal subtype originating 
from the intestinal epithelium lining [5] is asso-
ciated with a longer overall survival compared 
to the pancreatobiliary type [6, 7]. This may 
reflect the fact that the intestinal subtype is 
more related genetically to colorectal cancers, 
which have a superior prognosis compared to 
the pancreatobiliary subtypes.

Because of the close anatomical relations in 
this area, the true origin of some neoplasms is 
difficult to establish. As a result, the ampullary 
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tumors are sometimes classified together with 
neoplasm that arise from head of the pancre-
as, distal common bile duct or periampullary 
duodenum [8-10], and are termed periampul-
lary cancers. Based on site of origin, the most 
common periampullary tumors are the pancre-
atic neoplasms followed by ampullary cancers, 
tumors of the bile duct, and duodenum [11, 
12]. 

ARID1A or AT rich interactive domain 1A is a 
recently identified putative tumor suppressor 
gene located on chromosome 1p36.11. The 
gene encodes for a large protein (ARID1A or 
BAF250a) which is the variant subunit [13] of 
the SWI/SNF (SWItch/Surcose NonFermenta- 
ble) multi-component complex. This is an ATP-
dependent chromatin remodeling complex [14] 
that uses the energy of ATP hydrolysis to slide 
the DNA around the nucleosome and to alter 
gene expression in a tissue specific manner 
[15-17]. ARID1A is considered both a “caretak-
er” as well as “gatekeeper” [18], and may me- 
diate carcinogenesis by its involvement in cell 
proliferation, differentiation, and apoptosis 
[17]. It also modulates cell-cycle genes such  
as c-myc and is involved in the PI3K pathway 
[19], with two-hit mutations and/or protein loss 
demonstrated in mutation-carrying tumors, 
most notably gastric and ovarian carcinomas 
[20, 21].

ARID1A has been identified as one of the most 
frequently mutated genes in human cancers by 
multiple next-generation genomic sequencing 
studies [22, 23] and high incidence of ARID1A 
somatic mutations have been identified in sub-
types of ovarian cancers [20, 24], breast can-
cer [25], gastric cancer [21], clear cell renal 
carcinomas [27] and hepatocellular carcinoma 
[28, 29].

In pancreatic cancer, one study described 
ARID1A mutations in 8% of the patients [30], 
while another study showed that ARID1A mu- 
tations by chromosomal deletion were detect-
ed in 47% of the tumor samples and cell lines 
[31]. ARID1A mutations were recently discov-
ered in two ampullary cohorts of patients with a 
frequency of 11% and 5% (in the discovery 
screen), respectively [32, 33].

The role of ARID1A in ampullary malignancies 
is only beginning to be uncovered. The prognos-
tic and clinical significance of these mutations 

remains to be established. In this study, we 
aimed to determine the frequency of ARID1A 
and KRAS mutations in two cohorts of patients 
from Singapore and Romania, to correlate 
genomic and proteomic data with clinical infor-
mation and to determine the functional role of 
ARID1A in ampullary cancers.

Materials and methods

Patients and tissue samples

Samples of ampullary (n=74) and duodenal 
(n=6) adenocarcinoma, and ampullary adeno-
mas (n=3) from patients who underwent surgi-
cal resection were identified and retrieved from 
two tissue banks: Singapore Tissue Repository, 
Singapore and Fundeni Clinical Institute Tissue 
Bank, Romania. Tissue was obtained with 
informed written consent from each patient. 
The study was approved by the SingHealth 
Centralized Institutional Review Board, Singa- 
pore and Ethical Committee of Fundeni Clinical 
Institute, respectively. Paraffin-embedded for-
malin fixed tissues were identified and retrieved 
from the Pathology Department of Singapore 
General Hospital and Fundeni Clinical Institute. 
Clinical and histopathological data were col-
lected and reviewed by two independent GI 
pathologists. The site of each tumor’s origin 
was based on histopathological reports. 

Clinical outcomes

Data regarding the duration of follow-up, time 
to recurrence, survival or censoring was ca- 
lculated in months from the date of surgery  
for each patient. Censoring of the overall sur-
vival was done at the date of the last follow-up 
if death did not occur or if the cause of dead 
was unrelated to the disease. If available, the 
time to recurrence was calculated in months 
from date of surgery for each patient until the 
date of recurrence (either local or distant). 
Censoring of the time to recurrence was done 
at the date of last follow-up if recurrence was 
not observed.

DNA samples

Qiagen Blood and Cell Culture Mini Kit (Hilden, 
Germany) was used to extract genomic DNA 
from adjacent benign (when available) and 
tumor tissue as per manufacturer’s instruc-
tions from a total of 58 patients. In brief, the 
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stained for MUC1 (Novocastra, NCL-MUC01, 
dilution 1:150), MUC2 (Novocastra, NCL-MUC-
2-CE, dilution 1:100), CDX2 (Dako, M3636, 
dilution 1:100) and CK20 (Dako, M7019, dilu-
tion 1:50) on a Leica BOND-MAX III automated 
IHC stainer, in order to establish the type of dif-
ferentiation: intestinal, pancreatobiliary or 
ambiguous type [4]. 

The immunohistochemistry staining for these 
markers was evaluated as positive if more than 
50% of the cells were positively stained, as 
weak to moderate if less than 50% of the cells 
were positively stained and as negative if com-
plete loss of staining was noted.

SNP array

For analysis of copy number and loss of he- 
terozygosity the HumanOmni Express 24 v1.1 
beadchip from Illumina was used according to 
manufacturer instruction. Seven pairs of sam-
ples with ARID1A somatic mutation were geno-
typed and loss of heterozygosity for chromo-
some 1p was evaluated by ASCAT 2.0 soft- 
ware (Allele-Specific Copy number Analysis of 
Tumors). The software provided an estimation 
of the B-allele frequency and log2R ratio. LOH 
was given by B allele frequency where values 
deviating from 0.5 indicated allelic imbalance 
or LOH. Copy-number alterations were identi-
fied based on the allele-specific copy-number 
counts and average ploidy.

Cell cultures

Two ampulla of Vater cell lines, SNU-478 and 
SNU-869, were purchased from Korean Cell 
Line Bank and were maintained in RPMI-1640 
supplemented with 300 mg/L L-glutamine, 
10% fetal bovine serum and penicillin/strepto-
mycin at 37°C, 5% CO2. Media was changed at 
least twice a week. Cell line genotypes were 
obtained from published studies [34, 35], 
COSMIC database [36] and CCLE database 
[37]. 

Cell transfection

SNU-478 was forward transfected and SNU-
869 was reversed transfected with siRNA 
against ARID1A (ON-Target Plus smart pool 
Human ARID1A: L-017263-00, ON-Target Plus 
siRNA Human ARID1A: J-017263-06, ON-Tar- 
get Plus siRNA Human ARID1A: J-017263-07, 

frozen tissue was grounded with a pestle and 
mortar, then mixed with RNaseA, Buffer G2  
and Protease and incubated overnight at 50°C. 
The genomic DNA was bound to column, 
washed, eluted and quantified using spectro-
photometry. Integrity was checked by running 
200 ng of genomic DNA on 0.8% agarose gel.

Evaluation of ARID1A and KRAS mutations in 
tumors and matched normal specimens

Genomic DNA from tumor and matched normal 
samples were amplified with Illustra Genom- 
Phi HY DNA Amplification Kit (GE healthcare, 
Buckinghamshire, UK). PCR was performed 
with Platinum Taq Polymerase (Life technolo-
gies, Carlsbad, USA) and cycled at 95°C for 10 
minute; 39 cycles of 95°C for 30 seconds; 
58/60°C for 30 seconds, 72°C for 1 minute 
and a final extension of 72°C for 10 min. 
Purified PCR products were sequenced with  
ABI BigDye Terminator v3.1 (Life technologies, 
Carlsbard, USA) following manufacturer’s pro- 
tocol and ran on an ABI 3730 genetic analy- 
zer. The results were analyzed using Seqman  
II DNAstar (v.5.05) (Madison, Wisconsin, USA) 
and Chromas 2.4.3 (South Brisbane, Australia). 
The primers used for ARIDIA and KRAS to  
perform PCR and Sanger sequencing are the 
ones described previously [24]. Additionally the 
primer sequences can be requested from the 
corresponding author.

ARID1A immunohistochemistry and subtyping 

Staining of ARID1A (Sigma, HPA005456, dilu-
tion 1:50) was performed using citrate buffer 
(pH 6.0) with pressure cooking (3 min) for anti-
gen retrieval. Primary antibody incubation was 
for 1 h at room temperature. Manual DAKO 
Envison KIT was used for visualization. Normal 
epithelial and lymphoid cell nuclei were used as 
positive internal controls. Results were inter-
preted as loss if complete nuclear and/or cyto-
plasmatic staining was observed, weak stain-
ing if partial nuclear and/or cytoplasmatic 
staining was observed or as positive if strong 
nuclear and/or cytoplasmatic staining was 
observed. Immunohistochemistry staining for 
ARID1A was done in a total of 64 patients.

For subtyping, available paraffin embedded tis-
sues (n=63, out of 83) were used for assembly 
of TMA (tissue microarray) blocks with two 
cores per tumor. Serial section were cut and 
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Table 1. Summary of clinico-pathological features of patients included in the study 

Characteristics
Ampullary tumors (n=74)

Dudodenal  
tumorsa  
(n=6)

Ampullary  
adenomaa  

(n=3) p-val-
ueb

Total
Cohort 1 (n=49)

Cohort 1 Cohort 1
Cohort 2 (n=25)

Age at surgery (yrs), median [range] 65 [38-79] 62 [40-78] 54 [36-74] 69 [46-75] 0.33
67 [38-79]

Gender (n, %) 0.06
    Female 33 (44.6%) 22 (29.7%) 1 (16.7%) 3 (100.0%)

11 (14.9%)
    Male 41 (55.4%) 27 (36.5%) 5 (83.3%) 0 (0.0%)

14 (18.9%)
Differentiation degree (n, %) 0.43
    G1, G1-G2 27 (36.5%) 22 (29.7%) 3 (50.0%) NA

5 (6.8%)
    G2, G2-G3 36 (48.6%) 20 (27.0%) 1 (16.7%) NA

16 (21.6%)
    G3 9 (12.2%) 5 (6.8%) 1 (16.7%) NA

4 (5.4%)
    Unknownc 2 (2.7%) 2 (2.7%) 1 (16.7%) NA

0 (0.0%)
pN (n, %) NA 1.0
    N0 48 (64.9%) 30 (40.5%) 4 (66.7%) NA

18 (24.3%)
    N1 25 (33.8%) 18 (24.3%) 2 (33.3%) NA

7 (9.5%)
    Unknownc 1 (1.4%) 1 (1.4%) 0 (0.0%) NA

0 (0.0%)
pT (n, %) <0.0001
    T1 13 (17.6%) 9 (12.2%) 0 (0.0%) NA

4 (5.4%)
    T2 28 (37.8%) 18 (24.3%) 1 (16.7%) NA

10 (13.5%)
    T3 28 (37.8%) 19 (25.7%) 1 (16.7%) NA

9 (12.2%)
    T4 4 (5.4%) 2 (2.7%) 4 (66.7%) NA

2 (2.7%)
    Unknownc 1 (1.4%) 1 (1.4%) 0 (0.0%) NA

0 (0.0%)
Tumor size (cm), median [range] 2.0 [0.4-10.0] 2.0 [0.4-10.0] 4 [2.8-6.0] 5 [2.0-7.0] 0.077

2.05 [1.0-7.0] 0.008d

Status (n, %) 0.47
    Alive 38 (51.4%) 20 (27.0%) 0 (0.0%) 1 (33.3%)

18 (24.3%)
    Dead 34 (45.9%) 27 (36.5%) 1 (16.7%) 2 (66.7%)

7 (9.5%)
    Unknownc 2 (2.7%) 2 (2.7%) 5 (83.3%) 0 (0.0%)

0 (0.0%)
Overall survival (months), median [range] 26.33 [0.39-160.3] 27.5 [0.76-160.3] - 121.0 [109.8-132.3] 0.64

19.2 [0.39-57.7]
Morphological subtypee 0.26
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Dharmacon, IL) or with a non-targeted con- 
trol (ON-TARGET plus Non-targeting Pool: 
D-001810-10, Dharmacon, IL) at a final con-
centration of 50 nM using Lipofectamine 
RNAiMAX (Invitrogen, CA) according to the man-
ufacturer’s protocol. 

Cell proliferation assay

Forty-eight hours after transfection, 2×10^3 
SNU-478 cells and 4×10^3 SNU-869 cells were 
plated in 96-well plates in triplicate. Cell prolif-
eration was monitored every 24 hours for 4 
days using Cell Titer Glo assay (Promega, WI) 
according to the manufacturer’s instructions. 
Relative light units were measured with a 
PerkinElmer plate reader. Three independent 
experiments were performed, and results are 
represented as the average normalized to the 
control at each time point (mean ± s.e.m). 

Real time PCR

Forty-eight hours post-transfection total RNA 
was extracted with Trizol Reagent (Life 
Technologies, NY) followed by purification using 
a column based kit (RNeasy mini kit, Qiagen). 
1000 ng of total RNA was reverse-transcribed 
using iScript cDNA Synthesis kit (Bio-Rad, CA). 
Sso Fast Eva Green Super-Mix using Bio-Rad 
CFX 96 Real Time Detection System (Bio-Rad, 
CA) were used to quantify the expression of 
ARID1A and GAPDH, as an endogenous con- 
trol, by quantitative real time-PCR. Relative 
mRNA expression was calculated using 2^(-
ΔΔCt) method and normalized to GAPDH 

expression. Primers used can be requested 
from the corresponding author.

Western blot

Cells were lysed 48 hours post-transfection 
with lysis buffer [50 mM Tris-HCl, pH 7.5, 150 
mM NaCl, 0.1% SDS, 1% sodium deoxycholate 
and 1% NP-40 (Igepal)] in the presence of 
freshly added protease inhibitor and PhoSTOP 
(Roche). Cell lysate were disrupted and centri-
fuged at 14000 rpm for 15 min, loaded on gel 
and transferred, after separated on SDS-PAGE 
gel, to PVDF or nitrocellulose membranes (Bio-
Rad, CA). Membranes were blocked in PBS with 
5% skim milk and 0.1% Tween-20, probed with 
antibodies to ARID1A (1:1000 dilution, Cell 
Signalling Technology, 12354) and β-actin 
(1:100,000 dilution, Sigma Aldrich, MO, A19- 
78), incubated overnight at 4°C, washed and 
incubated with HRP-conjugated secondary anti-
bodies (IgG anti-mouse NA931 or IgG anti-rab-
bit NA934, Amersham). Signals were visualized 
using either SuperSignal West Pico chemilumi-
nescent substrate, (Thermo Scientific) or ECL 
prime Western Blotting Detection Reagent 
RPN2236 (Amersham) and Kodak BioMax XAR 
film (VWR International). 

Statistical analysis

Categorical variables were evaluated using 
Fisher’s exact test for two-by-two comparison 
or Pearson’s χ2 for comparison that exceeded 
the two-by-two condition. Differences between 
groups were evaluated by means of nonpara-

    Pancreatobilliary 24 (42.1%) 12 (21.1%) 2 (66.7%) 0 (0.0%)
12 (21.1%)

    Intestinal 23 (40.4%) 13 (22.8%) 1 (33.3%) 3 (100.0%)
10 (17.5%)

    Ambigous 10 (17.5%) 7 (12.3%) 0 (0.0%) 0 (0.0%)
3 (5.3%)

Nationality (n, %) 0.07
    Romania 37 (50.0%) 37 (50.0%) 5 (83.3%) 3 (100.0%)

0 (0.0%)
    Singapore 37 (50.0%) 12 (16.2%) 1 (16.7%) 0 (0.0%)

25 (33.8%)
Cohort 1-analyses performed: Sanger sequencing and SNP array (n=7), immunohistochemistry for ARID1A, and classification into pancreatobilliary, 
intestinal or mixed sub-type; Cohort 2-analysis performed: immunohistochemistry for ARID1A, and classification into pancreatobilliary, intestinal or 
mixed sub-type. aall the duodenal tumors and ampullary adenocarcinoma are included in Cohort 1 only; bp-values were calculated between all three 
group (the group designated as total ampullary tumors vs duodenal tumors vs ampullary adenoma) unless otherwise specified or if one group had 
NA or missing information; differences between age and tumor sizes were calculated by means of Kruskal-Wallis test; differences in overall survival 
were calculated by means of Log-Rank Mantel Cox test; the rest were tested by Fisher exact t-test or Chi-square test; cnot included in p-value calcula-
tion; dp-value calculated between ampullary and duodenal tumors groups only; eonly samples assessed for morphological subtype were included. 
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Figure 1. Flow chart summarizing the patients groups, experiments and analysis performed within the study.
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Figure 2. Analysis of ARID1A and KRAS non-synonymous somatic mutations. A: Plot summarizing samples with non-synonymous somatic mutations in ARID1A and 
KRAS based on tumor site and immunohistochemistry subtype classification. B: Graphic representation of ARID1A and KRAS somatic non-synonymous mutations 
(modified from cBio portal). C: Type of KRAS non-synonymous somatic mutations based on tumor site and percentage of KRAS mutations in the whole cohort. D: 
Survival curves of ampullary adenocarcinoma cohort on mutational status of ARID1A and KRAS (in the wild type group were included patients with somatic or 
germline synonymous mutations but non-synonymous germline mutations were excluded.
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metric Mann-Whitney or Kruskal-Wallis test. 
Survival analyses were performed using the 
Kaplan-Meier curves and the differences in 
survival curves were assessed by Log rank 
Mantel Cox test. A P≤0.05 was considered  
statistically significant and noted as: *P≤0.05, 
**P≤0.01, ***P≤0.001. All tests were per-
formed with Graph-Pad Prism 5 (GraphPad 
Software Inc, San Diego, CA).

Additional Material and Methods details can be 
requested to the corresponding author. 

Results

Patient characteristics

The clinico-pathologic characteristics of all 
patients and the flowchart summarizing the 
experiments within our study are detailed in 
Table 1 and Figure 1. Of the 83 tumors in- 
cluded in the study, 74 (89.1%) were ampullary 
adenocarcinomas. Statistically significant dif-
ferences between tumor groups based on 
patients’ clinicopathologic characteristics are 
shown in Table 1.

A total of 63 patients with available paraffin 
blocks were analyzed by immunohistochemis-
try for CK20, CDX2, MUC1 and MUC2 for sub-
type classification into pancreatobiliary, intesti-
nal or ambiguous subtype (Figures 2A and  
5A). Fifty-seven out of the 63 patients (90.4%) 
had ampullary adenocarcinomas, and 42.1% of 
samples in this group showed a pancreatobili-
ary profile by IHC staining, 40.4% showed IHC 
intestinal staining and 17.5% of ambiguous 
staining. In the duodenum tumor group, 2 out 
of 3 analyzed samples (66.7%) showed pancre-
atobiliary staining, while the adenoma group 
showed in all 3 cases (100%) intestinal staining 
(Figure 2A).

Analysis of the ampullary adenocarcinoma gro- 
up alone showed that the tumor size was differ-
ent in the analyzed subgroups and had medi-
ans ranging from 2.0 cm in the pancreatobiliary 
subgroup, 3.0 cm in the intestinal subgroup to 
1.75 cm in the ambiguous subtype. 

ARID1A and KRAS mutational analysis  

A total of 49 consecutive cases of ampullary 
adenocarcinoma were analyzed for mutations 
in ARID1A (37 cases from Romania and 12 
cases from Singapore). Given the high frequen-

cy of KRAS gene as an oncogenic driver in  
pancreatic adenocarcinoma, and that some  
of the ampullary cancers develop from the  
pancreatic lining, we also studied the muta-
tions in the KRAS gene. As a comparison, we 
also analyzed a group of 6 duodenal adeno- 
carcinomas (5 cases from Romania and 1 case 
from Singapore). Furthermore, to determine the 
involvement of ARID1A mutations in premalig-
nant stages, a group of 3 ampullary adenomas 
(all from Romania) were also included in the 
analysis (Figure 2A).  

Sequencing the 20 exons of ARID1A lead to  
the identification of 4 somatic ARID1A muta-
tions in the ampullary adenocarcinoma group 
(8.2%), 2 somatic ARID1A mutations in the duo-
denal tumor group (33%), and 1 somatic muta-
tion in the ampullary adenoma (33%) (Figure 
2A). These mutations included two nonsense 
mutations (p.Q172X and p.R1276X), four frame-
shift insertion-deletion (p.G276f.s, p.P599fs, 
p.L2136 f.s, p.A2241fs) and one splice site 
(Figure 2B and Table 2), indicating functional 
loss of ARID1A in these samples and a reminis-
cent tumor suppressive role. 

We further analyzed the loss of heterozygosity 
(LOH) in the 7 matched pairs of normal and 
tumoral samples that harbored mutations. The 
results were analyzed by ASCAT (Allele-Specific 
Copy number Analysis of Tumors) that indicat- 
ed that 3 out of 4 analyzed cases from the 
ampullary group presented LOH at the gene 
locus (Table 2; Figure 3). In both ampullary  
and duodenal tumors LOH was identified in 
patients concomitantly harboring somatic 
frame shift indels suggesting loss of the func-
tional protein. 

Collectively, the mutational data and LOH anal-
ysis support the tumor suppressor role of 
ARID1A in ampullary and duodenal adenocar- 
cinomas.

Of note, the frequency of ARID1A somatic 
mutations in the ampullary group was distinct 
between Singapore and Romania cohort of 
25% and 2.7%, respectively (P=0.04, Table 3). 
This observation suggests that the same can-
cer from different geographic regions might 
have different etiologies. 

Analysis on clinico-pathologic features of the 
patients showed that there was a statistical sig-
nificant difference based on the degree of dif-
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Figure 3. ARID1A genomic and proteomic characterization in representative cases with mutations. For each case, three panels are presented: upper left-sequencing 
chromatograms for normal and tumoral sample, bottom-left: immunohistochemistry staining, right-analysis of copy number alterations by ASCAT in tumoral sample 
(top panel-Log R ratio, middle panel: B allele frequency, bottom panel: allele specific copy numbers).



ARID1A in ampullary tumors

493 Am J Cancer Res 2017;7(3):484-502

Figure 4. Functional studies in SNU-478 and SNU-869 cell lines. A: Relative proliferation curves, qPCR and western blot in SNU-478 cell line treated with non-target-
ing siRNA or Pool siRNA, siARID1A6 and siARID1A7. B: Relative proliferation curves, qPCR and Western blot in SNU-869 cell line treated with non-targeting siRNA or 
Pool siRNA, siARID1A6 and siARID1A7. C: Real time PCR analysis of EMT markers in SNU-478 and SNU-869 cell lines (in SNU-478, no amplification was detected 
for VIM and TWIST1 while CDH1 was reported to be hypermethylated (ref 34, 35).
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ferentiation between ARID1A mutant and 
ARID1A wild-type group (P=0.01). Some of 
ARID1A mutant cases (2/4, 50%) had a  
poorly tumor grade (G3) that might suggest a 
more aggressive clinical phenotype of these 
cases.   

The mutational status of ARID1A was shown to 
be statistically significant correlated with pro-
tein expression (P=0.023, Table 4) that points 
to the possible use of protein expression as a 
surrogate marker for ARID1A mutations. An- 
alysis between the mutational status and over-
all survival (Figure 2D) or tumor recurrence 
showed no statistically significant association.

KRAS gene sequencing identified 22 missense 
non-synonymous mutations, 17 in the ampul-
lary adenocarcinoma group (34.7%), 3 in the 

duodenal tumors group (50%) and 2 in the 
ampullary adenoma group (66%) (Figure 2A, 
2B). In the ampullary adenocarcinoma cohort, 
the majority of KRAS mutation occurred in  
the pancreatobiliary and ambiguous subtype 
(5/13, 38.5%) followed by the intestinal sub-
type (3/13, 23.1%). The frequency of KRAS 
mutations is much lower than the frequency 
reported in pancreatic cancer, but in line with 
previous reported results in ampullary adeno-
carcinoma [32, 33].

In our cohort, it is possible that, from the point 
of view of the KRAS mutations, the ambiguous 
subtype is more related to the pancreatobiliary 
subtype than to the intestinal one. In the whole 
cohort, the majority of the mutations occurred 
in codon 12 (19/22 cases, 86.4%) with the 
most frequent mutation being c.35G>A (p.

Figure 5. A: Immunohistochemistry of representative cases stained for CK20, CDX2, MUC1 and MUC2 as either 
negative or positive. B: Immunofluorescence of KRT19 in SNU-478 and SNU-869 cell lines (picture taken with 4× 
objective).
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Table 2. Detailed description of the ARID1A non-synonymous somatic mutations and associated protein expression

Sample Country Histologic diagnostic/tumor location Mutation type/ 
Affected exon

Nucleotide  
changea

Protein 
Change IHC MSI

Predicted 
ARID1A status 
by SNP array

Amplification/
deletion at  
gene locus

KRAS 
status

In  
COSMIC

37417607 SG Adenocarcinoma with signet ring morphology/
Ampullary carcinoma group

Deletion
(exon 20)

c.6407_6423 del  
TGGCCACACCCCCCTTC

fs Weak 
staining

Normal LOH Deletion WT No

2000368 SG Adenocarcinoma/Ampullary carcinoma group Deletion
(exon 1)

c.827 del G fs Loss MSH6 loss LOH No p.G12V (s) Yes 

20020287 SG Papillary adenocarcinoma mucinous type/
Ampullary carcinoma group

Nonsense
(exon 1)

c.514C>T p.Q172X Weak 
staining

MSH6 loss 
PMS loss

No No p.G12D (g) No

1346 RO Adenocarcinoma/Ampullary carcinoma group Deletion
(exon 20)

c.6723_6733 del  
GGCCAAGGTGG

fs NA NA LOH No WT No

11158260 SG Adenocarcinoma/duodenum carcinomagroup Nonsense
(exon 15)

c.3826C>T p.R1276X Weak 
staining

MSH6 loss No No p.G12D (s) Yes

1303 RO Adenocarcinoma/duodenum carcinoma group Insertion
(exon 3)

c.1795_1796 ins CACC fs NA NA LOH Deletion p.G12V (s) No

0986 RO Tubular adenoma low grade/Ampullary 
adenoma group

Splice site
(exon 2)

Splice site+1G>T Splice_
site

Normal Normal No No WT No

SG-Singapore; RO-Romania; LOH-loss of heterozigosity at chromosome 1p, ARID1A locus; f.s-frame shift; WT-wild-type; s-somatic; g-germline; NA-insufficient/unavailable/not assessed sample. aReference sequence CCDS285.1.
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Table 3. Non-synonymous somatic mutation frequencies of ARID1A and KRAS in Singapore and 
Romania cohorts

Singapore Romania Total

p-value q-valueaAmpullary  
carcinoma 

(n=12)

Duodenal  
carcinoma 

(n=1)

Ampullary  
carcinoma

(n=37)

Duodenal  
carcinoma

(n=5)

Ampullary  
carcinoma

(n=49)

Duodenal  
carcinoma

(n=6)
ARID1A 25% (3) 100% (1) 2.7% (1) 20% (1) 8.16% (4) 33.3% (2) 0.04 0.08
KRAS 41.7% (5) 100% (1) 32.43% (12) 40% (2) 34.7% (17) 50% (3) 0.72 0.72
aBenjamini-Hochberg correction.

Table 4. Analysis on ARID1A mutational status in the ampullary tumor group

Characteristics
ARID1A status KRAS status

Mutant (n=4) Wild-typea  
(n=42) p-valueb Mutant (n=17) Wild-typea  

(n=31) p-valueb

Age at surgery (yrs), median [range] 59 [44-71] 61 [40-78] 0.52 66 [48-77] 60 [40-78] 0.4

Gender (n, %)  0.31 0.77

    Female 3 (75.0%) 18 (42.9%)  8 (47.1%) 13 (41.9%)

    Male 1 (25.0%) 24 (57.1%)  9 (52.9%) 18 (58.1%)

Differentiation degree (n, %)  0.01 0.37

    G1, G1-G2 1 (25.0%) 20 (47.6%)  6 (35.3%) 16 (51.6%)

    G2, G2-G3 1 (25.0%) 18 (42.9%)  7 (41.2%) 12 (38.7%)

    G3 2 (50.0%) 2 (4.8%)  3 (17.6%) 2 (6.5%)

    Unknownc 0 (0.0%) 2 (4.8%)  1 (5.9%) 1 (3.2%)

pN (n, %)  1.0 0.21

    N0 3 (75.0%) 27 (64.3%)  8 (47.1%) 21 (67.7%)

    N1 1 (25.0%) 15 (35.7%)  9 (52.9%) 9 (29.0%)

    Unknown 0.0 (0.0%) 0.0 (0.0%)  0.0 (0.0%) 1 (3.2%)

pT (n, %)  0.7 0.85

    T1 0 (0.0%) 9 (21.4%)  4 (23.5%) 5 (16.1%)

    T2 2 (50.0%) 16 (38.1%)  5 (29.4%) 12 (38.7%)

    T3 2 (50.0%) 15 (35.7%)  7 (41.2%) 12 (38.7%)

    T4 0 (0.0%) 2 (4.8%)  1 (5.9%) 1 (3.2%)

    Unknownc 0 (0.0%) 0 (0.0%)  0 (0.0%) 1 (3.2%)

Tumor size (cm), median [range] 1.75 [0.5-3.0] 2.0 [0.4-10] 0.54 2.5 [0.5-10] 1.75 [0.4-6] 0.4

Status (n, %)  1.0 0.12

    Alive 2 (50.0%) 16 (38.1%)  4 (23.5%) 16 (51.6%)

    Dead 2 (50.0%) 24 (57.1%)  11 (64.7%) 15 (48.4%)

    Unknownc 0 (0.0%) 2 (4.8%)  2 (11.8%) 0

Overall survival (months), median [range] 39.21 [1.64-116.3] 29.8 [0.76-160.3] 0.48 21.96 [0.76-112.0] 58.82 [1.25-160.31] 0.087

Kras mutational status (n, %)  1.0

    Kras mutant 1 (25.0%) 14 (33.3%)  _ _ _

    Kras wild type 3 (75.0%) 28 (66.7%)  _ _

ARID1A IHC subtyped (n, %)  0.72 0.1

    Pancreatobilliary 1 (50.0%) 10 (35.7%)  5 (38.5%) 6 (33.3%)

    Intestinal 1 (50.0%) 11 (39.3%)  3 (23.1%) 10 (55.6%)

    Ambigous 0 (0.0%) 7 (25.0%)  5 (38.5%) 2 (11.1%)

ARID1A IHCd (n, %)  0.023 0.7

    ARID1A loss/weak staining 3 (100.0%) 6 (23.1%)  4 (28.6%) 4 (22.2%)

    ARID1A positive 0 (0.0%) 20 (76.9%)  10 (71.4%) 14 (77.8%)
aonly wild-type patients and patients with synonymous mutations were included; germline mutations were excluded; bp-values were calculated between ARID1A mutant 
vs wild-type and KRAS mutant vs wild-type; differences between age and tumor sizes were calculated by means of Mann-Whitney test; differences in overall survival were 
calculated by means of Log-Rank Mantel Cox test; the rest were tested by Fisher exact t-test or Chi-square test; cnot included in p-value calculation; donly samples with 
available data were included.

G12D) (12/22, 55%) (Figure 2C). Survival anal-
ysis in ampullary tumor group showed a signifi-

cant statistically difference in the overall sur-
vival when comparing the patients with c.35G>A 
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(p.G12D) mutations versus wild-type patients 
(P=0.028, Figure 2D). These findings support 
the prognostic implication of c.35G>A (p.G12D) 
KRAS mutations in ampullary cancers.

ARID1A protein expression is commonly weak-
er expressed or loss in cases with mutations

Given the relatively high rate of mutations 
(8.2%) seen in the subgroup of ampullary ade-
nocarcinoma, immunohistochemistry staining 
was performed on whole slides or on TMA pre-
pared from tumor blocks with a commercially 
available antibody (Figure 3). A total of 58 
ampullary adenocarcinoma cases were stained 
for ARID1A. A loss or reduction of ARID1A 
expression was observed in 10 cases (17.2%), 
while the rest of 48 showed normal staining  
for ARID1A. Analysis of this group showed that 
loss or weak staining of ARID1A is more com-
mon in younger patients (P=0.04, Table 5). 

The loss/weak staining of ARID1A protein in the 
cases without detectable mutation or with 
germline mutation in the tumor might suggest 
that other mechanisms such as epigenetic 
silencing of the protein may be involved in down 
regulating ARID1A in ampullary cancers. In 
addition, the duodenal tumors showed reduced 
staining, while the ampullary adenoma cases 
showed no loss (normal) of staining for ARID1A.

Functional analyses

In order to investigate ARID1A function in vitro, 
we used two immortalized cell lines derived 
from ampulla of Vater tumors, SNU-478 and 
SNU-869 with wild-type ARID1A. ARID1A knock-
down was confirmed by qPCR and by Western 
blotting at 48 hours post-transfection. Cell pro-
liferation was significantly promoted after 
siRNA treatment in both cell lines (Figure 4A, 
4B). In order to test if ARID1A knockdown also 
induces a pro-invasive phenotype, we assessed 
by qPCR the expression of a panel of markers 
associated with epithelial to mesenchymal 
transition (EMT). KRT19, MMP1 and SOX4 were 
tested in both cell lines, and CDH1 (E-Cadherin) 
and vimentin were tested only in SNU-869 
cells. In both knock-down cell lines (SNU-478 
and SNU-869) SOX4 was found to be up-regu-
lated, while vimentin and TWIST1 were found 
up-regulated only in the SNU-869 knock-down 
cell lines. Collectively, the functional analysis 
data indicate that ARID1A knock-down induces 

an increase in cell proliferation in ampullary 
cancer cells, indicative for the tumor suppres-
sive nature of the gene, and promote the 
expression of markers associated with EMT 
phenotype (Figures 4C and 5B).

Discussion

ARID1A has emerged from the whole exome 
and genome studies as one of the most com-
monly mutated gene in human cancers [23]. 
Loss of its expression is due to nonsense and 
frame-shift mutations in the gene-coding 
region that leads to mRNA decay and protein 
truncation [17].

It has been suggested that ARID1A mutations 
carry prognostic significance, but the results 
are inconsistent [21, 38, 39, 40]. In liver cancer 
cell lines, ARID1A knock down promoted migra-
tion and invasion and had been suggested that 
loss-of-function ARID1A mutations may be a 
crucial event in hepatocellular carcinoma inva-
sion and metastasis [29].

In our study, we found a rather high frequency 
of ARID1A somatic mutations (8.2%) while loss 
or weak ARID1A staining confirmed by immuno-
histochemistry was detected in 17.2% of the 
ampullary cancers. The presence of mutations 
was correlated with loss/weak staining of the 
protein. Further analysis showed that there is a 
significant correlation between degree of differ-
entiation of the ampullary adenocarcinoma and 
ARID1A mutational status. 

Our mutational screening extended to a group 
of duodenal tumors and ampullary adenomas 
identified two and respectively one additional 
ARID1A mutations in these groups. These 
results may be indicative of ARID1A involve-
ment in early stages of carcinogenesis. Previous 
studies had also identified ARID1A alterations 
in non-cancerous lesions either as mutations, 
in a colon adenomas with moderate dysplasia 
and with APC mutations [41] or as loss of 
ARID1A protein in ovarian clear cell carcinoma 
in precursor lesions like non-atypical endome-
triosis adjacent to carcinoma or benign clear-
cell adenofibroma [42]. In our study, protein 
expression analysis showed that the weak 
staining was observed in the duodenal tumor 
group but not in the ampullary adenoma group.

Given the degree of correlation between the 
presence of mutations and loss/weak staining 
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in ampullary cancers, our data indicate that IHC 
might be a reliable method for the detection of 
ARID1A mutations in ampullary carcinoma. On 
the other hand, there were samples that had no 
loss of staining of ARID1A indicating that addi-
tional unknown mechanisms are involved in the 
retention of ARID1A protein.

A better overall survival of 39.2 months was 
observed in the group of ampullary adenocarci-
nomas with mutant ARID1A compared to wild-
type ARID1A that had an overall survival of 
29.8 months. The same trend was observed 
when comparing patients with ARID1A evaluat-
ed by immunohistochemistry as loss or weak 
and negative staining (39.2 versus 24.9 mon- 

ths). Additionally loss or weak ARID1A protein 
expression was observed in younger patients.

Analysis on KRAS mutations showed a worse 
overall survival between the ampullary cancer 
patients with c.35G>A (G12D) mutations com-
pared to wild type ones. As KRAS is a well-
known driver of pancreatic cancer and ampul-
lary adenocarcinoma might emerge from the 
pancreatic lining there is the possibility that a 
sub-group of patients with a poor survival exists 
among ampullary cancer group.

The patients with concurrent ARID1A and KRAS 
mutations all had a pT stage 3 or 4 and tumor 
recurrence. It is not yet clear if in ampullary 

Table 5. Analysis on ARID1A immunohistochemistry status in the ampullary tumors group

Characteristics ARID1A loss or weak 
staining (n=10)

ARID1A positive  
staining (n=48) p-valuea

Age at surgery (yrs), median [range] 54.0 [38.0-71.0] 67.5 [41.0-79.0] 0.04
Gender (n, %)
    Female 6 (60.0%) 19 (39.6%) 0.30
    Male 4 (40.0%) 29 (60.4%)
Differentiation degree (n, %) 0.29
    G1, G1-G2 2 (20.0%) 11 (22.9%)
    G2, G2-G3 5 (50.0%) 30 (62.5%)
    G3 3 (30.0%) 5 (10.4%)
    Unknownb 0 (0.0%) 2 (4.2%)
pN (n, %) 0.29
    N0 5 (50.0%) 33 (68.75%)
    N1 5 (50.0%) 15 (31.25%)
pT (n, %) 0.87
    T1 1 (10.0%) 7 (14.6%)
    T2 5 (50.0%) 19 (39.6%)
    T3 3 (30.0%) 19 (39.6%)
    T4 1 (10.0%) 3 (6.3%)
Tumor size (cm), median [range] 2.5 [1.0-3.0] 2.0 [0.4-10.0] 0.57
Status (n, %)  
    Alive 5 (50.0%) 27 (56.2%) 1.0
    Dead 4 (40.0%) 21 (43.8%)
    Unknownb 1 (10.0%) 0 (0.0%)
Overall survival (months), median [range] 39.2 [1.64-127.9] 24.9 [0.39-160.3] 0.37
ARID1A IHC subtype (n, %)
    Pancreatobilliary 3 (30.0%) 21 (43.8%) 0.59
    Intestinal 5 (50.0%) 18 (35.7%)
    Ambigous 1 (10.0%) 9 (18.8%)
    Unknownb 1 (10.0) 0 (0.0%)
adifferences between age and tumor sizes were calculated by means of Mann-Whitney test; differences in overall survival were 
calculated by means of Log-Rank Mantel Cox test; the rest were tested by Fisher exact t-test or Chi-square test; bnot included in 
p-value calculation. 
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cancers ARID1A potentiate KRAS mutations or 
KRAS mutations overcome ARID1A mutations.

Interestingly, in our study there was a differ-
ence in the frequency of ARID1A mutation in 
ampullary adenocarcinoma in the Asian versus 
European patients. This difference might be 
due to different racial genetic differences and 
different exposure to environmental factors, as 
we have previously shown for cholangiocarci-
noma [43].

The molecular differences in ampullary cancers 
between intestinal and pancreatobiliary type 
were shown by the different frequencies of 
KRAS and APC mutations with more frequent 
KRAS mutation detected in pancreatobiliary 
subtype [44]. This observation is in line with our 
study where we found 38.5% KRAS alterations 
in pancreatobiliary subtype versus 23.1% in 
intestinal subtype. The fact that we also found 
38.5% KRAS mutations in the ambiguous sub-
type suggest that these tumors may be more 
related to the pancreatobiliary subtype. 

Functional analysis of the ARID1A alteration in 
ampullary cancer by means of siRNA knock-
down approaches, were consistent with a 
tumors suppressive function of the gene. 
Knock-down experiments in two cell lines with 
intact ARID1A promoted some EMT related 
genes phenotype with SOX4 consistently up-
regulated in both cell lines. SOX4 was shown to 
be critical for EMT in breast cancer and to regu-
lates EMT-relevant genes, among them Ezh2 
[45, 46]. Moreover, knock-down of ARID1A, 
ARID1B and SMARCA4 in HPDE pancreatic  
cell line lead to down-regulation of genes that 
are up-regulated with knock-down of EZH2 or 
HDAC. As EZH2 is the catalytic subunit of PRC2 
complex (polycomb repressive complex 2), 
these results lead to the conclusion that SWI/
SNF might oppose PRC2 in PDAC cell lines [31] 
a process that might be mediated by SOX4. As 
EZH2 is a therapeutically duggable target this 
results might have direct clinical implication.

The relatively high mutation rate of ARID1A in 
ampullary cancer shows the critical genomic 
and epigenomic interplay that leads to tumor 
development. As recent studies are focusing in 
targeting ARID1A mutations by showing various 
synthetic lethality synergies [47, 48], tailoring 
treatment based on ARID1A and KRAS muta-
tional status might soon prove to be an effec-
tive therapeutic strategy in ampullary cancers.

In summary, the data presented in this study 
highlight a potential involvement of ARID1A in 
early stages of carcinogenesis, together with 
other factors that are essential for tumor trans-
formation, and show a possible influence of dif-
ferent factors in ampullary cancers tumorigen-
esis based on geographic regions. 
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