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Evaluation of copy-number variants as modifiers of
breast and ovarian cancer risk for BRCA1 pathogenic
variant carriers

Logan C Walker1,31, Louise Marquart2,31, John F Pearson3, George AR Wiggins1, Tracy A O'Mara4,
Michael T Parsons4, BCFR5, Daniel Barrowdale6, Lesley McGuffog6, Joe Dennis6, Javier Benitez7,
Thomas P Slavin8, Paolo Radice9, Debra Frost6, EMBRACE6, Andrew K Godwin10, Alfons Meindl11,
Rita Katharina Schmutzler12, GEMO Study Collaborators13,14, Claudine Isaacs15, Beth N Peshkin15,
Trinidad Caldes16, Frans BL Hogervorst17, HEBON18, Conxi Lazaro19, Anna Jakubowska20, Marco Montagna21,
KConFab Investigators22,23, Xiaoqing Chen4, Kenneth Offit24, Peter J Hulick25, Irene L Andrulis26,
Annika Lindblom27, Robert L Nussbaum28, Katherine L Nathanson29, Georgia Chenevix-Trench4,
Antonis C Antoniou6, Fergus J Couch30 and Amanda B Spurdle4

Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations

between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-

number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery

was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide

association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a

number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including

putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies

only confirmed 40% of predicted common (41% allele frequency) variants. These include four loci that were associated

(unadjusted Po0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian

cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the

CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this

deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This

study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible

biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers.
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INTRODUCTION

Carriers of BRCA1 pathogenic variants are at increased risk for
developing breast cancer and/or ovarian cancer, but the precise level
of these risks is uncertain. Estimates of the cumulative risks of breast
and ovarian cancer by age 70 years for BRCA1 pathogenic variant
carriers range from 44% to 75% and 43 to 76%, respectively.1 Studies
exploring the cause for the range in risk estimates have provided
evidence that genetic factors have a key role in modifying cancer risks
for carriers.2 The Consortium of Investigators of Modifiers of BRCA1/
BRCA2 (CIMBA) has facilitated a number of large studies, which have
identified variants mapping to 420 loci that are associated with
altered risk of breast or ovarian cancer in BRCA1 pathogenic variant
carriers.3–6 The effect size associated with each variant identified to
date has been relatively small (hazard ratioo1.5), and together they
account for only a fraction of heritable variation in risk in BRCA1
pathogenic variant-positive families.
Copy-number variants (CNVs) are estimated to cover 5–10%7 of

the human genome, which is an order of magnitude greater than the
number of base pairs (bp; ~15 Mbp; dbSNP Human Build 142)
encompassed by the more commonly studied single-nucleotide
polymorphisms (SNPs). Thus, based on base pair coverage, CNVs
are responsible for the majority of genetic variability in human
populations. CNVs have also been shown to partially overlap or fully
encompass genes or regulatory sequences resulting in a range of
biological changes, such as altered gene expression.8 Importantly, these
inherited structural variants have a role in many complex diseases,9

and comprise a proportion of the mutation spectrum for known
cancer syndromes, such as hereditary breast–ovarian cancer syndrome,
Lynch syndrome and Li–Fraumeni syndrome.10 Moreover, recent
genome-wide CNV studies have reported associations between a
common deletion polymorphism overlapping APOBEC3 and risk of
both breast and ovarian cancer.11–13 Thus, other common and rare
CNVs may similarly affect genes involved in cancer-related pathways.
The contribution of germline CNVs to variable risk in individuals with
deleterious BRCA1 pathogenic variants is unknown.
In this paper, we conducted a large genome-wide CNV analysis of

2500 BRCA1 pathogenic variant carriers, with or without breast and/or
ovarian cancer, using a previously published SNP-based genome-wide
association study.14 To maximize the sensitivity for CNV discovery,
multiple CNV calling algorithms were applied to the data set. Analyses
identified several putative CNVs overlapping gene regions associated
with risk of breast or ovarian cancer for BRCA1 pathogenic variant
carriers and a requirement for validation in larger studies.

MATERIALS AND METHODS

Study population
A total of 2500 BRCA1 pathogenic variant carriers was drawn from 20 centers

from North America, Europe and Australia as reported previously.14 Eligibility

criteria for study participants included the following: (1) female carriers of

pathogenic BRCA1 variants; (2) at least 18 years of age at recruitment; and

(3) Caucasian self-reported ancestry. BRCA1 pathogenic variant carriers

selected for the study were stratified into two groups consisting of women diag-

nosed with invasive breast cancer when younger than 40-years old (n= 1250)

and women who had not developed breast cancer or who had developed a first

ovarian cancer when 35 years of age or older (n= 1250). All BRCA1 pathogenic

variants are listed in Supplementary Table S3 and deposited in the ClinVar

database (Submission ID - SUB1994380; http://www.ncbi.nlm.nih.gov/clinvar/).

All carriers were recruited for research studies using ethically approved protocols

at host institutions.

CNV detection and quality control
All DNA samples were genotyped with the Human610-Quad BeadChip

(Illumina, Inc, San Diego, CA, USA) with ~ 610 000 markers (including

~ 20 000 non-polymorphic markers) for SNP and CNV analysis. Data for each

array were normalized using GenomeStudio 2011.1 software (Illumina). Probe

information including, genomic location, signal intensity (Norm R), allele

frequency (Norm theta), Log R Ratios (LRRs), B allele frequencies (BAFs) for

each sample was calculated and exported from GenomeStudio.
CNV calls were generated using four algorithms: PennCNV (version 2009

Aug27),15 QuantiSNP (v2.1),16 CNVPartition (v2.3.4, Illumina Inc.) and

GNOSIS (a CNV detection algorithm within the CNV analysis package,

CNVision, (http://sourceforge.net/projects/cnvision/files/). Quality control pro-

cedures were performed to remove poor quality array data (Supplementary

Figure S3). Samples were excluded if they met the following criteria: PennCNV

measures of log R ratio s.d.40.28, BAF drift 40.01, waviness factor deviating

from 0 by 40.05; QuantiSNP measures of BAF outliers 40.1, LogR outliers

≥ 0.1, BAF s.d. ≥ 0.2, LogR s.d. ≥ 0.4. A total of 2319 samples passed quality

control steps and were assessed in the study. CNV calling results of all four

algorithms were parsed and then merged using CNVision. To reduce false

positives, CNV calls were excluded if ≥ 1000 kb in size, and/or were predicted

by only one algorithm. Nine further CNVs called within the multi-histo-

compatibility complex on chromosome 6 were excluded from the study, as

both a deletion and a duplication were predicted by two algorithms.

Defining CNV regions that may contribute to modification of risk
To identify new genomic loci contributing to breast or ovarian cancer risk in

BRCA1 pathogenic variant carriers, common and rare deletions that overlapped

gene regions were assessed using a genome-wide approach. Our study focused

primarily on genomic deletions that overlapped gene regions for several

reasons: (1) inter-individual analysis of CNVs is not straightforward as

these variants do not typically occur in discrete genomic regions. The start

and end coordinates of gene sequences were therefore used as a non-redundant

approach to define CNV regions across the genome. (2) In contrast to

duplications or copy-number gains, the genomic location of a deletion can

be predicted from the array data. These data were not able to show the genomic

location of a duplicated region, thus gene(s) or other functional genomic

regions that are potentially disrupted by these structural events remain

undetermined. (3) Whole or partial gene deletions are known to be potentially

disruptive by causing haploinsufficiency or truncation of the expressed protein,

and (4) common and rare CNVs that have previously been reported to be

associated with breast and ovarian cancer risk have typically been deletion

events.11,12,17,18

We annotated 39 544 UCSC RefSeq (NCBI36/Hg18) transcripts using the

SOURCE database19 and defined the genomic intervals for a total of 18 791

unique genes (Supplementary Figure S4). Thus, each gene interval encompassed

the start and end of all corresponding alternate transcripts. CNVs and gene

regions that were estimated to overlap by at least 1 bp were identified in a

genome-wide scan using Intersect and Join tools from the Galaxy web

server.20–22 All CNVs used for this study are deposited in the dbVar database

(https://www.ncbi.nlm.nih.gov/dbvar) with the accession number nstd132.

CNV validation
Accessible DNA samples from the study cohort were used to validate 29

putative deletion regions. All predicted common (41% frequency) deletions

found associated with breast or ovarian cancer risk were chosen for validation.

Copy-number assessment was carried out using Nanostring nCounter Elements

TagSets (NanoString Technologies, Inc.) and Taqman assays. Target-specific

Nanostring probes for 10 CNV and 10 invariant genomic regions are listed in

Supplementary Table S1. Twenty-two gene regions were assessed using Taqman

assay, including one region (GTF2H2) also analysed by with a Nanostring

TagSet. Custom primer and probe sequences are presented in Supplementary

Table S2. For seven CNV loci, we used the pre-designed assays from Life

Technologies (Supplementary Table S2).

CNVs modify cancer risk in BRCA1 mutation carriers
LC Walker et al

433

European Journal of Human Genetics

http://www.ncbi.nlm.nih.gov/clinvar/
http://sourceforge.net/projects/cnvision/files/
https://www.ncbi.nlm.nih.gov/dbvar


Statistical analysis
For the breast cancer risk association analysis, study participants (Supple-
mentary Table S3) were classified at the age of the first breast cancer diagnosis
or censored at ovarian cancer diagnosis or bilateral prophylactic mastectomy,
whichever occurred first, or at the age of last observation. Only those diagnosed
with breast cancer were considered as affected (n= 1202 affected, n= 1117 non-
affected). Pathogenic variant carriers censored at their ovarian cancer diagnosis
were considered to be unaffected in the breast cancer risk analyses. For ovarian
cancer risk (n= 357 affected, n= 1962 non-affected), study participants were
classified at the age of ovarian cancer diagnosis or censored at bilateral
prophylactic oophorectomy, or age at last observation. Pathogenic variant
carriers diagnosed with breast cancer were treated as unaffected at the age at
breast cancer diagnosis. Analyses were carried out within a survival analysis
framework. As BRCA1 pathogenic variant carriers were not randomly sampled
with respect to their disease status, analyses were based on the modeling the
retrospective likelihood of observing the CNV conditional on the observed
phenotype.23 Two separate models were fitted to evaluate associations between
CNVs with breast cancer and ovarian cancer risk, and were assessed using the 1
d.f. score test statistic.23 Q-values for the discrete test statistics were calculated

by filtering the P-values using the T-method24 with a critical threshold of 0.05,
such that genes with total number of deletions of four or more were retained.

RESULTS

Genome-wide CNV analysis was performed on 2319 individuals with
pathogenic BRCA1 pathogenic variants, including 1202 breast cancer
cases (1117 non-breast cancer affected) and 357 ovarian cancer cases
(1962 non-ovarian cancer affected), using published genotype data
from Illumina 610K SNP arrays.14 A total of 60 893 CNVs were called
across the study participants using four different algorithms
(PennCNV, QuantiSNP, GNOSIS and CNVPartition) that passed
the data quality threshold (see Methods and Materials). Of these,
89% and 94% CNVs were predicted by PennCNV and QuantiSNP,
respectively, compared with a lower prediction rate from GNOSIS
(35%) and CNVPartition (42%; Supplementary Table S4). The
average number of CNVs observed per individual was 26.3 (range
4–203) that ranged in size from 314 to 999 990 bases.

Table 1 Validation results from predicted deletions at gene loci for breast cancer risk, ovarian cancer risk and test CNVs

Validation

Gene locus MAF (array data) P-value Relative risk (95% CI)a Nanostring qPCR Present on CNV mapb

Breast cancer risk
FGFR1OP2 0.6% 0.0005 0.2 (0.1–0.38) 0% (0/3) — No

TM7SF3 0.5% 0.004 0.2 (0.09–0.45) 0% (0/3) — No

CALCRL 0.4% 0.006 4.13 (1.29–13.2) 0% (0/4) — No

TFPI 0.4% 0.006 4.13 (1.29–13.2) 0% (0/4) — No

GTF2H2 3.4% 0.01 0.64 (0.45–0.91) 33% (2/6) 66% (2/3) Yes

CPSF1 1.1% 0.02 2.03 (1.09–3.81) — 0% (0/3) No

SLCO1B1 0.9% 0.03 0.42 (0.23–0.78) 0% (0/4) — No

ALX1 0.2% 0.03 0.23 (0.06–0.94) 0% (0/3) — No

GRIN1 1.1% 0.03 0.51 (0.28–0.9) — 0% (0/3) No

ZNF385B 8.2% 0.04 0.79 (0.62–1.01) 100% (12/12) — Yes

ABR 1.0% 0.04 1.85 (0.96–3.56) — 0% (0/1) Noc

NAALADL2 7.80% 0.05 1.25 (0.96–1.62) — 100% (3/3) Yes

PSG5 3.20% 0.05 0.7 (0.48–1.03) — 100% (2/2) Yes

RER1 1.60% 0.05 1.69 (1.01–2.84) — 0% (0/2) No

Ovarian cancer risk
CYP2A7 3.4% 0.007 0.5 (0.2–1.27) — 100% (5/5) Yes

PTPRD 1.30% 0.01 0.4 (0.1–1.56) — 0% (0/3) Noc

DACH1 12.9% 0.02 1.57 (1.11–2.23) — 0% (0/9) No

UGT2A1 0.2% 0.03 0.28 (0–68.3) — 0% (0/1) No

C9orf140 1.0% 0.03 3.59 (1.52–8.46) — 0% (0/2) Noc

RAB43 1.90% 0.03 0.44 (0.2–1) — 0% (0/3) No

UAP1L1 1.00% 0.03 3.63 (1.53–8.53) — 0% (0/3) No

PTPRK 0.3% 0.04 0.45 (0.02–12.25) — 0% (0/2) No

APRT 1.1% 0.04 3.04 (1.38–6.72) — 0% (0/2) No

PRKG1 2.20% 0.05 0.49 (0.21–1.16) — 0% (0/3) No

OR2A1 1.20% 0.05 3.97 (1.7–9.29) — 100% (3/3) Yes

Test CNVsd

EPHA3 6.8% 0.14 1.19 (0.9–1.56) — 100% (5/5) Yes

CNTNAP3B 3.5% 0.79 1.05 (0.7–1.56) 0% (0/3) — Yes

NAIP 2.4% 0.11 0.71 (0.46–1.1) — 100% (4/4) Yes

ELP4 0.9% 0.63 0.84 (0.43–1.65) — 0% (0/3) No

Abbreviations: CI, confidence interval; CNV, copy-number variant; MAF, minor allele frequency; qPCR, quantitative PCR.
aApproximate relative risk values were calculated using the Score Test23.
bA copy-number variation map of the human genome (Zarrei et al).7
cCNV regions from the Zarrei et al7 map overlap the gene of interest but not the CNVs called by this study.
dBreast cancer risk for four test CNVs with MAF ranging from 0.9 (rare) to 6.8% (common) selected for technical validation.
Loci that were validated by Nanostring and/or qPCR assays are shown in bold.
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A total of 21 013 CNVs were predicted to overlap at least one
of 5848 different RefSeq genes across the study cohort. The
average number of CNVs overlapping genes per individual was 9.1
(range 1–107). Deletions overlapping genes were detected approxi-
mately three times as often than duplications (6.8 versus 2.2,
respectively). Interrogating the CNV calls from at least two algorithms
revealed a deletion overlapping the BRCA1 gene in 14 study partici-
pants (Supplementary Figure S1). In each case, the deletion was
confirmed by agreement with the results from the diagnostic BRCA1
germline genetic tests, supporting the use of two or more algorithms
to reduce the possibility of artifactual CNV calling and false
discoveries. However, CNV calling was unable to identify BRCA1
deletions overlapping five or more probes in eight pathogenic variant
carriers that had previously been identified by diagnostic testing.
These results therefore show a 100% detection specificity and a 64%
detection sensitivity for CNV calls across the BRCA1 gene region.
Two algorithms (PennCNV and QuantiSNP) dominated the CNV
calling in this region, with PennCNV alone detecting a deletion in 14
cases (Supplementary Figure S1). No further BRCA1 deletions were
identified using just one algorithm (data not shown).
Analysis of 5848 putative deletions delineated by gene regions

identified a total of 52 loci associated (at unadjusted Po0.05) with
breast cancer risk (Supplementary Table S6), and 72 CNV loci
associated with ovarian cancer risk for BRCA1 pathogenic variant
carriers (Supplementary Table S6). The top predicted CNV regions
associated with risk included FGFR1OP2 (RR= 0.20, P= 5× 10− 4)
and PABPC4L (RR= 0.22, P= 0.006) for breast and ovarian cancer,
respectively. Eight loci (PABPC4L, APBA2, FAM189A1, FUT7,
ENTPD2, NPDC1, C9orf139 and L1CAM) were associated with risks
for both breast cancer and ovarian cancer (Po0.05).
SNP arrays are well known for low accuracy when assessing CNVs,

compared with other platforms such as bacterial artificial chromosome
array and oligonucleotide arrays.25 We therefore attempted to validate
CNV regions using Nanostring technology, qPCR and data from the
recently published Human CNV Map.7 Twenty-nine predicted CNV
loci were selected for validation including the most common deletions
(41% frequency) found to be associated with breast or ovarian cancer
risk in the BRCA1 pathogenic variant carrier cohort. Eight of these 29
(28%) CNV loci were confirmed by qPCR and/or Nanostring analysis,
including four loci that were associated with breast cancer (GTF2H2,
ZNF385B, NAALADL2 and PSG5) and two loci that were associated
with ovarian cancer (CYP2A7 and OR2A1; Table 1). Nanostring
analysis of eight putative CNV loci from Table 1 (ZNF385B, CALCRL,
TFPI, GTF2H2, SLCO1B1 FGFR1OP2, TM7SF3 and ALX1) in 48 study
samples only found seven deletions not identified by the calling

algorithms, suggesting a low false negative rate (2% (7Nanostring calls/
352Negative bioinformatic calls); Supplementary Table S5). The strongest
association with a validated deletion was observed for ovarian cancer,
detected in 75/1962 (3.8%) unaffected carriers and 4/357 (1.1%)
affected carriers (RR= 0.50, P= 7×10− 3) overlapping the CYP2A7
locus (19q13.2; Supplementary Figure S2).
To assess the functional relevance of the validated CNV deletion

overlapping the CYP2A7 locus, the genomic landscape at this region
was investigated using publicly available genomic data from
ENCODE26 and the Roadmap Epigenomics Consortium27

(Figure 1). Examining data generated from normal ovarian tissue,
the CNV deletion coincided with enhancer-specific histone modifica-
tions (acetylation of H3 lysine 27 (H3K27Ac) and mono-methylation
of H3 lysine 4 (H3K4Me1)) and DNaseI hypersensitivity sites
representative of open chromatin. By contrast, there was no evidence
for these chromatin features in normal breast epithelial (HMEC) cells.
Cross-reference to super-enhancers annotated in the study by Hnisz
et al,28 found the CNV deletion overlapped an enhancer, found in
ovary tissue, predicted to affect the expression of EGLN2, located
~ 67 kb downstream of CYP2A7.
Zarrei et al7 recently published a Human CNV Map constructed

from multiple studies in the Database of Genomic Variants by
applying a clustering algorithm to define ~ 27 000 CNV regions with
high stringency. Comparing this stringent map with validated CNVs
from this study revealed a strong consensus. All eight CNV loci
validated in BRCA1 pathogenic variant carriers were present in the
published CNV Map, and only one CNV (CNTNAP3B) that was not
verified in our data was present in the CNV Map (Table 1). Using the
published Human CNV Map to support the existence of putative
CNVs from this association study identified deletions at nine
of 52 gene loci (17%) that are associated with breast cancer risk
(Supplementary Table S6), and 13 of 72 (18%) gene loci associated
with ovarian cancer risk (Supplementary Table S7). With the excep-
tion of the CYP2A7 locus (P= 0.007), all validated CNV regions
returned a modest association (P-values ranged from 0.01 to 0.049) for
ovarian or breast cancer risk. Validated CNVs ranged in allele
frequency from 0.2 to 7.8%.

DISCUSSION

Compared with SNPs, the contribution of CNVs to genetic variability
and breast and/or ovarian cancer risk is relatively unknown. This is the
first genome-wide CNV association study of BRCA1 pathogenic
variant carriers to identify CNVs that are associated with breast and/
or ovarian cancer risk, and the first implementation of the retro-
spective likelihood to CNV data. Our study used multiple CNV calling

Figure 1 Genomic landscape at the region containing the CNV deletion overlapping CYP2A7. The location of the CNV deletion and the enhancer predicted by
Hnisz et al28 to affect EGLN2 are shown by black bars. Histone modifications associated with enhancer elements (H3K27Ac and H3K4Me1) and DNAseI
hypersensitivity sites (HSs) for normal ovarian tissue and normal breast epithelial cells (HMECs) from Roadmap Epigenomics Consortium and ENCODE are
depicted by histogram tracks.
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algorithms with the aim of increasing the sensitivity and specificity of
CNV detection. Initial assessment of known deletions overlapping the
BRCA1 gene indicated 100% detection specificity and 64% detection
sensitivity. This assessment also showed that all 14 CNVs identified at
BRCA1 were called by two or more calling algorithms, setting the
calling criteria for the remainder of the study. However, validation of
29 predicted CNVs throughout the genome confirmed o30% of
predicted deletions, highlighting a large number of false variant calls.
None of the nine rare variants (o1% allele frequency) chosen for
validation was verified by qPCR or Nanostring. However, CNV calling
correctly predicted 40% (8/20) deletions we tested which ranged in
allele frequency from 1.2 (OR2A1 locus) to 8.2% (ZNF385B locus).
These results confirm other published reports that indicate array-based
CNV data can be unreliable without further validation using ancillary
technologies, such as qPCR.25 The accuracy may be increased by
employing more stringent criteria but likely at the expense of detection
sensitivity. For example, a larger number of probe markers could be
used to generate a CNV call, but this approach will also reduce the
spatial resolution of the array and sensitivity. PennCNV algorithm
called ~ 90% of variants assessed in this study including all the
deletions that were detected across BRCA1 in 14 cases. These data
suggest that the combination of four algorithms for generating
putative CNV information may not have been a vast improvement
over using PennCNV alone.
Our study focused on genomic deletions that overlapped gene

regions, as this approach provided functionally important genomic
regions for comparing CNV calls. A notable finding was an association
of a CNV deletion at the CYP2A7 locus (19q13.2) with decreased
ovarian cancer risk (RR= 0.50, P= 0.007). To our knowledge, this
locus has not previously been associated with cancer risk from SNP-
based or CNV-based genome-wide association studies and requires
further investigation. CYP2A7 encodes a member of the cytochrome
P450 superfamily of enzymes, although the substrate(s) for this gene
have not yet been determined. The deletion variant in this region may
also affect the regulation of a nearby gene CYP2A6,29 which is known
to have a key role in the metabolism of a number of substrates
including nicotine, coumarin and valproic acid.30 Interestingly, a
deletion at the CYP2A6 locus has been found to be associated with
decreased risk of lung cancer in Asian smokers,31 which is comparable
to our finding that CYP2A7 deletions were more frequent in non-
affected high-risk BRCA1 pathogenic variant carriers compared with
those with ovarian cancer (MAF—3.8% versus 1.1%). Examining
published data from The Cancer Genome Atlas showed that ~ 40% of
high-grade serous ovarian tumors, including 6% BRCA1 pathogenic
variant carriers, exhibited somatic hemizygous deletions overlapping
CYP2A7.32 Moreover, these deletions correlated with a reduced
expression level compared with copy neutral CY2A7 (Supplementary
Figure S5). These data indicate that, although a germline deletion of
CYP2A7 may protect against initiation of ovarian cancer in the context
of a BRCA1 germline pathogenic variant, somatic deletions of CYP2A7
may be important for the ovarian cancer development or progression.
Analysis of chromatin features from normal ovary tissue at the

CYP2A7 genomic region shows that the CNV deletion coincides with
chromatin marks consistent with an enhancer element. Interestingly,
there was no evidence of similar features in normal breast epithelial
cells, suggesting a tissue-specific feature. These results are concordant
with the association of this CNV deletion with ovarian, and not breast,
cancer risk in this cohort. Cross-reference of this region to the catalog
of enhancers compiled by Hnisz et al28 found the CNV deletion
overlaps a putative enhancer in ovarian tissue. This enhancer is
predicted to affect expression of EGLN2, which encodes an enzyme

involved in oxygen homeostasis. Further biological experiments are
required to delineate the mechanism underlying the observed associa-
tion between the CNV deletion and ovarian cancer risk. Importantly,
although we prioritized CNVs for analysis based on overlap with
coding genes, our findings suggest that intergenic CNVs could confer
risk by altering regulatory elements. Therefore, future analyses
integrating chromatin features into the CNV selection process
could identify other CNVs, missed in this analysis, associated with
cancer risk.
Confirmed deletions overlapping a total of nine gene loci were

found associated with breast cancer risk, and a total of 13 gene loci
associated with ovarian cancer risk in BRCA1 pathogenic variant
carriers (Supplementary Table S5). GTF2H2 (5q13.2) is a transcription
factor with a role in the nucleotide excision repair (NER) pathway,33

a DNA repair pathway that is disrupted in BRCA1-associated breast
cancers. Deletions overlapping GTF2H2 are associated with decreased
risk of breast cancer, suggesting that disruption of NER may be
protective against the biological consequences of a BRCA1 pathogenic
variant. The potential biological effect of the remaining deletions is
unclear.
Genetic associations identified by this study included rare (o1%

MAF) and polymorphic (41% MAF) deletions that occurred at
relatively low frequency (o10%) within the study cohort. Notably, no
deletion polymorphism was observed overlapping the APOBEC3 locus,
which has previously been associated with risk of both breast and
ovarian cancer.11–13 This might be expected as the Illumina 610k array
contains only two probes across the CNV region located between the
fifth exon of APOBEC3A and the eighth exon of APOBEC3B so the
variant is unlikely to be detected.12 Although this study identifies
CNVs in BRCA1 pathogenic variant carriers, the low frequency of
CNVs (all o10% in this study) and sample size limits the power to
detect association in this study, in particular no associations reported
here are significant after controlling for a false discovery rate of 0.05.34

Replication of CNVs identified by this study using larger data sets will
be required to verify these associations. Moreover, larger cohort sizes
will facilitate more detailed analyses to be performed, such as
competing risks analyses to evaluate the associations with breast
and ovarian cancer risks simultaneously. Importantly, genotyping
data currently being derived by the large Oncoarray Network contain-
ing DNA samples from ~20 000 BRCA1 pathogenic variant
carriers (http://epi.grants.cancer.gov/oncoarray/) will enable additional
genome-wide CNV analysis and further assessment of candidate gene
regions identified by this study.
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