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Letter to the Editor
Relevance of Apoptin’s Integrity for Its Functional Behavior

Wadia et al. (7) recently claimed that apoptin, a virally
encoded protein with tumor-selective apoptosis activity, con-
tains a concentration-dependent nuclear localization signal
(NLS) that is not tumor selective as previously reported (1, 2,
4). Their Fig. 1B shows, however, that under all the conditions
tested, nuclear import of green fluorescent protein (GFP)-
apoptin70-121 remains 200 to 300% higher in tumor cells than in
primary cells. The apparent concentration dependence of ap-
optin’s NLS is intriguing. We agree with their interpretation
that presentation of multiple apoptin NLS domains by a mo-
lecular aggregate could generate more efficient nuclear traf-
ficking than NLS exposure at a single site. This result is, how-
ever, somewhat academic, as full-length apoptin can only be
harvested as a multimer from live cells, with a dissociation rate
constant (koff) that is so slow that it can hardly be measured,
whereas the C-terminal fragment forms only monomers (5, 9).
This could explain why Wadia et al. could measure a cooper-
ative, concentration-dependent effect of apoptin’s NLS, as they
used a GFP fusion of a C-terminal fragment of apoptin lacking
the multimerization domain (5). Had they used full-length

apoptin, all the NLS sequences would likely have been clus-
tered, resulting in effective nuclear import over all concentra-
tion ranges. Nevertheless, we suggest caution in using GFP-
apoptin fusions in functional studies. For example, fusion of
GFP to full-length apoptin results in increased levels of nuclear
GFP-apoptin versus wild-type apoptin in primary cells (Fig.
1A).

The current hypothesis is that nuclear trafficking and tumor-
specific phosphorylation of apoptin at Thr108 are essential for
induction of apoptosis (3, 6, 8). Wadia et al. reported a failure
to detect phosphorylation with radioactive labeling of GFP-
apoptin70-121; we do not know why this is so, as phosphoryla-
tion of full-length apoptin has been thoroughly documented by
the use of mass spectrometry and a phospho-specific antibody
(6). Our preliminary experiments suggest that abolishing the
phosphorylation site of apoptin does not significantly disrupt
its nuclear import in tumor cells. In attempting to address this
observation with a GFP-apoptin70-121 T108A mutant, Wadia et
al. used a construct that is not phospho-null in vivo; in our
hands, as Thr108 is the last in a run of three threonine resi-
dues, the adjacent Thr107 becomes opportunistically phos-
phorylated instead, which yields the same phenotype. Mutation
at both positions 107 and 108 is required to eliminate phos-
phorylation and function. As Fig. 1B indicates, phosphoryla-
tion of apoptin is required for apoptosis induced by its C-
terminal death domain (3); a control experiment confirms that
the apoptosis-competent fragment is phosphorylated on
Thr108 in vivo (Fig. 1C).

Apoptin’s tumor-specific activity does not result from a sin-
gle characteristic. Its multimerization behavior, its potential to
be phosphorylated, its cooperativity in nuclear trafficking, and
many of its other physical, chemical, and functional activities
all shape the mechanism by which it induces tumor-specific
apoptosis. Extrapolations of results obtained from studies that
disrupt apoptin’s integrity should therefore be approached
with caution.
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Human tumorigenic HeLa cells were transfected with a plasmid en-
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