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Abstract

There are several methods for building prediction models. The wealth of currently available

modeling techniques usually forces the researcher to judge, a priori, what will likely be the

best method. Super learning (SL) is a methodology that facilitates this decision by combining

all identified prediction algorithms pertinent for a particular prediction problem. SL generates

a final model that is at least as good as any of the other models considered for predicting the

outcome. The overarching aim of this work is to introduce SL to analysts and practitioners.

This work compares the performance of logistic regression, penalized regression, random

forests, deep learning neural networks, and SL to predict successful substance use disorders

(SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used.

All algorithms were evaluated using the area under the receiver operating characteristic

curve (AUC) in a test sample that was not included in the training sample used to fit the pre-

diction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all

but one of the algorithms compared. An explanation of SL steps is provided. SL is the first

step in targeted learning, an analytic framework that yields double robust effect estimation

and inference with fewer assumptions than the usual parametric methods. Different aspects

of SL depending on the context, its function within the targeted learning framework, and the

benefits of this methodology in the addiction field are discussed.

Introduction

There are several methods for building prediction models. Prediction models are often gener-

ated using some form of linear or logistic regression—e.g. [1–4]. More recently, other learning

algorithms such as random forests (RF) or artificial neural networks (ANN) are being used for
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prediction in the health sciences—e.g. [5–7]. These new techniques may be able to enhance

prediction, thus improving the chances of matching patients to the most effective treatments.

The wealth of currently available modeling techniques usually forces the researcher to

judge, a priori, what will likely be the best prediction method. Super learning (SL) [8] is a

methodology that facilitates this decision by combining all identified prediction algorithms

pertinent for a particular prediction problem. SL generates a final model that is at least as good

as any of the other models considered for predicting the outcome. This property of SL is both

theoretically [8] and empirically supported [9]. The goal of this paper is to introduce various

prediction methods, some of which are novel to the field of substance use disorders (SUD)

treatment.

Accounting for individual patient characteristics to maximize positive outcomes is at the

heart of precision medicine. SUD treatment is one of the many areas that can greatly benefit

from optimizing patients’ pathways to the best possible treatment outcome. For example,

United States estimates indicate only 19.8% of cases in need of alcohol use disorders treatment

were ever treated [10]. Identifying key predictors of successful treatment can serve to discover

disparities, strengths and weaknesses in service delivery, eventually increasing treatment suc-

cess and reducing unmet treatment needs [11–13].

The first step in identifying key characteristics for matching patients to the most effective

treatments is to predict who will succeed at a given treatment. The importance of this topic is

reflected by the rich literature aiming to identify patients’ characteristics increasing the efficacy

of SUD treatment (e.g. [4, 14–16]). The methodological focus of this paper leaves a substantive

literature review regarding SUD treatment success out of its scope.

Some of the literature predicting successful SUD treatment takes advantage of large publicly

available datasets such as the Substance Abuse and Mental Health Services Administration

Treatment Episode Data Set—Discharges (TEDS-D) [17]. The main advantage of datasets

such as TEDS-D is the large number of records available including important patient charac-

teristics and treatment features. Due to the computer power required when large data sets with

numerous predictors are used, the advantage of working with large datasets or big data used to

be also the greatest disadvantage for applying sophisticated prediction algorithms such as SL

or other sophisticated machine learning methods. Computer power is currently less of a prob-

lem thanks to technological advances and an active open source software developer commu-

nity. For instance, the open source community has optimized SL and other machine learning

algorithms for the analysis of big data using open source software [18].

Most of the methods featured in this paper were not used to analyze TEDS-D before. The

aim is to evaluate what method works best at predicting successful treatment using a real life

large database. Rather than a dataset tailored to showcase the methods properties, we use a

dataset commonly used in the SUD field. We hypothesized that SL will generate the best pre-

diction model as measured by the area under the receiver operating characteristic curve

(AUC) evaluated in a test sample not included in the training sample used to fit all prediction

models.

The use of SL as a prediction tool of success in SUD treatment may contribute to the litera-

ture by bettering the ability to identify treatment outcome disparities that, when addressed,

may lead to improve patients’ treatment outcomes.

Materials and methods

Data

To illustrate different prediction analytic approaches, we focused in SUD outpatient treatment

for Hispanics during adulthood using publicly available TEDS-D 2006–2011 data [17].

Machine learning for SUD treatment success prediction
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TEDS-D is an excellent example of a large administrative dataset that may be of interest to

addiction researchers in real life. This dataset allows us to illustrate the use of the methodolo-

gies introduced in this work within a realistic setting.

Outcome. Treatment completed was considered a successful treatment discharge status, all

other treatment discharge reasons (e.g., left against professional advice, incarcerated, other)

were considered as indicators of non-successful treatment. Treatment completion is a standard

process outcome measure because it predicts longer-term outcomes such as less future criminal

involvement, fewer readmissions, employment and income one year after treatment [19–22].

Predictors. Twenty eight predictors recorded by TEDS-D were included in the analysis.

Predictors include 10 patient characteristics (i.e., age, gender, race–e.g., White, Black—, eth-

nicity–indicating patient’s specific Hispanic origin, marital status, education, employment sta-

tus, pregnant at time of admission, veteran status, and living arrangement), 3 treatment

characteristics (i.e., intensity, medication-assisted opioid therapy, and length of stay), principal

source of referral, summary of type of problematic substance (with categories “alcohol only”,

“other drugs only”, or “alcohol and drugs”), and mental health problem. TEDS-D records

thorough information about substances of misuse. This includes the following 12 predictors:

primary, secondary, and tertiary substance problem, usual route of administration, frequency

of use, and age at first use. The substances include: alcohol, cocaine/crack, marijuana/hashish,

prescription opiates/synthetics, and methamphetamine use. Several other drug use categories

were collapsed for analysis because of low percentages.

Inclusion criteria. TEDS-D includes all admissions/discharges rather than individuals.

Consequently, only records that indicate the individual had no prior SUD treatment were

included in the analyses. Part of our previous work focuses on racial and ethnic minorities [11,

12, 23, 24]. It is known that racial and ethnic minorities vary in their treatment access and suc-

cess levels [25–27]. Thus, we restricted our analysis only to cases indicating a Hispanic/Latino

ethnicity, 18 years old or older, and treatment in outpatient service settings. We focused on

outpatient service settings because criteria for treatment completion/success (i.e., the outcome

of interest) and duration for other types of services (e.g., 24-hour inpatient, detoxification-

only) and outpatient services are often very different. This is a sample arbitrarily chosen to

exemplify the different analytical approaches. The choice is based on our previous knowledge

in this field and not on the results obtained after using the methods described in the following

paragraphs.

Exclusion criteria. Records with missing data in any of the predictors, the outcome, or

characteristics used for determining inclusion in the study were excluded from the analysis.

Since not all states collect the same information for their patients, from a total of 9,829,536 rec-

ords, 4,385,825 (45%) had all required data complete.

These inclusion and exclusion criteria did not affect the performance of SL when compared

to the rest of the analytical strategies used. A total of 99,013 records representing unique indi-

viduals were selected according to the inclusion and exclusion criteria and were used in the

analysis. This sample was separated in a training set with 80% of the sample (n = 79,210) and a

test set with the remaining 20% (n = 19,802).

Because these data represent public information and there is no subject identification, the

University of Iowa Human Subjects Office Institutional Review Board exempted this study

from review.

Statistical analysis

The goal of the analysis was to compare results of classical analytical strategies that are com-

monly used to address prediction of treatment success (e.g., logistic regression) alongside

Machine learning for SUD treatment success prediction
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results of newer methods for prediction (e.g., ANN). We also compared SL results. SL is an

ensemble machine learning methodology that encompasses all other methodologies in its

library and has demonstrated (both theoretical and empirical) superiority for prediction [8, 9].

Formally, the analysis is as follows. Let W = {W1, . . ., Wk} denote the predictors of interest

and Y represent the binary outcome treatment success (Yes/No). Let O = (W, Y) be a random

variable such that O~P0 (i.e., the true probability distribution of O is P0). Since only records

that indicate the individual had no prior treatment in a drug or alcohol program were included

in the analyses, we assumed that the individuals observed can be represented as independent

and identically distributed observations of the random variable O. For each individual i, Yi and

Wi are observed. We sought to estimate �Q0 ¼ P0ðY ¼ YesjW Þ—i.e., the probability of succeed-

ing in treatment given the predictors of interest. �Q0 is unknown. Hence, we aimed to find the

best estimator of �Q0. This was achieved by maximizing the AUC. We did this using logistic

regression, 3 types of penalized regression, RF, ANN, and the corresponding SL that includes

these algorithms in its library. SL also maximized the AUC.

We used 2 mechanisms to avoid overfitting. The analysis used 2-fold cross-validation (CV)

using 80% of the data set (n = 79,210) and the final model was validated using 19,802 randomly

selected individuals that were only included in the test set (Fig 1). All analytic approaches

explored were compared using the AUC in the test set. The best analytic strategy for predicting

treatment success was identified as the model maximizing AUC. The AUC is a convenient

measure of prediction success that can be interpreted as the probability that any of the algo-

rithms ranks a randomly chosen successful patient higher than a randomly chosen unsuccess-

ful patient [28]. AUC ranges from 0 to 1, AUC = 1 means perfect prediction and AUC = 0.5

suggests chance levels of prediction.

We used at least 2 different configurations for each analytic strategy compared. The first

approach included all 28 predictors available. Since it can be useful to reduce the number of

predictors considered and simplify the final prediction formula, we also selected a subset of

Fig 1. Analytic work flow.

https://doi.org/10.1371/journal.pone.0175383.g001
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the 10 predictors with highest variable importance in a RF model. In decreasing order of

importance, these predictors were: length of stay, age, principal source of referral, primary

problematic substance, its age of first use, and its frequency of use, employment level, SUD

type (i.e., only alcohol, only drugs, or both alcohol and drugs), education level, and patient’s

specific Hispanic origin (e.g., Puerto Rican, Mexican, Cuban).

For each set of predictors, the following algorithms were compared: logistic regression,

least absolute shrinkage and selection operator (lasso), ridge, and elastic net penalized regres-

sions [29], RF [30], ANN [29, 31], and SL [8]. Since none of the aforementioned regression

models considered interaction effects in the predictive model, an additional model including

terms for all predictors and selected 2-way interactions was also added to the SL library for

each type of regression. Two-way interactions were initially screened using all possible logistic

regression models of 2 predictors at a time and their 2-way interaction. All interactions with p-

values<0.0001 were included along with all predictors in the regression models of the SL

library. We compared 17 algorithms/algorithm configurations.

There is a multitude of other analytic strategies that could be chosen [29]; however, to illus-

trate SL use for predicting treatment success when compared to other methods, we consider the

chosen algorithms are adequate. In this context, where the data generating model is unknown,

SL will be superior to the rest of the methodologies, regardless of the set of algorithms initially

chosen. Some characteristics of the chosen algorithms are presented subsequently.

Logistic regression. Logistic parametric regression is the most commonly used algorithm

for prediction in the SUD treatment outcomes field. Logistic regression is easily implemented

and interpreted. However, logistic regression assumptions are strong and, since the true data

generating model is unknown, these assumptions are usually violated. For example, including

many predictors, their interactions, and/or other higher order terms in a logistic regression

model does not guarantee that it is the best model, due, for example, to collinearity between

the predictors included (which increases variability) or model misspecification (which intro-

duces bias).

Penalized regression. Penalized regression (such as lasso, ridge regression, or elastic nets)

offers an alternative to parametric regression models. The 3 types of penalized regression

applied in this work vary in their variance/bias tradeoffs depending on the characteristics of

the predictor set. For example, lasso will select only one term from a set of correlated predic-

tors. This may not be appropriate. In fact, when the number of predictors is small compared to

the number of independent observations, ridge regression outperforms lasso when variables

are highly correlated. Additionally, if the true data generating model has only a few predictors

but the candidate models have a large number of predictors; lasso may eliminate predictors

that were not in the data generating model. On the other hand, ridge regression will keep all

terms in the final model. The elastic net penalized regression provides some balance between

lasso and the ridge regressions.

In the example presented here, there are 28 categorical predictors that correspond to 135

terms when the model is parametrized using dummy variables. The screening step for the

most relevant 2-way interactions of these 135 terms, preselected 257 2-way interaction terms.

Thus, the regression models including all predictors and selected interactions had 393 terms

including the intercept. While logistic regression estimated 393 parameters for this model,

lasso estimated parameters only for terms uncorrelated with each other and zeroed-out the

rest; ridge regression kept all 393 but down weighted each term. In this way, penalized regres-

sion allows for tuning large models adapting them to the information provided by the data.

Random forests. RF is a recursive partitioning method popular in many fields with high-

dimensional data (e.g., genomics). RF can evaluate a number of predictor variables even in

the presence of complex interactions, including those that are not possible to model using
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regression. RF is an ensemble of classification and regression trees constructed on bootstrap

samples. Unlike individual trees, RF is more protective against overfitting.

Artificial neural networks. An ANN uses interconnected nodes within various layers to

explain an outcome given a set of predictors. The relationships between the nodes are defined

by weights calculated using a given rule. The initial weights are preassigned by the analyst. The

ANN algorithm iterates adjusting the weights. At the end of each iteration, the performance at

outcome prediction is evaluated. ANNs efficiently generate non-linear classification rules but

can be prone to overfitting. More recently, some types of ANN are referred to as deep learning

[31]. Deep learning allows modeling multiple levels of non-linearity in the data and is scalable

to large datasets and big data in general. We used deep learning ANN with hidden layer sizes

of 200.

Super learning. SL is a generalization of the stacking algorithm [32], an ensemble ma-

chine learning method that takes a weighted average of all other algorithms considered for pre-

diction and produces a single prediction function (PF) with optimal tradeoff between variance

and bias. SL is very flexible for learning from the data as it combines the strengths of all meth-

odologies considered (including different configurations of the same algorithm) while mini-

mizing modelling flaws. Another advantage of SL is that it eliminates the need to select a priori

a single or a few methodologies for the analysis. SL allows analyzing the data using simulta-

neously all the methodologies the researcher considers suitable.

Fig 1 depicts the work flow used to analyze the data and details all the steps necessary for

running SL. The input of the analysis consists of the training and test data sets together with

the algorithmic library. Since we used 2-fold CV to obtain each algorithm PF, as well as, the SL

PF, the training set was initially partitioned in 2 blocks. Each algorithm in the library was fitted

using each block independently. We used the data block excluded from the model fitting to

calculate the CV AUC for each algorithm in the library. We averaged both CV AUCs, resulting

in a single training set CV AUC for each algorithm. Up to this step, model fitting follows a reg-

ular 2-fold CV modelling path. The PF of discrete SL, a simpler version of SL, is the PF of the

algorithm with the minimum CV AUC.

However, SL performs better when a weighted combination of the algorithms’ PFs is used.

Thus, the next step for obtaining SL PF is to calculate a weight for each algorithm PF. This is

done regressing Y on the values of Y predicted by each algorithm in the library. Next, each

algorithm is fitted using the whole training set and the SL PF is obtained by applying the esti-

mated weights to the algorithm predictions for each observation.

It can be demonstrated that using 2-fold CV, the procedure can end here and the AUCs of fit-

ting each algorithm and SL to the whole training dataset would suffice for SL to outperform the

rest of the algorithms without overfitting. However, we included an additional validation step: all

the PFs obtained with the training set, where used to predict SUD treatment success in the test

data set. We calculated AUCs compared to evaluate all models adjusted using the test dataset.

A thorough description of all the algorithms used in this work is out of the scope of this

manuscript. The interested reader will find further details about SL in van der Laan and Rose

[33] and about the rest of the aforementioned methodologies in Friedman et al [29] and Ben-

gio [31].

Models were fitted using the open source R programming language [34] and the H2O R

interface version 3.8.2.2 [35] that optimizes all the analytical methods used for large datasets.

The h2oEnsemble package version 0.1.8 [36] was used to fit the SL model. We set all tuning

parameters for each algorithm in the SL library (e.g., the ANN implementation used in this

manuscript has over 20 parameters) to their default values. The analysis took about 2.5 hours

to run in a Windows 7 Professional desktop computer with 8-core i7-3770 3.40 Ghz CPU and

8 Gb RAM. Most of the analytic time was used to fit the four regression models including

Machine learning for SUD treatment success prediction
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2-way interaction terms. The other 13 algorithms, including SL, required only about 6 minutes

of the 2.5 hours. AUC confidence intervals and variances were estimated using the Delong and

colleagues methodology [37] as implemented in the R package pROC [38]. Briefly, Delong

et al [37] used the equality between AUC and the Mann-Whitney U statistic and asymptotic

normality to analytically derive variance and confidence interval estimators for AUC.

Results

Treatment success rate and characteristics for the patients included in the analyses are shown

in Table 1. For brevity, only gender and the top 10 most important predictors as identified by

RF were included in the table.

Table 2 shows the AUC in the test set (N = 19,802) for the 17 algorithms/algorithm configu-

rations compared. All AUC are between 0.793 and 0.820. This indicates that, for this set of

models, the probability that any of the algorithms will rank a randomly chosen successful

patient higher than a randomly chosen unsuccessful patient is between 0.793 and 0.820. This is

usually considered a good performance for prediction models.

As hypothesized, SL shows the largest AUC. SL performance is very closely followed by RF

including all predictors. For this particular example, the algorithm with the worst performance

is logistic regression including all predictors and selected 2-way interactions. The relative

improvement in AUC of SL is 3.3% when compared to the worst prediction method. Also, the

AUC for SL has the smallest estimated variance. The rest of the models considered have esti-

mated AUC variances up to 19% higher than SL. As revealed by Fig 2, SL AUC is higher than

AUC for all other models, with the exception of the RF model including all predictors.

Also, in most cases, the models including all predictors performed slightly better (but not

statistically so) than the models including only the top 10 predictors selected in the initial

screening step to simplify the prediction model. All parametric regression models both penal-

ized and non-penalized approaches performed almost identically with respect to AUC for

models not including interactions. This behavior could have been anticipated since a model

with only 28 predictors can be considered too small for a data set this size. However, for mod-

els including all predictors and selected 2-way interactions, lasso outperformed the other 3

regression models. AUC for lasso was higher than for ridge and logistic regressions.

Discussion

This work compared 17 models for predicting successful completion of SUD treatment. Both

traditional and newer analytic strategies were equated in a nationwide large dataset. Particu-

larly, super learning, an ensemble machine learning algorithm, was introduced for the first

time to the study of SUD treatment success using large datasets. As expected, SL showed the

best predictive performance.

In this particular example, SL superiority was meager when compared to more traditional

models such as logistic regression. This result was not at all evident before analyzing these

data. We understand this may dampen the interest in this work. However, we think that the

finding that there are no major differences in the solutions of all methods is important in itself

and worth discussing. Unlike what happens with other predictive models, the lack of substan-

tive difference between SL and the rest of the models used means that: a) any of these methods

could be used for these data and b) there are no major problems in the assumptions of the

different models used. These findings are never evident before or after analyzing a dataset

when analysis is performed using a traditional analytical approach. Sensitivity analysis is one

approach used to address this limitation of traditional methods. In this sense, SL serves as a

tool to streamlining and improving sensitivity analysis for prediction. SL does not require that

Machine learning for SUD treatment success prediction
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Table 1. Sample characteristics (N = 99,013).

Total N (%)

SUD Treatment Success

Yes 44,748 (45.2%)

No 54,265 (54.8%)

Gender

Male 77,123 (77.9%)

Female 21,890 (22.1%)

Ethnicity

Puerto Rican 31,047 (31.4%)

Mexican 25,190 (25.4%)

Cuban 2,683 (2.7%)

Other/Unspecified 40,093 (40.5%)

Age (years)

18–20 11,479 (11.6%)

21–24 16,886 (17.1%)

25–29 19,625 (19.8%)

30–34 15,121 (15.3%)

35–39 11,725 (11.8%)

40–44 9,436 (9.5%)

45–49 6,988 (7.1%)

50–54 4,172 (4.2%)

55+ 3,581 (3.6%)

Education (years)

<9 17,170 (17.3%)

9–11 31,507 (31.8%)

12 34,329 (34.7%)

13–15 13,062 (13.2%)

16+ 2,945 (3.0%)

Employment

Full Time 34,586 (34.9%)

Part Time 10,392 (10.5%)

Unemployed 29,635 (29.9%)

Not in Labor Force 24,400 (24.6%)

Primary Substance

Alcohol 50,782 (51.3%)

Marijuana 26,269 (26.5%)

Cocaine 8,554 (8.6%)

Non-Prescription Opiates 7,791 (7.9%)

Methamphetamine 2,312 (2.3%)

Prescription Opiates and Synthetics 2,145 (2.2%)

Hallucinogens 293 (0.3%)

Other Sedatives 320 (0.3%)

Other Stimulants 234 (0.2%)

Other 313 (0.3%)

Frequency of Primary Substance Use

Not in the past month 41,529 (41.9%)

1–3 times past month 20,766 (21.0%)

1–2 times past week 11,770 (11.9%)

(Continued )
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a model is chosen a priori, at the end of the analysis results in the best model, and, if there are

no substantial differences with the rest of the models, SL provides a solid justification for the

use of any of the models. SL is a valuable, but underutilized, tool for obtaining robust predic-

tion results as required, for example, by the National Institutes of Health [39].

In addition, even small improvements in prediction can have a high impact depending on

each particular problem. In this case, a small prediction improvement could significantly

impact patients’ outcomes and/or treatment costs. In other cases, small prediction improve-

ments could save lives. Since SL is theoretically proven to perform as well or better than the

best model included in its library, the results presented here are relevant to illustrate the use of

SL in the SUD treatment outcome prediction field.

In other applications, SL has shown 44% and 12% increase in performance when compared

to ANN and RF, respectively [40]. Also, SL has shown as good or significantly better predictive

performance than linear regression and other methods when used in 13 real datasets—see Fig

Table 1. (Continued)

Total N (%)

3–6 times past week 8,272 (8.4%)

Daily 16,676 (16.8%)

Age of First Primary Substance Use (years)

<10 4,825 (4.9%)

12–14 17,577 (17.8%)

15–17 31,306 (31.6%)

18–20 22,949 (23.2%)

21–24 10,895 (11.0%)

25–29 5,768 (5.8%)

30–34 2,535 (2.6%)

35–39 1,573 (1.6%)

40–44 816 (0.8%)

45–49 435 (0.4%)

50–54 211 (0.2%)

55+ 123 (0.1%)

Substance Abuse Type

Alcohol Only 34,827 (35.2%)

Other Drugs Only 29,887 (30.2%)

Alcohol and Drugs 34,299 (34.6%)

Source of Referral

Self 16,910 (17.1%)

Alcohol/Drug Abuse Care Provider 3,655 (3.7%)

Other Health Care Provider 4,013 (4.1%)

School 341 (0.3%)

Employer 1,350 (1.4%)

Other Community Referral 15,503 (15.7%)

Criminal Justice Referral 57,241 (57.8%)

Length of Stay (days)

1–30 19,942 (20.1%)

31–60 15,296 (15.4%)

61–90 12,476 (12.6%)

91–120 12,397 (12.5%)

121 or longer 38,902 (39.3%)

https://doi.org/10.1371/journal.pone.0175383.t001
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3.4 in [40]. In fact, stacking algorithms similar to SL are usually among the type of algorithms

that win prediction contests such as the Heritage Provider Network Health Prize [41]. The

Heritage Provider Network Health Prize was a competition to develop a predictive algorithm

helping identify patients most likely to be admitted to healthcare providers.

The results of this work should be interpreted as an illustration of the presented statistical

methods in a realistic setting. The practical conclusions should be seen in light of the data

limitations. Analysis was restricted to Hispanics and very few features describing the type of

treatment and how treatment was administered were included. There may be considerable res-

ervation with using treatment completion as an indicator of treatment success. While post-

treatment follow-up outcome measures of abstinence or reduced use would be best, such

Table 2. AUC in the test set (N = 19,802) for each algorithm and algorithm parametrization used.

Model AUC bσ 2

Super Learning 0.820 0.165

Random Forests All Predictors 0.816 0.173

Lasso All Predictors + 2-Way Interactions 0.805 0.185

Lasso All Predictors 0.805 0.185

Elastic Net All Predictors 0.805 0.185

Logistic Regression All Predictors 0.805 0.185

Ridge Regression All Predictors 0.805 0.185

ANN Top 10 Predictors 0.805 0.185

Elastic Net All Predictors + 2-Way Interactions 0.804 0.186

ANN All Predictors 0.803 0.186

Lasso Top 10 Predictors 0.801 0.189

Elastic Net Top 10 Predictors 0.801 0.189

Ridge Regression Top 10 Predictors 0.801 0.189

Logistic Regression Top 10 Predictors 0.801 0.189

Random Forests Top 10 Predictors 0.797 0.191

Ridge Regr. All Predictors + 2-Way Interactions 0.793 0.197

Logistic Regr. All Predictors + 2-Way Interactions 0.793 0.197

https://doi.org/10.1371/journal.pone.0175383.t002

Fig 2. 95% confidence intervals for AUC of each model compared.

https://doi.org/10.1371/journal.pone.0175383.g002
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nation-wide data collection efforts were out of the scope of this project. While these are impor-

tant limitations to inform treatment success prediction, these issues do not affect the main

goal of this work.

Traditional analytical approaches for prediction may not only consider the prediction per-

formance of a model, but also its ecological validity for a given research area. That is one of the

reasons logistic regression could be preferred over SL for predicting SUD treatment success.

While the model proposed by SL is designed to excel at prediction, it is not meant to be inter-

preted or to be used for effect estimation. If the true or close to true data generating model is

included in the SL library, SL will likely have a low gain in predictive performance and its lack

of interpretability could discourage its use. However, most of the time, researchers are uncer-

tain about the model that generated the data. When ecological validity is important in a predic-

tion context, SL could be used as a simpler model validator if an interpretable model in its

library is close to SL in predictive performance. In the example presented here, SL has signifi-

cantly better predictive performance than logistic regression; thus, it would be difficult to

defend any of the logistic regression models used in this application in lieu of SL. On the other

hand, these data show that, if the ecologically validity of RF models could be easily assessed,

the use of the RF model with all the predictors could be used instead of the SL model.

When the goal of the research is to interpret the effect of different predictors in the out-

come, SL can be used in the context of the targeted learning framework [33]. SL is the first

stage for obtaining doubly-robust effect estimates using targeted maximum loss-based estima-

tion (TMLE) [42]. TMLE is an estimation technique that allows for double robust estimation

of effects with fewer untestable assumptions than the usual parametric methods used for esti-

mation. TMLE can be applied either in a causality framework or in a merely associative frame-

work (additional details about TMLE is out of the scope of this work, we recommend [33]

for further information). Using the prediction model suggested by SL and TMLE, one could

answer questions such as “What is the treatment success rate difference between Hispanics

with comorbid psychiatric disorders and those without comorbid disorders?” and “Is this dif-

ference different from zero?” In contrast, statistical inference is not possible in machine learn-

ing methodologies such as RF or deep learning. This important limitation of machine learning

algorithms is overcome by targeted learning, the first analytical framework that provides esti-

mates and hypothesis testing while using machine learning [43]. Future directions of this work

include determining the benefits of applying targeted learning for different effect estimations

and inference in the addiction field.
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