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Introduction
Time of day impacts virtually all aspects of life, including death. 

Processes as fundamental as sleep, locomotion, cognitive function, 
feeding, digestion/absorption, body temperature, neural activity, 
endocrine factor release, and cardiovascular function all exhibit 
time-of-day-dependent oscillations.1,2 In terms of the cardiovascu-
lar system, both physiological (e.g., blood pressure, heart rate, car-
diac output) and pathophysiological (e.g., adverse ischemic events, 
arrhythmias, sudden cardiac death) parameters vary over the 
course of the day.3 It is therefore not surprising that at biologic/
molecular levels, cardiovascular components are markedly differ-
ent during the day versus the night. 

In the case of the heart, unbiased transcriptome and proteome 
analyses reveal an array of gene/protein expression differences as 
a function of time of day, thereby influencing a plethora of cellular 
processes.4,5 In addition, candidate signaling approaches suggest 
daily oscillations in the heart’s sensitivity to extracellular stimuli 
such as fatty acids, β-adrenergic agonist, and thyroid hormone.6-9 
The focus of this review is on circadian control of cardiac metabo-
lism, including the mechanisms involved in synchronizing meta-
bolic rhythms, their role in maintaining cardiac function, and the 
pathological consequences of their disruption/impairment. 

Synchronization of Metabolic Rhythms
Time-of-day-dependent oscillations in metabolism have been 

described at various levels in organisms ranging from yeast (e.g., 
NAD+/NADH ratio) to humans (e.g., body temperature and en-
ergy expenditure).10 Evolutionarily speaking, such oscillations are 
predicted to confer a selective advantage, allowing the organism 
to adapt to daily fluctuations in the environment—for example, 
lighting, temperature, humidity, food availability, and likelihood of 
predator interaction. At a biological level, it is therefore important 
to synchronize metabolic processes with time-of-day-dependent 
perturbations in energetic demand and nutrient availability that 
are associated with normal light/dark, sleep/wake, and fasting/
feeding cycles. In mammals, such a synchronization must occur at 
intra- and inter-organ levels. 

Classically, a stimulus-response model has been proposed 
wherein neurohumoral changes orchestrate oscillations in meta-

bolic processes between cells/organs. With insulin, for example, 
increased secretion postprandially promotes peripheral tissue 
glucose utilization concomitant with attenuation of hepatic glucose 
production, thus facilitating glucose homeostasis by maintaining 
blood glucose within a physiologic range.11 What has become 
increasingly apparent is that cells/organs/organisms possess an 
ability to predict daily metabolic perturbations before they occur. 
In doing so, anticipation allows a temporally appropriate and 
rapid response to a stimuli once it occurs. Again, considering post-
prandial insulin-mediated glucose utilization, the amplitude of 
both insulin secretion and sensitivity differs as a function of time 
of day due to anticipatory mechanisms.10

The process of anticipation is undoubtedly conferred by circadi-
an clocks. Circadian clocks are cell-autonomous, transcriptionally 
based molecular mechanisms composed of a series of positive 
and negative feedback loops with a periodicity of approximate-
ly 24 hours. Central to the mechanism are BMAL1 and CLOCK, 
two transcription factors that, upon heterodimerization, bind to 
E-boxes within the promoter of target genes. The latter include 
multiple period and cryptochrome isoforms as well as REV-ERBα, 
which translocate back into the nucleus and inhibit the BMAL1/
CLOCK heterodimer (i.e., feedback inhibition).1 In addition, these 
transcription factors affect expression of a large number of genes 
that are not core clock components, also known as clock controlled 
genes (CCGs). By modulating the expression levels of CCGs in a 
time-of-day-dependent manner, the clock has the potential of tem-
porally regulating a host of cellular processes such as transcription, 
translation, signal transduction, ion homeostasis, and metabolism. 

A key element for maintaining this selective advantage is en-
trainment; cellular clocks must be synchronized with the environ-
ment. Within the hypothalamus, a region of approximately 20,000 
specialized neurons known as the suprachiasmatic nucleus (SCN) 
receives light signals via the retinohypothalamic tract, resulting 
in entrainment. The SCN, often termed the “master clock,” subse-
quently sends neurohumoral signals to other tissues, thus resetting 
“slave clocks.” It is noteworthy that non-SCN clocks can also be 
entrained through common behaviors such as eating and physical 
activity. These entrainment mechanisms ensure that cell auton-
omous clocks can maintain synchrony between environmental/
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behavioral-associated factors (e.g., energetic demand and nutrient 
availability) and biological processes such as metabolism.

Cardiac Metabolic Rhythms
With respect to metabolism, the heart has two 24-hr cycles: 

sleep/wake and fasting/feeding. Importantly, the heart must meet 
increased energetic demands even if the animal in the wild is un-
successful in its forage for food, as the animal continues to forage 
and avoid predation. It is therefore not surprising that dramatic 
fluctuations in cardiac metabolism have been reported at various 
levels, including daily rhythms in cardiac glucose, fatty acid, and 
amino acid utilization.6,12-16 During periods of increased physical 
activity, the heart relies primarily on augmented glucose utiliza-
tion to meet energetic needs for force generation and ion homeo-
stasis.17,18 Consistent with this concept, myocardial glycolysis and 
glucose oxidation both increase during the awake phase (relative 
to the sleep phase; Figure 1 A).12,15 Importantly, these rhythms 
in glucose metabolism are observed in ex vivo perfused rat and 
mouse hearts, wherein both the milieu and workload are main-
tained at a constant level. This suggests that they are mediated, at 
least in part, by an intrinsic mechanism. A likely candidate is the 
cardiomyocyte circadian clock, as genetic ablation of this mecha-
nism markedly attenuates/abolishes myocardial glucose metab-
olism rhythms.15,19 Collectively, these observations have led to the 
concept that the cardiomyocyte circadian clock allows anticipation 
of increased energetic demand during the awake period through 
modulation of glucose utilization.

Diurnal variations in cardiac metabolism extend beyond glu-
cose catabolism. Turnover (i.e., synthesis/degradation cycles) of 
glycogen, triglycerides, and protein exhibit time-of-day-depen-
dence in rodent hearts. In the cases of glycogen and triglyceride 
synthesis, peak rates are observed in the middle/end of the active/
awake phase (Figure 1 B); similar to glycolysis and glucose oxida-
tion, oscillations in glycogen and triglyceride synthesis persist in 
ex vivo perfused hearts and are severely attenuated or abolished 
following genetic ablation of the cardiomyocyte circadian clock.14,15 
These findings have led to speculation that the heart increases 
nutrient storage towards the end of the active period following 
successful forage for food in anticipation of the upcoming sleep-
phase fast. Interestingly, both protein synthesis and degradation 
processes (ubiquitin-proteasome system and autophagy) are ele-
vated at the beginning of the sleep phase (Figure 1 C), and initial 
studies suggest that these rhythms are in part dependent on the 
cardiomyocyte circadian clock.16,20 

Protein turnover utilizes large quantities of ATP, leading to the 
hypothesis that this temporal partitioning is advantageous because 
it (1) spares ATP for contractile function during the active/awake 
phase, (2) attenuates protein synthesis during the active period 
when various prohypertrophic stimuli (e.g., blood pressure, epi-
nephrine, amino acids) are elevated, and (3) allows replacement of 
myocardial proteins that were damaged during the active/awake 
period (when oxidative metabolism, respiration rate, and oxidant/
toxin consumption from diet is increased) in anticipation of the 
upcoming active/awake period. Likewise, phospholipid synthesis 
is increased during the sleep phase, possibly in an attempt to re-
place recently damaged/oxidized lipids.14 Interestingly, previous 
studies indicate that the heart is resistant to oxidative stress at the 
beginning of the sleep phase.21 One possible explanation is that 
increased antioxidant potential at this time (as observed in extra-
cardiac tissues) attenuates misfolding or oxidative damage of pro-
teins and other cellular constituents (Figure 1 C). Thus, temporal 
control of cardiac metabolism appears to play multiple important 

roles, ranging from the partitioning of ATP between energetically 
demanding processes to repair of damaged cellular constituents. 

Disrupted Metabolic Rhythms as a Potential Mediator of 
Cardiac Dysfunction

In some ways, the heart is analogous to a car engine, burning 
fuel in order to provide the work/force required for other com-
ponents of the vehicle to function. Indeed, the failing heart has 
previously been described as “an engine out of fuel.”22 Timing is 
critical for any engine, as improper timing of fuel ignition adverse-
ly affects performance. In addition, the lifespan of the engine is 
greatly increased through regular preventive maintenance. Meta-
bolic rhythms in the heart serve both timing and preventive main-
tenance functions. Increased glucose utilization during the active/
awake period likely ensures that sufficient ATP is available to meet 
energetic demands associated with elevated contractile function, 
while increased protein turnover during the sleep period prevents 
accumulation of damaged proteins and organelles (e.g., mitochon-
dria), ensuring maintenance of cardiac function. Such concepts 
suggest that an impairment in metabolic rhythms, either mistiming 
(i.e., phase shift) or amplitude attenuation, would hinder cardi-
ac performance and ultimately precipitate cardiac dysfunction. 
Evidence exists to support this theory, including findings that (1) 
genetic and/or environmental disruption of circadian clocks leads 
to cardiac dysfunction, and (2) circadian clocks are altered during 
various cardiometabolic diseases. Herein follows an overview of 
this evidence.

Whole-body metabolic rhythms diminish with age and are 
abolished completely as an animal approaches death (by natural 
causes).23 Interestingly, germline genetic ablation of circadian clock 
function through knockout of BMAL1 results in an accelerated ag-
ing phenotype associated with loss of biological rhythms at multi-
ple levels, particularly metabolism.24 Serial echocardiography re-
vealed development of dilated cardiomyopathy in BMAL1 knock-
out mice, which correlates with decreased lifespan.25 Underscoring 
the importance of the clock in the heart, cardiomyocyte-specific 
BMAL1 ablation recapitulates both cardiac dysfunction and de-
creased lifespan observed in germline knockout mice.19 Similarly, 
genetic disruption of the timing of the circadian clock or circadian 
clock output (as seen in tau mutant hamsters and DBP/HLF/
TEF triple knockout mice, respectively) results in cardiac dysfunc-
tion.26,27 Circadian clocks are also disrupted through changes in 
environmental/behavioral factors such as lighting, food consump-
tion, and physical activity at the “wrong” time of day. Indeed, shift 
workers exhibit impaired circadian rhythms at multiple levels 
and have an approximate 2-fold increased risk of developing car-
diometabolic disease.28,29 

The circadian clock in the heart is attenuated during pressure 
overload and hypertension-induced hypertrophy as well as isch-
emia/reperfusion.30-32 In contrast, this molecular mechanism is 
phase shifted during uncontrolled type 1 diabetes mellitus.33 De-
spite these observations, to date no studies have directly assessed 
(through flux measurements) whether cardiac metabolic rhythms 
are impaired or altered during disease states. However, indirect 
evidence supports this idea. For example, time-of-day-dependent 
rhythms in expression of genes encoding for metabolic proteins 
(e.g., glucose transport 4) were markedly attenuated in the heart 
following pressure-overload induced hypertrophy.12 Should these 
perturbations in gene expression oscillations translate to metabolic 
flux, the concept of metabolic inflexibility as a contributing fac-
tor in cardiac dysfunction (which usually considers one or more 
chronic disease states) could lead to a whole new paradigm: that 
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Figure 1. Time-of-day-dependent oscillations in cardiac metabolism. (A) At the sleep-to-wake transition, energetic demand increases in the heart due to in-
creased E-C coupling as the animal forages for food and avoids predation. This elevated energetic demand is met by increased glucose utilization (glucose 
uptake, glycolysis, and oxidation). During this period, cellular constituents (e.g., protein, phospholipids) are susceptible to oxidative damage. (B) In the latter half 
of the active period, excess nutrients are utilized for the synthesis of both glycogen and triglyceride. (C) During the sleep period, reliance on stored nutrients 
increases to meet the energetic demands of the heart; due to lower contractility, ATP can be utilized for the turnover of cellular constituents, thus replacing dam-
aged proteins and phospholipids. At this time, the heart is less susceptible to oxidative damage, potentially through increased antioxidant capacity. In many cas-
es, temporal partitioning of these metabolic processes is mediated by the cardiomyocyte circadian clock.
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is, the possibility that disease states abolish time-of-day-dependent 
oscillations in metabolism.

Summary
Temporal partitioning of cardiac metabolism has emerged as a 

fundamental cornerstone in cardiac biology, governed in large part 
by the autonomous cardiomyocyte circadian clock. What remains 
to be fully explored are the molecular links between the circadian 
clock and metabolic processes as well as the extent to which meta-
bolic rhythms are perturbed during disease states and their precise 
contribution towards the pathogenesis of cardiac dysfunction. Sim-
ilarly, the extent to which the circadian clock synergizes with neu-
rohumoral influences (e.g., [nor]epinephrine, insulin) to modulate 
daily metabolic processes remains to be fully elucidated.

Key Points: 
• The heart exhibits profound time-of-day-dependent 

oscillations in glucose, fatty acid, and protein metabolism.
• The cardiomyocyte circadian clock governs cardiac metabolic 

rhythms.
• Disruption of circadian clocks leads to impaired metabolic 

rhythms and cardiac dysfunction.
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