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SYNOPSIS

PET/MR is a new promising multi-modality imaging approach. Attenuation is by far the largest 

correction required for quantitative PET imaging. MR based attenuation correction have been 

extensively pursued, especially for brain imaging in the past several years. In this article, we will 

focus on reviewing atlas and direct imaging MR based PET attenuation correction methods. The 

technical principles behind these methods are detailed and the advantages and disadvantages of 

these methods are discussed.
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Introduction

Simultaneous Positron Emission Tomography (PET) and Magnetic Resonance (MR) 

imaging offers unprecedented opportunities to synergize the physiological and molecular 

imaging capability of PET and the excellent anatomical and functional imaging capability of 

MR. This instrument opens up many possibilities for investigation in oncology, Alzheimer’s 

disease, Parkinson’s disease, and epilepsy, which are discussed in David Lalush’s article, 

“MR-Derived Improvements in PET Imaging,” in this issue. Simultaneous PET/MRI is 

emerging as potential clinical and research tools for the development of noninvasive imaging 

biomarkers.

In PET imaging, an annihilation of an emitted positron with an electron produces two 511 

KeV photons that move in opposite directions. These photons travel through the tissue 
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before reaching PET detectors. The absorption and scatter caused by the photon-tissue 

interaction leads to photon attenuation1. The effect of photon attenuation on PET signal is 

described in the form of a mono-exponential function as follows,

where I and I0 are the non-attenuated and attenuated PET signals, respectively, μ and L 

represent the linear attenuation coefficient (LAC) and thickness of a tissue. Photon 

attenuation depends on the spatially varying electron density and tissue thickness. Photon 

attenuation can result in as high as 90% signal reduction in some regions2. Therefore, 

attenuation is by far the largest correction required for quantitative PET imaging. Small 

errors in estimating the attenuation correction factors may lead to significant qualitative and 

quantitative errors in PET images, (i.e. bias and artifacts)3. PET attenuation correction 

methods require knowledge of the spatial distribution of tissue attenuation coefficients 

within the PET field of view. This information is represented in the form of an attenuation 

map (a.k.a. μ map) whose intensities represent the LAC values. In addition to tissue 

attenuation, some other sources of attenuation are from various hardware, such as patient 

table and radiofrequency coils that are placed within the PET field of view. A comprehensive 

review regarding hardware attenuation correction methods can be found in reference4. In this 

review, we will focus on methods to generate patient attenuation correction maps using MRI.

In stand-alone PET systems, attenuation maps are usually estimated from a transmission 

scan. An external long half-life radionuclide source such as 68Ge/68Ga that emits gamma 

photons at a similar energy level (511 KeV) is used to acquire a transmission scan. The 

attenuation maps can be estimated by dividing the reference scan (blank scan I0) with the 

transmission scans. Since the number of photons emitted by the external radionuclide source 

is relatively low, a considerable acquisition time (~10–45 minutes) is needed just for an 

attenuation map with an adequate signal-to-noise ratio (SNR).

Since the introduction of the first commercial PET/CT scanner in early 2001, combined 

PET/CT replaced PET-only scanners at a rapid pace5. In combined PET/CT systems, a CT 

scan is used to provide the PET attenuation correction information6. The attenuation of x-

rays transmitted through a patient is the source of CT contrast, and also directly related to 

electron density. Since the higher energy (511 keV) gamma photons in PET have a lower 

probability of being attenuated than the lower energy x-ray photons (80–140 keV) in CT, a 

piecewise linear transformation has been utilized to transform the CT Hounsfield Unit (HU) 

to PET LAC values7,8. Compared to the PET transmission scans, CT images have higher 

SNR and can be acquired much faster. However, it has been reported that CT based AC led 

to PET quantification errors in bones9,10. Nevertheless, CT based PET attenuation correction 

has been widely accepted as the clinical standard.

Unlike PET/CT, MR based attenuation correction (MRAC) in simultaneous PET/MR is very 

challenging. MR imaging provides information on proton density and MR relaxation rates. It 

does not provide direct information on electron density needed by PET attenuation 

correction. While PET/MRI is FDA approved for clinical use, MRI-based attenuation 
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correction (MRAC) methods have not been well accepted for clinical trials. Bone has near-

zero signal in conventional MR images due to low spin density and a rapid T2 relaxation rate 

while it causes the most photon attenuation per unit volume. On the other hand, air space 

appears similarly as the bone in conventional MR images, while it does not cause photon 

attenuation. Therefore, the most difficult tasks of MRAC are to separate bone from other 

tissue and air, and assign correct linear attenuation coefficients accordingly. It has been 

demonstrated that improperly accounting for bone leads to large underestimation of PET 

signal, particularly in tissue near bone11,12.

In the past several years, numerous approaches have been proposed to develop attenuation 

correction for PET/MR imaging. There is one class of method that relies primarily on PET 

emission data to directly estimate attenuation information through iterative joint estimation 

based on maximum likelihood (ML)13. This class of method is dubbed as ML reconstruction 

of attenuation and activity (MLAA). More recently, PET time-of-flight information has been 

incorporated into the MLAA method to improve PET attenuation correction14–16. MR 

imaging is not essential in the MLAA approaches. Regarding MR-based PET attenuation 

correction, there are two major categories of methods to generate CT like images for 

PET/MRI attenuation correction. The first category consists of an atlas-based approach17–20. 

This typically relies on a precompiled atlas of paired MR and CT images and an algorithm 

to generate a pseudo-CT image from patient MR images. These pseudo-CTs are 

subsequently converted to PET attenuation maps through the same scaling operation used in 

PET/CT attenuation correction. The second category of MRAC consists of direct MR 

imaging using Dixon, ultra-short echo (UTE) or zero echo time (ZTE) without using 

complex imaging registration and processing procedures20–30. In the latter approach, 

individual patient MR images are segmented into several tissue classes. Early efforts 

assigned a constant attenuation value to each tissue class. More recently, advanced methods 

have been proposed to derive conversion factors to convert MR signal/relaxation rates to CT 

HU for continuous LAC25,28. In this review article, we will focus on the MR based PET 

attenuation correction methods. The advantages and disadvantages of these methods will be 

discussed.

Atlas-based approaches

The atlas-based methods usually derive a computational relationship from a group of 

observed CT and MRI image pair using population data, which can be generalized for future 

deployment when only MRI is available. Atlas based approaches usually involves two main 

steps. The first step is to align target patients MR images with atlas MR/CT images. The 

second step is to use the aligned atlas MR/CT images to synthesize a pseudo-CT for the 

target patient. Various methods have been proposed and these methods differ either in the 

image registration step or in the pseudo-CT generation step. Depending on how pseudo-CT 

were generated, we roughly categorize these methods into three sub-groups: voxel based, 

patch based, and machine learning based methods. We will briefly introduce the technical 

aspects of these methods and summarize their performances.
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Image Registration

In the atlas based methods, image registration is usually employed first to achieve alignment 

of the same anatomy from different subjects through transforming the anatomical geometry 

of the original acquired image. If an image alignment can be represented by a multiplication 

of the entire image volume with a matrix (including translating, rotating, stretching and 

scaling), this image registration is classified as a linear transformation (affine registration). A 

rigid registration is a special case of an affine registration that only consists of translation 

and rotation transformation. Nonlinear registration (deformable registration) can improve 

registration accuracy by utilizing flexible local transformation. Usually, linear registration is 

employed for same subject multimodal image registration, while a non-linear registration is 

utilized for atlas to subject image alignment where local geometry differences are expected.

Voxel based pseudo-CT generation

Schreibmann et al proposed a multi-step approach to register atlas CT images directly 

towards the patient MRI without going through intermediate MR image registration18. Their 

method employed a three-step CT-MR image registration, including 1) an initial 

approximate CT-MR matching using a rigid registration; 2) a B-Spline registration to solve 

large deformation between atlas CT and individual patient MR; and 3) an optical flow 

deformable registration to refine BSpline registration. The aligned atlas CT signal voxel by 

voxel were then directly used for patient’s PET attenuation correction. The mean distance 

between the aligned atlas CT and the actually acquired CT was 1.26 and 2.15 mm, 

respectively, for the external contour and bone. The mean Hounsfield Units difference across 

all voxels was less than 2 in 17 brain tumor patients. Due to lack of PET/MR/CT tri-

modality data, PET attenuation correction accuracy was not evaluated in this study. Accurate 

image registration is crucial to this method. Since CT and MR images have very different 

image intensity and tissue contrast, an accurate deformable registration between atlas CT 

and patient MR might be challenging.

Burgos et al used a B-Spline transformation to register patient MRI to a group of atlas 

MRI/CT pairs. A local normalized correlation coefficient was used to assess similarity 

between the patient’s and an atlas subject’s MR images for each voxel31. A ranking scheme 

was used on the voxel similarity measure to assign more weight to an atlas subject’s images 

better registered to the patient MR images. An estimate of the target subject’s CT was then 

obtained by a weighted averaging of all atlas CT images. This method can tolerate 

registration inaccuracy through this similarity based weighting. Relative absolute error was 

computed as the percent absolute PET signal difference between attenuation corrected PET 

using the estimated CT and the actually acquired CT. This method achieved a relative 

absolute error of 2.87+0.90% in PET reconstruction.

Izquierdo-Garcia et al used SPM8 to improve the registration accuracy via tissue 

segmentation. MRI images were first segmented into gray matter, white matter, CSF, bone, 

soft tissue and air with a Gaussian mixture model considering the prior spatial probabilities 

of each voxel belongs to different tissue types. This segmentation was performed through an 

imbedded processing pipeline in SPM for a tissue specific registration. A patient T1 was 

also followed through the same steps to be aligned to this template. Due to the 
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diffeomorphic nature of the registration, the CT template could be inversely warped into the 

subject’s native space for the estimated CT32. The voxel- and ROI-based comparisons 

yielded an error of 3.87+5.0% and 2.74%+2.28% in reconstructed PET images, respectively.

Patch based pseudo-CT generation

In the method proposed by Chen et al19, a nonlinear symmetric diffeomorphic registration 

algorithm was employed to align patient’s T1 weighted MR images to atlas subject’s T1 

weighted MR images and CT images. This method utilized an air distribution probability 

map obtained from all the atlas subjects’ CT images to assist air space segmentation from 

MR T1w images. To estimate the patient’s tissue CT images, a patch based method is 

employed. Compared to voxel based method, a patch based method allows for an 

incorporation of neighborhood information for a better description of the local intensity 

distribution. In this study, patches of 5×5×5 cubes located in the vicinity of the voxel were 

combined using weights derived from a sparse regression. Since the CT estimation was 

performed using neighborhood patches, the performance of this method is less dependent on 

the image registration accuracy. This method had an absolute percent error of 2.42+1.0% in 

the whole brain PET and 85.8% ± 12.9% of all voxels had a below 5% PET errors from 20 

subjects. The limitation with this approach is that sparse regression is very computational 

intense and parallel acceleration is needed for prompt CT estimation.

Andreasen et al employed patched based method for pseudo-CT estimation using an affine 

registration33. In this method, a patch based database was formed for each voxel location 

and the k nearest neighbors. Patch similarity weighting was used to regress the CT value. 

This method outperformed a method that used deformable registration, multi-atlas and 

Gaussian mixture regression34 with dual echo ultrashort TE images. This method delivered 

high dosimetric accuracy with an average deviation of less than 0.5% compared to target 

coverage in 5 patients.

In a patch-based approach proposed by Roy et al, patches were matched between the 

reference and target MR images. The corresponding CT patches were then combined via 

Bayesian estimation35. This approach did not require image registration. This approach 

assumed the patches following a mixture of two Gaussian distributions and maximized the 

probability of the observed subject patch through the expectation-maximization (EM) 

algorithm. The reconstructed PET images with the synthesized CT was highly correlated to 

the reconstructed PET with the acquired CT (ρ=0.99, R2 = 0.99).

Torrado-Carvajal et al implemented non-local patch based CT estimation using GPUs36. It 

propagated MR patch derived similarity to CT patches for weighted linear combinations. 

After non-local estimations, the estimated CT was regularized as a median within a local 

neighborhood. Standardized uptake value (SUV) error was lower than 10% in most voxels in 

simulation. The reconstructed SUV was highly correlated with the gold standard (R2=0.998) 

in simulation. In the only one clinical scan, the correlation is reduced to 0.8919.

Machine learning based pseudo-CT generation

Machine learning methods utilized training data to derive a relationship between CT 

Hounsfield unit and MR signal using features such as signal intensity and geometrical 
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metrics. These learned relationship can then be applied to patients to generate pseudo-CT. 

Machine learning methods including Gaussian process regression (GPR), support vector 

regression (SVR) and random forest (RF) have been proposed. Gaussian process assumes 

the random variables have a joint Gaussian distribution, which can be fully specified by its 

mean and covariance functions. Gaussian process regression refers the inference of 

continuous values with a Gaussian process prior. GPR is a kernel-based method for 

nonlinear regression problem interpreted in a Bayesian context of Gaussian process. To infer 

the unknown function, GPR calculates a prior from training samples for a posterior 

generalization. The learning of GPR is realized through determining covariance or kernel 

function parameters. SVR solves a constrained optimization problem. SVR can tolerate 

small errors between the predicted and true values within a small bound ε (a.k.a, ε-

insensitive SVR) while controlling the complexity of the regression function. Furthermore, a 

nonlinear regression can be transformed into a linear regression using a kernel function 

(such as a radial basis function (RBF)) to map the problem into a higher dimensional space. 

RF is an ensemble learning methods which grows a set of decision trees through partitioning 

the data orderly into either left or right branches (like a tree). The input to each tree is a set 

of bootstrapped samples of the original input data. The final estimation is performed via 

either averaging or majority voting of the outputs from each individual tree.

Hoffman et al have developed a Gaussian process regression for pseudo CT estimation17. 

The Gaussian process modeled a mean function and a kernel function for covariance of the 

Gaussian process. The authors used a multiply of two Gaussian functions considering both 

the similarity of the MR patches and the distance from an atlas patch to the voxel location 

where CT is being estimated. In this work, the authors estimated CT as the average of the 

surrounding patches after deformable image registration. This method was applied for brain 

PET attenuation correction in three patients. A mean percentage error of 3.2%±2.5% were 

obtained in manually defined ROIs in the dorsal cortex, frontal cortex, lateral cortex, caudate 

nucleus, thalamus, and white matter. This method was later adapted for whole body 

PET/MR attenuation correction37. The mean percent error was 7.7% ± 8.4% for the whole 

body PET/MR.

Johnansson et al employed a Guassian mixture regression model with T2 and dual echo UTE 

images to estimate CT from the joint distribution of MR and CT38. Two dual-echo UTE 

sequences were acquired with 10 and 60 degree flip angle. In addition, 3D T2 weighted 

images were also acquired. MR signal intensity at a voxel plus the mean and standard 

deviation from a 3×3×3 neighborhood around this voxel from UTE and T2 weighted MR 

images were jointly modeled with CT using Gaussian mixtures. To estimate a pseudo CT, 

the conditional probability density given the MR information was maximized to estimate 

CT. PET attenuation correction was not performed in this study, only CT estimation 

accuracy was reported in38. The average error for estimated CT was137 HU. This method 

was evaluated later by Larsson et al for PET attenuation correction in eight patients39. The 

mean and standard deviation of the percent error in brain were −1.9% ± 4.1% with a range 

from −61% to 34%.

Support vector machine was used for CT prediction from Dixon-volume and UTE images40. 

As in the conventional support vector regression based approaches, a radial basis kernel 
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function between the features was chosen in this study to be tuned for optimal performance. 

The features included mean, median, variance, minimal and maximal values across a 3×3×3 

window from 3D Dixon-VIBE fat, 3D Dixon-VIBE water and difference volumes. When 

compared to PET reconstructed using the CT based attenuation correction, the epsilon-

insensitive support vector regression (SVR) yielded an error of 2.4% and 2.16% in complete 

brain and regions close to the cortical bone.

Chan et al have employed random forest classifiers to achieve an accuracy in Dice similarity 

coefficients of 0.83+0.08 and 0.98+0.01 in air and bone segmentation respectively41. This 

method used both MR anatomical and PET images without attenuation correction, and it 

took advantage of gradient, texture (metrics quantifying the perceived textures of image) and 

context features (relationship between image information at different locations). An 

interesting finding was that features from the uncorrected PET could replace the contextual 

features from MRI without sacrificing the segmentation accuracy. This finding suggests that 

PET images without AC can be used as an input to a machine learning algorithm to further 

improve AC accuracy.

Huynh et al employed a structured random forest to predict CT values42. The features 

included spatial location, pairwise differences, Haar-like features and discrete consine 

transform (DCT) coefficients, and the auto-context model. These features allowed the 

random forest based learning method to account for the anatomical location, T1 intensity, T1 

image intensity difference using voxel pairwise difference (at the voxel-level), Haar-like 

features (at sub-region level), and DCT coefficients (at whole patch level), and the 

occurrence of CT intensities between different anatomical regions (auto-context model). The 

CT patch difference was computed as the summation of the squared difference between the 

Principle component analysis (PCA) coefficients of the CT patches. The final CT patch was 

averaged across all the voxels for a smoothed CT prediction. In brain region, this method 

achieved an average mean absolute difference 99.9 ±14.2 HU between the synthesized CT 

and actually acquired CT. Because PET data were not available, PET attenuation correction 

accuracy was not evaluated.

Summary

In summary, atlas based AC methods can provide accurate CT estimations and PET 

attenuation maps in brain for patients with normal anatomy. Depending on how pseudo-CT 

images were generated, the atlas based methods can be roughly classified into voxel based, 

patch based, and machine learning based pseudo-CT generation subgroups in this review. 

The pros and cons of these methods are summarized in Table 1. The basic premises of atlas 

based AC approaches are 1) each individual patient’s anatomy can be well represented by 

the population data; 2) morphological similarity of patient’s MR images to the atlas images 

can result in CT HU similarity. Data with either abnormal anatomy and/or unusual tissue 

density (e.g. bone density) that is very different from population average may lead to large 

AC errors. Moreover, atlas based methods usually involves complex computation which may 

be time consuming. Thus far, atlas based methods have been well tested in neuro-imaging. 

Due to difficulty in image registration, atlas based MRAC method has not been well 

developed and used for whole body imaging. The following clinical utility discussion is only 
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limited to neuroimaging applications. If a nonlinear registration can be performed fairly 

well, the voxel based pseudo-CT generation method is recommended due to its simplicity 

and speed. This class of method is more clinical flow friendly at a reasonable PET 

attenuation correction accuracy. In cases that non-linear registration is challenging or high 

accuracy is needed for subtle signal abnormality detection, either patch based or machine 

learning based method should be considered at the expense of computational cost.

Direct imaging methods

The direct MR imaging based methods derive attenuation maps from patient specific MR 

images without using population derived image atlas. Dixon, UTE or ZTE MR images have 

been widely used for this purpose. Since MR signal is not directly associated with electron 

density, MR images are usually used for tissue segmentation. Depending on whether a 

constant or continuous LAC values are assigned to each tissue class, the direct imaging 

based methods can be further divided into two sub-categories: 1) Direct imaging with 

Segmentation only; and 2) Direct imaging methods with segmentation and continuous LAC 

value conversion. In this section, we will introduce these methods and discuss their 

performances.

Direct imaging with segmentation only

Early direct imaging based MRAC used either T1weighted or Dixon MR images to segment 

voxels into 3 (air, lung, soft tissue) or 4 classes (air, lung, soft tissue and fat)21,22,26,43 for 

whole body PET attenuation correction. A constant LAC value was assigned to all voxels 

within each class. This group of methods provides an approximation of tissue densities for 

soft tissue and fat. Since bone, especially cortical bone with high density, appears ‘invisible’ 

in conventional MR images, bone was not included in these early methods. Therefore, there 

was significant quantification error in the brain and pelvis due to the presence of large 

osseous structures. A particular challenging problem is to delineate bone from air; both have 

similar MR signal but very different attenuation effects. Ignoring bone may lead to 20% 

underestimation of PET activity in the head, especially in the cerebral cortical regions due to 

their spatial proximity of skull12,19,44–46.

Given the limitations of conventional approaches in obtaining bone signal, there has been the 

development of numerous sequences that allow for the imaging of bone in order to improve 

the patient specific attenuation correction maps. The majority of these approaches rely on 

UTE or ZTE MR techniques that have very short or zero echo times23,24,27,30,47,48. These 

approaches potentially will provide lung, bone and soft tissue maps allowing for accurate 

patient specific attenuation correction.

In the method proposed by Keereman et al.30, a background and air mask was first 

determined using a region-growing approach on the first echo of DUTE. This mask was then 

applied to the R2* map computed from the first and second echoes of a DUTE to mask out 

air region. Subsequently, the masked R2* was used to segment bone and soft tissue. A whole 

brain average error was about 5%30.
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Catana et al. used (DUTE1−DUTE2)/(DUTE2)2 and (DUTE1+DUTE2)/(DUTE1)2 to 

enhance and segment the bone and air regions, respectively23. Soft tissue was then identified 

as non-background regions not classified as bone or air. No quantitative AC accuracy was 

provided in this work23.

In the method proposed by Berker et al.24, a triple-echo UTE sequence was employed. Air 

and bone were identified using the phase information of the first echo and a dual-echo UTE, 

respectively. Soft tissue and adipose tissue were separated using a 3-point Dixon 

decomposition with all three echoes. Eight ROIs with volumes ranging from 2–9 ml were 

manually placed to cover various brain regions with different proximities to skull. In the 48 

evaluated brain regions (8 ROIs for each of 6 patients) mean PET errors ranged from −4.8% 

and 7.6%24.

The method proposed by Poython et al combined an atlas generated probabilistic maps to 

improve MR tissue segmentation. Bone/soft tissue/air probabilistic maps were generated 

using the aligned CT atlas. These probabilistic maps were then utilized for tissue 

segmentation using MR T1 and UTE images48. The Dice similarity coefficients for air, bone 

and soft tissue segmentation were respectively 69%, 81% and 96%. Averaged relative 

difference between the reconstructed PET using estimated CT and the ground truth CT was 

2.45%. The evaluation of this approach was performed using the so called “silver standard” 

in which segmented CT was used for comparison reference.

Paupus et al have developed a model-based estimation for appending the bone information 

with the attenuation correction map obtained with the Dixon method49. The bone model was 

constructed using pre-aligned MRI and CT pairs, which were further transferred to each 

individual subject to add the lacked bone information in AC map with the Dixon method. 

This method can reduce the underestimation of the bone lesion SUV to 2.9%.

Delso et al have developed a posterior probability based approach to segment dual-echo 

UTE images into air, soft tissue and bone using the CT and UTE image pair50. This 

approach transferred the threshold based CT HU segmentation for the optimal thresholds to 

segment UTE images into tissue, air and bone. This study reported good overlaps between 

the estimated tissues classes and the ground truth.

In these methods23,24,30,48, a predefined constant LAC value was assigned to all voxels in 

each class to generate patient specific μ maps30. As summarized in reference2, LAC values 

of bone range from 0.110 to 0.172 depending on the density of bone. Apparently, a single 

LAC to represent all bone voxels leads to PET AC errors. It has been demonstrated that CT 

segmentation based AC method still had about 5% whole brain errors when compared to the 

gold standard piecewise scaling CT based AC19. The AC errors of the CT segmentation 

based method are caused by the under-representation of a wide range of LAC values in 

tissues. The CT segmentation based AC errors in the whole brain are larger than those of the 

atlas based MRAC method. Of note, bone, air and soft tissue segmentation using MR images 

have less accuracy when compared to the silver standard CT segmentation. Therefore, it is 

expected that the MR segmentation based AC typically produces less accurate PET 

reconstructions compared to atlas-based methods.
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The advantages of the segmentation based method include easy implementation, shorter 

computation time and better accounting for anatomical variation. However, due to inaccurate 

segmentation and under-representation of a wide range of LAC values, the direct imaging 

with segmentation only methods produce less accurate PET reconstructions when compared 

to atlas-based methods, particularly in head.

Direct imaging methods with segmentation and continuous LAC value conversion

More recently, there are several direct imaging methods that have made efforts to convert 

MR signal/relaxation rate to continuous CT HU, and then continuous LAC values.

In the method proposed by Cabello et al.29, air mask was generated using histogram-based 

thresholding methods. R2
* maps were computed and used to extract bone from voxels not 

identified as air. R2* of the bone voxels is linearly equalized to the corresponding CT signal 

intensity from the same voxels after MR and CT images alignment. The scaled R2* was then 

used to generate LAC values in bone. A constant LAC of 0.096 cm−1 was used for all soft 

tissue. Mean percent errors for various ROIs were from −5.8% to 2.5%.

In the method proposed by Juttukonda et al.25, an air mask was generated using a histogram 

determined threshold on an inverted and normalized image of the first echo of DUTE 

(TE=0.07 ms). R2
* maps were computed using the dual echoes of DUTE. Since bone has a 

much more rapid R2* decay than other tissues, bone was delineated in voxels with a R2* 

above a certain threshold. Aligned Dixon images were used to identify fat and soft tissue. 

The generated tissue mask from the Dixon mask was also used to clean up noise-induced 

misclassification of bone. A sigmoid-of-best-fit regression was performed to convert R2* to 

continuous CT HU. A leave-one-out method was employed to evaluate the performance of 

this conversion in 98 patients. A continuous LAC was used in bone and a constant LAC 

value was used for each of the fat and soft tissue classes to generate μ maps. Regional PET 

absolute percent errors ranged from 0.88% to 3.79% in 24 brain ROIs.

In the method proposed by Ladefoged et al.28, R2
* computed from DUTE was also used to 

extract bone regions. Bone R2* to CT HU conversion was performed using a 3rd order 

polynomial fitting to a set of R2
*-CT relationship pairs from 10 training patients. A non-

linear registration of the individual UTE TE2 to an ICBM 152 2009a template was 

performed. Predefined regional masks drawn in the frontal sinus, the nasal septa and 

ethmoidal sinus, the skull base, and the rest of the patient volume on the ICBM template was 

then mapped to individual patient UTE images. Several empirically determined LAC values 

were assigned to voxels within these challenging noisy or mixed air-tissue regions based on 

the aligned ICBM masks. A LAC of 0.096 cm−1 and 0.099 cm−1 was used for CSF and the 

other brain tissue, respectively. The mean absolute error and mean error over the full brain 

was 3.4% and 0.1%, respectively. The mean error is less than 1.2% in any region of the 

brain. This method is a mixed direct imaging and template registration method.

Wiesinger et al proposed a ZTE method to image bone47. Imaging parameters of the ZTE 

protocol were chosen to generate proton density weighted images. A histogram based signal 

bias-correction was first applied and then an image signal normalization was performed. 

Two thresholds were used on the normalized inverse logarithmic scaled ZTE dataset to 
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segment images into three classes: air, soft-tissue, and bone. A linear correlation between 

inverse log-scaled ZTE and CT signal has been observed for HU between −300 and 1500 

HU (corresponding to soft-tissue and bone). Sekine et al employed the ZTE method 

proposed by Wiseinger et al and evaluated its utility in PET MRAC27. Continuous 

attenuation values were assigned to the bone-tissue using a linear regression between CT 

and ZTE MR values. A fixed attenuation value was assigned to soft tissue. The relative 

errors and absolute relative errors were −0.09% and 1.77%.

Summary

In summary, direct imaging methods utilize MR images acquired using Dixon, UTE or ZTE 

images to derive PET AC maps without atlas alignment and complex pseudo-CT generation. 

The proposed methods can be roughly classified into two sub-groups: segmentation-only 

and segmentation+MR-CT conversion. The pros and cons of several representative methods 

in each sub-group are summarized in Table 2. The direct imaging methods are fast and can 

account for patient variability. However, the direct imaging can be negatively impacted by 

image artifacts. Dixon images are very quick to acquire (<20 seconds). However, since it 

does not provide bone information, large errors are expected, especially in brain or pelvic 

PET imaging. It usually take several minutes to acquire UTE or ZTE images. Both of UTE 

and ZTE can be used for bone segmentation. However, the direct imaging with segmentation 

only methods under-represent the continuous electron density in PET attenuation correction. 

Direct imaging methods with segmentation and continuous LAC value conversion can 

achieve PET AC accuracy on par with the atlas based MRAC. This class of method relies on 

direct UTE or ZTE MR imaging for tissue segmentation and a conversion using either 

DUTE R2* or the inverse of logarithm of ZTE signal to CT HU for continuous LAC values 

in bone. Since the MR-to-CT conversion is predefined, these methods are much faster than 

the atlas based method. These methods can account for individual subject variations better 

than the atlas based methods. Of note, the MR-to-CT conversion relationship are potentially 

sequence and scanner dependent. For example, DUTE R2* computation might depends on 

the employed TEs. A water-fat in-phase or out-of-phase TE for the second echo might yield 

different R2*. The ZTE signal may vary from scanner to scanner. A consistent imaging 

protocol is needed. Given the published results, we recommend the segmentation + MR-CT 

conversion methods over the segmentation only methods for their improved accuracy at a 

minimal additional computation cost.

Conclusions

PET/MR attenuation correction have been extensively pursued, especially for brain imaging 

in the past several years. A summary of the atlas and direct imaging based methods is 

provided in Table 3.

Atlas based methods have shown high accuracy and robustness in adult brain PET AC. In 

atlas based methods, continuous LACs are available and the population averaged 

information provide robustness to imaging artifacts and noise. However, atlas based 

approaches cannot account for inter-subject variations. Since age, gender and race can 

impact bone thickness and density significantly, a single atlas based CT estimation may not 
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be adequate for all patients51. Separate MR-CT pair database is needed for AC in children. 

Because the inter-subject image registration of whole body is very difficult, atlas based MR-

AC in the body may not be as successful as that in brain. Finally, the complex computation 

makes atlas based methods time consuming.

Direct imaging based methods can account for variations across patients. They can be easily 

translated to whole body. These methods can be directly applied to any age group, including 

children. μ map generation is rapid. Due to imaging noise and artifacts, they are not as robust 

as the atlas based method. Direct imaging with segmentation only approaches have large AC 

errors due to discrete LAC values. The direct imaging with segmentation and MR-CT 

conversion address this problem and have improved PET AC accuracy.

Regional variations of AC errors are observed. Cortical region and regions near the skull 

base usually demonstrate larger errors. Caution needs to be used when interpreting results in 

these regions. Future technical development should focus on challenging brain skull regions 

and whole body MRAC. Clinical evaluation across vendors and centers are also needed.
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KEY POINTS

• Atlas and direct imaging based methods are two major categories of MR 

based PET/MR attenuation correction (AC).

• Atlas based methods are accurate and robustness in brain PET AC.; however, 

atlas based approach cannot account for inter-subject variations and is time 

consuming.

• Direct imaging based MRAC methods are rapid and can account for 

variations across patients.

• Direct imaging with segmentation only approaches have large AC errors due 

to discrete linear attenuation coefficient linear attenuation coefficient values.

• Direct imaging with segmentation and MR-CT conversion has similar PET 

AC accuracy as the atlas based MRAC.
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Table 1

Pros and Cons of the atlas based methods

Voxel Based Patch Based Machine Learning

REFERENCES 18,31,32 19,33,35,36 17,38,40–42

PROS Simple and quick Account for
neighborhood

Inter-subject registration
is not crucial

Low computational cost Less subjective to
registration inaccuracy

Quick in applying trained
relationship

CONS Highly depends on image
registration accuracy

Computational intense
and time consuming

Computational intense
and time consuming in
training

Cannot handle patient
specific variability

Cannot handle patient
specific variability

Cannot handle patient
specific variability
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Table 2

Pros and Cons of the direct imaging based methods

Segmentation only Segmentation+MR-CT coversion

REFERENCES 21,23,24,30,43 25,28,29,47

PROS Quick and low computational cost Quick and low computational cost

Account for patient specific variability Account for patient specific variability

No need for image registration No25,29,47 or simple28 image registration

Continuous LAC in bone

CONS No continuous LACs Possible Sequence and scanner
dependent conversion relationship

Subjective to image noise and artifacts Subjective to image noise and artifacts
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Table 3

Summary of atlas based and direct imaging based PET attenuation correction

Atlas based Direct Imaging
(segmentation only)

Direct imaging
(Segmentation+MR-
CT conversion

Relative PET Error
(whole brain)

<3% 5–20% <3%

Robustness high Low Low

Continuous LACs Yes No Yes

Whole body applicable Difficult Yes Yes

Pediatric applicable Need separate
pediatric atlas

Yes Yes

Abnormal anatomy No Yes Yes

Speed Minutes-hours Seconds Seconds
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