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Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1–7 produced by the renin angiotensin
system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the
review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1–7 receptor on the
basis of lack of classical G protein signalling and desensitization in response to angiotensin 1–7, as well as a lack of consensus on
confirmatory ligand pharmacological analyses. A review of recent publications (2013–2016) on the rapidly progressing research
on angiotensin 1–7 revealed that MAS1 and two additional receptors can function as ‘angiotensin 1–7 receptors’, and this de-
serves further consideration. In this review we have summarized the information on angiotensin 1–7 receptors and their crosstalk
with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the
receptors for angiotensin II and angiotensin 1–7 make up a sophisticated cross-regulated signalling network that modulates the
endogenous protective and pathogenic facets of the renin angiotensin system.
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Introduction
The classical renin angiotensin system (RAS) regulates (i) the
production of the hormone angiotensin II (AngII) from
angiotensinogen, which involves renin and angiotensin
converting enzyme 1 (ACE1), and (ii) the initiation of the
homeostatic physiological response to AngII, predominantly
through the AngII type 1 (AT1) receptor (Karnik et al., 2015;
Singh and Karnik, 2016). Both the production and cellular
actions of this octapeptide hormone are critical body func-
tions, because deletion of genes for either angiotensinogen
or the AT1 receptors increases mortality in mice (Tsuchida
et al., 1998; Doan et al., 2001). In humans, clinical applica-
tion of RAS blockers does not necessarily lower AngII, instead,
an increase in tissue and circulating AngII levels is observed,
suggesting that their therapeutic effects are probably due to
metabolized AngII products. The presumptive therapeutic
messenger of RAS is the heptapeptide metabolite, Ang(1–7).
Ang(1–7) has been characterized as an antagonist of the path-
ophysiological effects of AngII (Ferrario et al., 1991; Iyer et al.,
1998). Subsequently, the mono-carboxypeptidase ACE2
(Lemos et al., 2002; Ren et al., 2002) was shown to be the
major enzyme producing Ang(1–7) in vivo from proteolysis
of AngII. These discoveries led to the bifurcation of RAS with
the addition of a new ACE2 arm (Figure 1), which produces
Ang(1–7). ACE2 has been shown to cleave multiple peptide
substrates and play a role in amino acid uptake in the gut.
Moreover, ACE2-knockout mice have been extensively used
to elucidate the in vivo functions of Ang(1–7). Recent studies
have demonstrated that increasing ACE2 in tissues
up-regulates levels of Ang(1–7), which are directly associated
with a reduction in the progression of neuronal, renal and
cardiovascular diseases including pulmonary arterial hyper-
tension (PAH). Thus, the ACE2/Ang(1–7) axis may have
evolved to counterbalance the pathophysiological effects of
overactivation of the classical ACE1/AngII axis in vivo

(Bradford et al., 2010; Ahmad et al., 2011; de Kloet et al.,
2013; Jiang et al., 2014a,b). Characterization of receptor com-
ponents of the ACE2/Ang(1–7) axis, however, is unfinished
and currently in progress.

The finding that the GPCR, MAS (also called MAS1) medi-
ates some of the actions of Ang(1–7) was a breakthrough in
unravelling the body’s response mechanism to Ang(1–7)
(Santos et al., 2003). Initially MAS1 was discovered as a
growth promoting GPCR (Young et al., 1986; Janssen et al.,
1988; Dean and Boynton, 1990; van’t Veer et al., 1993) and
was erroneously proposed as a receptor for AngII and AngIII;

Tables of Links

TARGETS

GPCRsa Enzymesb

AT1 receptor ACE1

AT2 receptor ACE2

B1 receptor p70S6K

B2 receptor Renin

MAS1 receptor Other protein targetsc

MRGPRD (MrgD) receptor TNF‐α

LIGANDS

AngI CGEN‐857

Ang(1‐9) GDNF

AngII ICAM‐1

AngIII IGF‐1

Ang(1‐7) IL‐1β

Alamandine MBP7

Arachidonic acid MCP‐1 (CCL2)

AR234960 Neuropeptide FF

AR244555 PD123319

AVE 0991 TGFβ1

cAMP VCAM‐1

CGEN‐856

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (a,b,cAlexander et al., 2015a,b,c).

Figure 1
The RAS including the novel ACE2/Ang(1–7) axis.
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but this assignment was later withdrawn (Jackson et al., 1988;
Jackson and Hanley, 1989; McGillis et al., 1989; Sasamura
et al., 1992). This time around, the investigations showed
that Ang(1–7) elicited arachidonic acid release in
MAS1-transfected cells. Mas1 gene deleted mice are normal,
but the binding of Ang(1–7) in their kidney slices is
abolished, Ang(1–7)-induced relaxation response in the aorta
is lost and the antidiuretic action of Ang(1–7) after an acute
water load is abolished (Santos et al., 2003). Mas1 gene-null
mouse tissues and organs respond poorly to Ang(1–7)
(Walther et al., 1998; Fraga-Silva et al., 2008; Santos et al.,
2008; Mario et al., 2012). However, independent laboratories
have reported a lack of MAS1 receptor signalling in response
to Ang(1–7) and a lack of evidence for direct Ang(1–7)
binding to theMAS1 receptor (Bikkavilli et al., 2006; Shemesh
et al., 2008; Zhang et al., 2011; Tirupula et al., 2014a). There is
evidence in the literature for additional receptors mediating
the effects of Ang(1–7) (Figure 2). For example, the AT2 recep-
tor was shown to bind Ang(1–7) (De Souza et al., 2004;
Walters et al., 2005) and Ang(1–7) signals through AT2 recep-
tors in some studies (Jones et al., 2011; Sipahi et al., 2011;
Ohshima et al., 2014), although this is not replicated in all
settings (Lautner et al., 2013; Mendonca et al., 2014; Tetzner
et al., 2016). De-orphanization efforts on the MAS1-related
GPCR (MRGPR) family have uncovered potential new recep-
tors for consideration in the ACE2/Ang(1–7) pathway
(Gembardt et al., 2008; Solinski et al., 2014). Functional
studies indicate that the MRGPRD (MrgD) receptor mediates
acute and persistent responses to Ang(1–7) and its metabolite
alamandine in target tissues akin to those produced by MAS1
receptors (Habiyakare et al., 2014; Wilson et al., 2015;
Tetzner et al., 2016).

The confusing pharmacology and transduction modali-
ties for MAS1, the awareness of ligand-promiscuity among
MRGPRs and evidence of MRGPRs responding to other angio-
tensin metabolites (Bader et al., 2014) have delayed a conclu-
sive designation of MAS1 receptors and other candidate
MRGPR receptors as the Ang(1–7) receptor by the
IUPHAR/BPS subcommittee (Karnik et al., 2014; 2015; Singh
and Karnik, 2016). In addition, the classification in Pharmaco-
logical Reviews (Davenport et al., 2013; Solinski et al., 2014)
and the IUPHAR/BPS guide to pharmacology Database
(http://www.guidetopharmacology.org/) have included
MAS1 and MRGPRD (MrgD) in the list of ‘orphan’ GPCRs
for which pairing with the endogenous ligand(s) is inconclu-
sive. The aim of this review is to provide the present status of
the field of candidate Ang(1–7) receptors, with focus on
recent important findings and particularly the challenges
for future research.

The progress in coupling Ang(1–7)
functions with MAS1 receptors
MAS1 was originally identified as the oncogenic GPCR in skin
cancer cell lines and is currently catalogued under a group of
∼40 orphan MRGPRs by the HUGO gene nomenclature
committee and the IUPHAR/BP database (Monnot et al.,
1991; Dong et al., 2001; Gembardt et al., 2008; Tirupula
et al., 2014b). Tissue distribution of the MAS1 receptor is
ubiquitous; it is abundantly expressed in the brain and testes
whereas its expression is low in the heart, kidneys, lungs,
vasculature, adipose tissue and skeletal muscle. The MAS1
receptor may regulate many vital body functions and its

Figure 2
A current view of the three receptors proposed to signal in response to Ang(1–7). MrgD receptor is also known as MRGPRD receptor.
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dysfunction may lead to various pathologies. There is emerg-
ing evidence suggesting an important role for Ang(1–7)’s
interaction with MAS1 receptors in the function of the brain
as well as that of multiple organs including the kidney, heart,
vasculature, skeletal muscle, retina and the liver. MAS1 is a
constitutively active GPCR; hence, changes in MAS1 expres-
sion levels could affect signalling pathways and thus may
function without requiring a ligand. However, the MAS1
receptor is reported to bind various endogenous ligands in-
cluding Ang(1–7), alamandine and neuropeptide FF (NPFF)
and dimerize with other GPCRs (Figure 2). However, the
physiological significance of these diverse mechanisms
remains unclear. In this section, we summarize findings pub-
lished in past 3 years ending August 2016 on the physiology
and pathology involving MAS1 receptors linked to the
ACE2/Ang(1–7) pathway (Bader, 2013; Solinski et al., 2014;
Karnik et al., 2015). In reviewing recent functional studies
on MAS1 receptors, we have tried to limit the inclusion of
observations supported by a single publication. We have
strived, in vain, to find unequivocal pharmacological
evidence for a formal adoption of the MAS1 receptor as the
Ang(1–7) receptor.

The promise of novel therapeutic approaches targeting
the ACE2/Ang(1–7) axis appears to be the major impetus for
the continuing interest in MAS1 functions in the brain for
treatment of ischaemic stroke and cerebrovascular diseases
(see Figure 1). Enhancing systemic ACE2/Ang(1–7) axis is
thought to attenuate the development of hypertension and
the pathological progress of atherosclerosis and prevent
thrombogenic events, whichmay contribute to a reduced risk
of ischaemic stroke, a reduction in cerebral infarct size and
amelioration of neurological deficits; these are thought to
be mediated through its antioxidative and anti-inflammatory
effects. Excellent reviews that highlight these topics are
available (Bader, 2013; Jiang et al., 2013; Montezano et al.,
2015; Silva and Pinheiro, 2015; Bennion et al., 2015a,b;
Colafella et al., 2016; Machado-Silva et al., 2016; Simoes
and Teixeira, 2016)

The neuroprotective effects mediated by enhancing ACE2
or Ang(1–7) in ischaemic and haemorrhagic stroke have
spurred interest in neuroprotective mechanisms of MAS1 in
the clinical setting. The expression of ACE2 and MAS1 recep-
tors are up-regulated after acute cerebral ischaemic stroke in
rats (Lu et al., 2013). Also a deficiency in MAS1 receptors has
been found to exacerbate cerebral and systemic inflammation
in mice (Oliveira-Lima et al., 2015). In stroke-prone sponta-
neously hypertensive rats, a haemorrhagic stroke model,
centrally administered Ang(1–7) increased the survival of
the rats, suggesting that theMAS1 receptor is a potential ther-
apeutic target in haemorrhagic stroke (Sumners et al., 2013;
Regenhardt et al., 2013a,b). When Ang(1–7) is injected into
regions of the hypothalamus that control cardiovascular
function, the BP is reduced. However, Ang(1–7) injection into
the rostral ventrolateral medulla increases BP. It has been
suggested that Ang(1–7) has a critical role in the control of
baroreflex sensitivity and hypothalamic noradrenergic
neurotransmission during the development of hypertension
(Gironacci et al., 2014; Bennion et al., 2015a,b). Cerebral
damage is enhanced in mice overexpressing human renin
and angiotensinogen and experimental ischaemic stroke
induced in brain slices from these mice in vitro by oxygen

and glucose deprivation caused tissue swelling, which was
associated with the production of ROS and cell death. When
these mice were treated with Ang(1–7) the damaging effects
were reduced and treatment with the MAS1 antagonist
A-779 eliminated this protective effect of Ang(1–7)
(Regenhardt et al., 2013c; Zheng et al., 2014a). Infusion of
Ang(1–7) induces cerebral ischaemic tolerance by promoting
brain angiogenesis in a MAS1/eNOS-dependent pathway
which is reversed by the specific MAS1 antagonist A-779
(Jiang et al., 2014a,b; Zheng et al., 2014b). The mortality rate
due to rupture of intracranial aneurysms inmice is reduced by
intracranial injection of Ang(1–7) (Pena Silva et al., 2014). IN
diabetic rats Ang(1–7) treatment up-regulates the expressions
of GFAP and GDNF promoting neuron survival in the hippo-
campus, and this effect was blocked by treatment with A-779
(Zhang et al., 2015a). In chronic neurogenic hypertension
microglial activation and the production of pro-
inflammatory cytokines, IL-1β and TNFα, and the anti-
inflammatory cytokine IL-10 can be abolished by Ang(1–7).
In contrast the MAS1 antagonist A-779 enhances inflamma-
tion and microglial activation suggesting that ‘neurogenic’
hypertension may be targeted by MAS1 (Liu et al., 2015).

The overexpression of ACE2 in the brain was found to
activate central MAS1-induced spontaneous postsynaptic
inhibitory currents, indicative of presynaptic GABA release
onto pyramidal neurons, which reduced anxiety-like behav-
iour in mice; the MAS1 antagonist A-779 eliminated this
effect. Furthermore, centrally administering A-779 abolished
the anxiolytic phenotype in ACE2-null mice (Oscar et al.,
2014; Fontes et al., 2015; Wang et al., 2016). Indeed, activa-
tion of the brain Ang(1–7)/MAS1 axis in hypertensive trans-
genic (mRen2)27 rats lowered BP and attenuated cardiac
remodelling by improving the autonomic balance (Kangussu
et al., 2015). In female rats, central Ang(1–7) protects against
aldosterone/NaCl-induced hypertension, by decreasing heart
rate and renal sympathetic nerve activity (Xue et al., 2013). In
Sprague–Dawley rats, Ang(1–7) injected into the nucleus
tractus solitarii (NTS) decreases BP, heart rate and renal
sympathetic nerve activity through the generation of NO
(Wu et al., 2015).

Ang(1–7) mediated MAS1 activation has been evaluated
as an antinociceptive intervention. Treatment with
Ang(1–7) significantly attenuated bone pain suggesting it
could be used in the relief of excruciating pain in advanced
stage cancer patients (Forte et al., 2016). Intraplantar periph-
eral hyperalgesia induced by PGE2 was reversed by a low-dose
of Ang(1–7) (Costa et al., 2014; Nemoto et al., 2014; Castor
et al., 2015).

In animal studies and in small human subgroups, treat-
ments selectively targeting different components of the RAS
are changing the perspectives for the prevention of the path-
ophysiology of heart failure and coronary atherothrombosis.
In renal arteries from diabetic patients, ex vivo Ang(1–7)
treatment reduced oxidative stress (Zhang et al., 2015b). The
central ACE2/Ang(1–7) axis is a key player in the regulation
of sympathetic outflow in chronic heart failure (Zucker
et al., 2014), the risk of adverse cardiovascular events in
response to acute emotional stress (Martins Lima et al.,
2013; Xing et al., 2014), and also cellular hypertrophy and
myofibroblast transformation (Alzayadneh and Chappell,
2014). Vascular sympathetic modulation mediated through
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the ACE2/Ang(1-) axis is well-documented (Rabello Casali
et al., 2016). These studies indicate that Ang(1–7) is involved
in producing NO through MAS1, which contributes to the
variations in heart rate in the autonomic modulation of arte-
rial pressure and cardiovascular regulation (Abwainy et al.,
2015; da Silva et al., 2015; Zhang et al., 2015c). An increased
expression of the ACE2/Ang(1–7) axis is observed in
hyperthyroidism-induced cardiac hypertrophy (Diniz et al.,
2015) and in a pressure overloaded rat model (Liang et al.,
2015a,b). In an acute atrial tachycardia canine model,
Ang(1–7)/MAS1/PI3K/Akt/NO/atrial natriuretic peptide
prevented acute electrical remodelling (Zhao et al., 2014).
Cardioprotection by Ang(1–7) against AngII-induced cardiac
remodelling through inhibition of cardiomyocyte autophagy
is also reported (Lin et al., 2015). Pharmacological blockade or
genetic deletion of MAS1 attenuates physiological cardiac
hypertrophy that can occur during pregnancy (Carmos-Silva
et al., 2016). Treatment with Ang(1–7) reduces inflammation
in carotid atherosclerotic plaques (Fraga-Silva et al., 2014).
Long-term administration of Ang(1–7) prevents inflamma-
tion and pathological remodelling of the heart and lung in a
mouse model of type 2 diabetes (Hao et al., 2015; Papinska
et al., 2016). Ang(1–7) reverses hyperglycaemia and its conse-
quences in an animal model of type 2 diabetes (Santos et al.,
2013). Ang(1–7) regulates insulin secretion through a
MAS-dependent cAMP signalling pathway (Sahr et al., 2016).

Analysis of muscular expression of various components of
the RAS in patients with achalasia has shown the existence of
local RAS in human oesophageal and skeletal muscle. In the
epithelium of patients with healthy and acid reflux-exposed
human oesophageal mucosae, the expression of RAS compo-
nents, particularly ACE2, ACE, AT1 and AT2 receptors and
MAS1, was reported to vary (Bjorkman et al., 2012). In
patients with achalasia, a shift in receptor physiology from
AT1 receptor to MAS1 receptor is reported (Casselbrant et al.,
2014). The healing of pre-existing gastric ulcers is associated
with an up-regulation of Ang(1–7), MAS1, NO, prostaglan-
dins and pro-inflammatory cytokines and a decreased expres-
sion of AT1 receptors has been observed during the local
vascular and metabolic effects associated with gastric ulcer
healing (Pawlik et al., 2016). The gastric mucosal protection
mechanism involves a similar scenario (Brzozowski, 2014;
Lu et al., 2014). After the induction of experimental colitis,
the colonic expression of ACE2, Ang1–7 and MAS1 was
enhanced and daily Ang(1–7) treatment significantly reduced
colitis, whereas administration of A-779 significantly
increased colitis (Khajah et al., 2016).

In skeletal muscle, RAS activation induces insulin resis-
tance and impairs glucose uptake, which is counterbalanced
by actions of the ACE2/ANG(1–7)/MAS1 axis (Henriksen
and Prasannarong, 2012). Ang(1–7) affects muscle microvas-
culature and enhances insulin’s metabolic action via the
MAS1 receptor (Fu et al., 2014). Chronic oral administration
of Ang(1–7) has been shown to improve skeletal muscle insu-
lin sensitivity, and autonomic and locomotor phenotypes in
muscular dystrophy (Echeverria-Rodriguez et al., 2013;
Gomes-Santos et al., 2014; Sabharwal et al., 2014; Morales
et al., 2014a,b). Endotoxin-induced skeletal muscle wasting
can be prevented by Ang(1–7) through a p38 MAPK-
dependent mechanism. Ang(1–7) prevents the decrease in
the diameter of myofibres and myotubes, and decrease in

muscle strength induced by LPS. These effects were reversed
by the MAS1 receptor antagonist A-779 (Cabello-Verrugio
et al., 2015; Morales et al., 2015). Ang(1–7) reduces
myonuclear apoptosis during recovery from AngII-induced
skeletal muscle atrophy in mice (Meneses et al., 2014), and
attenuates signalling involving TGF-β both in vitro and
in vivo (Morales et al., 2014a,b). The oral administration of
Ang(1–7) in amousemodel of Duchennemuscular dystrophy
(DMD) normalized skeletal muscle architecture, decreased
local fibrosis and improved muscle functions. These effects
are mediated through inhibition of TGF-β Smad signalling
(Acuna et al., 2013). Ang(1–7) could contribute to weight gain
in this model (Schuchard et al., 2015).

Recent reviews on kidney diseases discuss new research
elucidating the role of ACE1 and ACE2 in haemodialysis
patients, which may aid the development of targeted thera-
pies that slow the progression of chronic kidney and cardio-
vascular diseases (Carey, 2015; Malik and Raizada, 2015;
Oparil and Schmieder, 2015; Te Riet et al., 2015). The anti-
inflammatory effects of Ang(1–7) could ameliorate high fat
diet-induced renal injury. The administration of Ang(1–7) sig-
nificantly improved the inflammatory status, down regulated
LDLr, SREBP2 and SCAP, and then, decreased the deposits of
lipid in the kidney and improved renal injury (Olivon et al.,
2015; Zheng et al., 2015b). An up-regulation in the expres-
sion of ACE2/AT2 receptors and MAS1 receptors in diabetic
mice is associated with the renoprotective effects of
candesartan in db/db mice suggesting that the ACE-2/
Ang(1–7) axis can be a therapeutic target for diabetes-induced
hypertension and renal damage (Callera et al., 2016; Padda
et al., 2016). The endothelial progenitors may be
dysfunctional in diabetic mice. In patients with diabetes,
Ang(1–7) overexpression by lentiviral delivery restored both
the in vitro vaso-reparative functions and the in vivo homing
efficiency of the peripheral blood CD34+ cells to areas of
ischaemia compared with those of nondiabetic controls. In
a cohort of patients who had higher expression of
ACE2/MAS1 receptors than diabetic patients, the
development of CD34+ cell dysfunction was reduced. Thus,
activating the ACE2/Ang(1–7)/MAS1 receptor axis could
overcome endothelial dysfunction and enhance the
reparative function of endothelial progenitors (Jarajapu
et al., 2012; Singh et al., 2015).

The expression of MAS1 receptors and other components
of the renin-angiotensin system were shown in the human
eye, suggesting that MAS1 receptors may have a role in phys-
iological and pathological processes in the eye and in the
retina (Vaajanen et al., 2015). The expression and cellular lo-
calization of MAS1 receptors in the adult and developing
mouse retina is also documented (Prasad et al., 2014) the
activation of intrinsic ACE2 has been shown to have anti-
glaucomatous effects (Foureaux et al., 2013). Several indepen-
dent reports suggest that deletion of ACE2 leads to vascular
diseases (Thomas et al., 2010; Thatcher et al., 2011; Sahara
et al., 2013; Rabelo et al., 2016). Furthermore, the MAS axis
may be an interesting therapeutic target for multiple sclerosis
and atherosclerosis (Hammer et al., 2016) and hypothermia
(Souza et al., 2014). Activation of MAS could be an important
target for the chronic hepatic and metabolic alterations
during atherosclerosis (Silva et al., 2013). An impairment of
the Ang(1–7)/Mas receptor pathway may lead to a worsening
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of the pathophysiological changes in asthma (Magalhaes
et al., 2016).

Experimental model studies
Central Ang(1–7) treatment of hypertensive (mRen2)27
transgenic rats attenuates the anxiety and depression-like
behaviour in these animals (Almeida-Santos et al., 2016;
Wang et al., 2016). In a chronic constriction injury rat model,
intrathecal administration of Ang(1–7) relieves, whereas
A-779 aggravates injury-induced neuropathic pain (Zhao
et al., 2015). The MAS1-null mice may serve as an animal
model to study post-traumatic stress disorder. Ang(1–7)/
MAS1 axis deficits may accelerate memory extinction in the
MAS1-null mice (Lazaroni et al., 2015). In a mouse model of
Alzheimer’s disease, i.c.v. infusion of Ang(1–7) ameliorated
the cognitive impairments and memory dysfunction
(Uekawa et al., 2016). In models of Alzheimer’s and
Parkinson’s diseases, Ang(1–7) activity correlates with tau
hyperphosphorylation (Wright et al., 2013; Jiang et al.,
2015). The Ang(1–7)/MAS1 axis affects the proliferation of
the population of doublecortin positive cells within the
dentate gyrus and the piriform cortex. A deficiency of MAS1
in the null mice increases the number of DCX-positive young
neurons, suggesting that blockade of MAS1 might be
beneficial in stimulating neurogenesis in adults (Freund
et al., 2013).

Ang(1–7) counteracted the inflammation involved in
vascular remodelling and haemorrhagic stroke in cerebral
micro vessels by affecting the NFкB-mediated expression of
TNF-α, MCP-1 and IL-8 (Bihl et al., 2015). The cardiomyopa-
thy and diastolic dysfunction in diabetic (db/db) mice is
ameliorated by Ang(1–7) (Mori et al., 2014). Long-term
administration of Ang(1–7) prevents heart and lung dysfunc-
tion in db/dbmice (Papinska et al., 2016). In Ren-2 transgenic
rats exposed to chronic hypoxia, intrapulmonary activation
of the ACE2/Ang(1–7)/MAS1 axis attenuates pulmonary
hypertension (Hampl et al., 2014). In an acute lung injury
model, Ang(1–7) attenuates lung fibrosis (Chen et al., 2013).
The ACE2/Ang(1–7)/MAS1 axis inhibits the MAPK/NF-κB
pathway to protect against lung fibrosis (Meng et al., 2013).
In a rat model of neonatal hyperoxia-induced lung injury,
MAS1 and AT2 receptor agonists attenuate cardiopulmonary
disease (Wagenaar et al., 2013). In a model of chronic allergic
lung inflammation, Ang(1–7) attenuates lung inflammation,
airway remodelling and hyperresponsiveness (Magalhaes
et al., 2015; Murugan et al., 2015). Deletion of the MAS1 gene
significantly increased intimal proliferation, increasing the
aortic intima : media ratio, which promotes atherogenesis
(Alsaadon et al., 2015).

The role of RAS has been examined in models of liver
disease model, so as to evaluate it as a target for the treatment
and prevention of liver dysfunction (Moreira de Macedo
et al., 2014). The ACE2/Ang(1–7)/MAS1 axis activates Akt sig-
nalling to ameliorate hepatic steatosis. Deletion of the ACE2
gene aggravates liver steatosis and insulin resistance,
increases the expression of hepatic lipogenic genes and
decreases the expression of fatty acid oxidation genes in mice
(Cao et al., 2016). In ACE2 knockoutmice, Ang(1–7) alleviates
insulin resistance and oxidative stress (Cao et al., 2014).

In a model of acute reflux oesophagitis, Ang(1–7) exerts a
protective effect on the oesophagus through the involvement
of NO, sensory nerve hypoxia-inducible factor-1α and pro-
inflammatory cytokines IL-1β and TNF-α (Pawlik et al.,
2015). In an acetic acid-induced gastric ulcer model,
Ang(1–7) accelerates the healing of pre-existing gastric ulcers
by increasing the macro- and microcirculation, which
increases gastric tissue oxygenation. Blockade of MAS1 recep-
tors by A-779 abolishes this healing effect of Ang(1–7) medi-
ated by PGs and NO, and increases the expression of the
antioxidizing enzyme SOD 2 and cytokines IL-1β and TNF-α
(Pawlik et al., 2016). Ang(1–7) attenuates disuse atrophy in
skeletal muscle. The classical RAS is activated in the
immobilized hind limb of C57BL6 mice and Ang(1–7) treat-
ment increased anti-atrophic signalling by IGF-1/IGFR-1/
Akt/p70S6K and FoxO3. These effects of Ang(1–7) were not
observed in MAS1 knockout mice (Morales et al., 2016).
Ang1–7 restored muscle strength in dystrophic muscles
through the inhibition of TGF-β signalling in a mouse model
of Duchenne muscular dystrophy (Morales et al., 2016).

Kidney injury caused by unilateral ureteral obstruction
(UUO) in a Sprague–Dawley rat model of nephropathy was
attenuated by Ang(1–7). Renal tubulointerstitial apoptosis,
expression of profibrotic proteins, pro-apoptotic proteins
and (TGF)-β1/Smad signalling, were reduced by Ang(1–7)
treatment. Treatment with A-779 and MAS1 receptor siRNA
enhanced Ang II-induced apoptosis and fibrosis (Kim et al.,
2015). Ang(1–7) normalizes renal ACE2 and MAS1 receptor
expression in Type 1 diabetic Akita mice (Shi et al., 2014).
Ang(1–7) attenuates the progression of streptozotocin-
induced renal injury, and this is accompanied by a decreased
expression of collagen IV, TGF-β1, VEGF, NOX4, p47phox,
PKCα and PKCβ1, and the phosphorylation of Smad3 (Zhang
et al., 2014). Ang(1–7) modulates renal vascular resistance
through inhibition of p38 MAPK in apolipoprotein
E-deficient mice (Potthoff et al., 2013).

Confusing evidence
The results of the studies summarized above support the
identification of MAS1 as the receptor mediating the in vivo
effects of Ang(1–7). This designation is primarily based on
the loss of Ang(1–7)-mediated functional responses in
MAS1-null animal models and the antagonism of MAS1-
regulated physiology by the specific antagonist, A-779
(Santos et al., 1994; 2003). In some studies, surrogate MAS1-
specific agonists AVE0991 (Wiemer et al., 2002) and
CGEN-856S (Shemesh et al., 2008) and another antagonist
and D-Pro7-Ang(1–7) have been used, but not regularly. How-
ever, a direct assessment of the functional effects of Ang(1–7)
in different vascular tissues in humans, rats and various dis-
ease models has raised some concerns regarding the pairing
of Ang(1–7) with the MAS1 receptor. In a recent study, the
therapeutic potential of Ang(1–7) for the treatment of PAH
was found to be limited as opposed to the huge benefits
reported in other models of cardiovascular diseases. The effec-
tiveness of Ang(1–7) and a stable, cyclic analogue, cAng(1–7),
was found to be limited in a rat experimental monocrotaline
(MCT) model of PAH. Treatment reduced right ventricular
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systolic pressure, but this reduction was<50% and not signif-
icant (Breitling et al., 2015).

In humanmammary artery (HMA) samples obtained from
patients undergoing coronary revascularization surgery,
MAS1 expression was confirmed in endothelium. Also, acute
Ang(1–7) treatment attenuates the AngII-induced constric-
tion of HMA explants. Unexpectedly, pre-incubation with
the specific MAS1 antagonist A-779 did not abolish this effect
of AngII. Furthermore, the Ang(1–7) effect observed in HMA
was not altered by the AT2 receptor antagonist PD123177,
indicating a pharmacologically distinct receptor in HMA
(Mendonca et al., 2014).

In the cirrhotic rat liver Ang(1–7) induces a vasodilator
response and the activation of endothelial NOS (eNOS) by
phosphorylation. This effect of Ang(1–7) was not blocked by
MAS1-selective antagonist A-779 or by blockade of AT1, AT2

and bradykinin B2 receptors. Unexpectedly, the observed
Ang(1–7) effects were not reproduced by MAS1-selective
agonist AVE0991. However, the D-Pro7-Ang(1–7) analogue
antagonized all the functional effects of Ang(1–7). These find-
ings suggest that the Ang(1–7)-induced beneficial effects in
cirrhosis are mediated by receptors that are pharmacologi-
cally distinct from the MAS1 receptor (Herath et al., 2012).
In the splanchnic vessels of patients and rat cirrhosis model
similar observations were reported (Grace et al., 2013).
Pharmacological evidence for the existence of a distinct
Ang(1–7) receptor was obtained in the aorta from
Sprague–Dawley rats, also the Ang(1–7)-induced vasodilator
effect was not blocked by A-779, but was specifically
abolished by D-Pro7-Ang(1–7) (Silva et al., 2007). Altogether,
these findings indicate the existence of an Ang(1–7) receptor
that is not sensitive to A-779.

MAS1-related GPCR MRGPRD (MrgD)
coupling with Ang(1–7)/alamandine
Characterization of the MAS1-related GPCR (MRGPR)
subfamily may help better understand the confusion as
regards Ang(1–7) pairing with the MAS1 receptor. More than
40 members of this receptor family have been identified in
multiple species. They are expressed in sensory neurons,
and thought to be involved in the perception of itch, pain
and pathological pain (Solinski et al., 2014; Tiwari et al.,
2016). Most MRGPR are orphan receptors. However,
de-orphanization efforts have led to new receptors pairing
with the ACE2/Ang(1–7) pathway (Figure 2). For instance,
while screening an assortment of MRGPRs for arachidonic
acid release in response to angiotensin metabolites,
Gembardt et al. discovered that in addition to the MAS1
receptor, Ang IV [Ang(3–8)] stimulated AA release in
MRGPRD (MrgD) and MRGPRX1 (Mrg1) transfected cells.
AngIII activated MAS1 and MRGPRX2 receptors. This initial
study lead to further characterization of the MRGPR family
of GPCRs as potential targets of Ang(1–7) and related peptides
(Gembardt et al., 2008).

The MRGPRD receptor may mediate NO dependent vaso-
dilator effects of a relatively new heptapeptide, alamandine,
which structurally differs from Ang(1–7) with an Ala replac-
ing the N-terminal Asp and is thought to be produced in vivo
from Ang A by the action of ACE2 (Lautner et al., 2013). Ang A

has Ala1 instead of Asp1 in AngII. It was first identified in
human plasma. Alamandine was identified in rats, mice and
humans, where it is thought to produce the same effects as
Ang(1–7), but by interacting with the MRGPRD receptor
(Mendoza-Torres et al., 2015). The alamandine-induced
effects have been shown to be abolished by D-Pro-Ang(1–7),
and the AT2 receptor antagonist PD123319. The binding of
alamandine to the MRGPRD receptor is blocked by the
MRGPRD agonist β-alanine, D-Pro7-Ang(1–7) and
PD123319, but not by the MAS1 antagonist A-779. Direct
radioligand binding and rigorous pharmacological analysis
data were provided to support the claim that MRGPRD is
the alamandine receptor (Habiyakare et al., 2014; Wilson
et al., 2015). MRGPRD orMRGPRD-like receptorsmay explain
the findings that in certain circumstances Ang(1–7) effects are
not blocked by A-779 (Etelvino et al., 2014; Solinski et al.,
2014; Villela et al., 2014a,b).

A recent study independently claimed that MRGPRD is
the receptor for Ang(1–7) in addition to alamandine and the
AT2 receptor antagonist, PD123319 (Lautner et al., 2013;
Tetzner et al., 2016). Using the cAMP readout assay (instead
of arachdonic acid release assay), the authors showed func-
tional activation of MAS1 receptors by Ang(1–7) in
transfected HEK293 cells, contradicting data from previous
independent studies (Bikkavilli et al., 2006; Shemesh et al.,
2008; Zhang et al., 2011; Tirupula et al., 2014a). Furthermore,
the authors presented data showing that MRGPRD functions
as a receptor for Ang(1–7). In their analysis, Ang(1–7) failed to
increase cAMP levels in primary mesangial cells obtained
fromMAS1 andMRGPRD double knockout mice. The haemo-
dynamic response to Ang(1–7) was also impaired in
MRGPRD-null mice. In this study, the Ang-(1–7) stimulated
arachidonic acid release was modest compared to the cAMP
response in MRGPRD-transfected heterologous cells. Further-
more, the authors demonstrated polypharmacology of
PD123319, which blocks the signalling by MAS1 and
MRGPRD receptors as well as from the AT2 receptor.

AT2 receptor coupling with Ang(1–7)
Reports from multiple laboratories have highlighted an
Ang(1–7)/AT2 receptor axis as a new protective arm of the
RAS (Gaspari et al., 2012). AT2 receptor-dependent protective
effects of Ang(1–7) against aneurysmal subarachnoid haem-
orrhage development in mice is reported. The protective
effect of Ang(1–7) was not observed in AT2 receptor knockout
mice. Furthermore, the protective effects of Ang(1–7) were
blocked by the AT2 receptor antagonist PD123319, but not
by the MAS1 receptor antagonist A-779. These findings indi-
cate that protective effect of Ang(1–7) against aneurysmal
rupture is mediated by AT2 receptors (Shimada et al., 2015).
AT2 receptor expression is up-regulated inmany disease states
suggesting a role for this receptor in disease (Gaspari et al.,
2012). In the apolipoprotein E�/�mousemodel of atheroscle-
rosis, Ang(1–7) can act via the AT2 receptors to exert
vasoprotective and atheroprotective effects and these effects
of Ang(1–7) can be abolished by either the AT2 receptor
antagonist PD123319 or A-779 (Pernomian et al., 2015). AT2

receptor stimulation by Ang(1–7) has been shown to lower
BP in adult normotensive rats (Walters et al., 2005).
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Furthermore, the effects of Ang(1–7) on vascular remodelling
and its ability to inhibit neointimal growth are attenuated in
AT2 receptor knockout mice compared with wild-type mice.
Surprisingly, Ang(1–7)-dependent attenuation of neointimal
formation after vessel injury in the MAS1-null mice requires
an increased expression of AT2 receptors (Ohshima et al.,
2014). In a mouse model of UUO, the administration of
Ang(1–7) caused injury in obstructed kidneys compared with
controls and increased macrophage infiltration. In mice with
MAS1 gene deletion, the delivery of exogenous Ang(1–7)
worsens kidney damage. Surprisingly, an infusion of
Ang(1–7), but not A-779 further increased apoptosis andmac-
rophage influx in obstructed kidneys from MAS1-null mice
compared with untreated mice (Zimmerman et al., 2015).
Could these effects be due to an unknown receptor or are
mediated by the AT2 receptor? Taken together, these findings
suggest that the AT2 receptor is a an important mediator of
effects attributed to the ACE2/Ang(1–7) axis.

Pharmacology
The suggestion that Ang(1–7) is the physiological agonist for
the MAS1 receptor is based on the loss of physiological effects
of Ang(1–7) and reduced [125I]–Ang(1–7) binding to kidney
sections in MAS1-null mice (Santos et al., 2003; Pinheiro
et al., 2004a,b). Generally, specificity and a dissociation con-
stant for the ligand or receptor density are not measured in
these types of experiments. Despite impressive advances
made through functional characterization supporting MAS1
receptors coupling to Ang(1–7), attempts at pharmacological
analysis of MAS1 receptors in tissue membrane preparations
have shown that [125/127I]–Ang(1–7) binding is not specific.
Furthermore, in competitive displacement experiments,
Ang(1–7) is less potent than other angiotensin metabolites,
leading to the suggestion that either the radioligand binding
sites in tissue membrane preparations are non-specific or the
isotope modifies Ang(1–7) in such a way as to affect the high-
affinity interaction (Conti, 2016). Additional radioligand
development could help resolve this problem.

Concentration-response studies in MAS1 as well as MAS1-
GFP transfected cells have been used to estimate an IC50 for
the Ang(1–7) antagonist, D-Ala7-Ang(1–7) and Kd values of
[125I]–Ang(1–7) (Santos et al., 2003; Gironacci et al., 2011).
The binding specificity of fluorescently labelled Ang(1–7)
has been studied in CHO cells (Pinheiro et al., 2004a,b;
Savergnini et al., 2010; Jankowski et al., 2011), platelets
(Fraga-Silva et al., 2008) and Leydig cells (Leal et al., 2009).
Also the MAS1 receptor mediated signalling has been found
to be stimulated by several other peptides such as NPFF,
alamandine, Ang III, Ang IV, angioprotectin, CGEN-857 and
P61/P33 and CGEN-856. Some of the peptides have also been
found to elicit a response through the MRGPRD receptor, but
additional systematic studies are warranted (Dong et al.,
2001; Bikkavilli et al., 2006; Canals et al., 2006; Gembardt
et al., 2008; Shemesh et al., 2008; Savergnini et al., 2010;
Jankowski et al., 2011; Zhang et al., 2012; Savergnini et al.,
2013; Tirupula et al., 2014a; Lee et al., 2015). In transfected
HEK293 cells, the MAS1 receptor was found to activate Gq/

11-PKC signalling without ligand stimulation (Canals et al.,
2006). Several ligands that modulate MAS1 receptor

signalling by other G-proteins and receptor desensitization
have been described. These include peptide ligands such as
MBP7 (Bikkavilli et al., 2006), NPFF, AngIII, AngIV and the
small nonpeptide agonist AR234960 and inverse agonist
AR244555 (Zhang et al., 2011; Tirupula et al., 2014a). G pro-
tein mediated cAMP signalling by MAS1 and MRGPRD recep-
tors in response to stimulation by peptides and non-peptide
ligands have been recently reported (Tirupula et al., 2014a;
Klein et al., 2015; Tetzner et al., 2016). Ang(1–7) has been
shown to increase arachidonic acid levels but, it does not
modulate Gq-PLC signalling in MAS1-expressing cells
(Bikkavilli et al., 2006; Shemesh et al., 2008; Zhang et al.,
2011; Tirupula et al., 2014a) leading to the concept of func-
tional selectivity of ligands interacting with MAS1 receptors
(Tirupula et al., 2014a).

Signalling
Ang(1–7)- or AVE0991-activated MAS1 receptors have been
demonstrated to couple to many downstream signalling
pathways (see Figure 2) including activation of phospholi-
pase A2, release of arachidonic acid, calcium-independent ac-
tivation of NOS, activation of phosphatidylinositol 3-kinase/
Akt, MAP kinases, RhoA, and cAMP/PKA in humanmesangial
cells and MAS1 transfected CHO and COS cells (Santos et al.,
2003; Sampaio et al., 2007a,b; Gembardt et al., 2008;
Zimpelmann and Burns, 2009; Liu et al., 2011; Lopez Verrilli
et al., 2011; Verano-Braga et al., 2012; Savergnini et al., 2013;
Than et al., 2013). In early studies in MAS1 transfected cells,
treatment with Ang(1–7) or AVE099 did not produce a G pro-
tein coupled calcium, IP3 and cAMP signalling response
(Bikkavilli et al., 2006; Shemesh et al., 2008). However, this
observation was disputed by findings in the kidney, where
Ang(1–7) treatment increased cAMP levels and activated
PKA through Gαs activation by MAS1 receptors. These signals
could be inhibited using A-779 (Magaldi et al., 2003; Liu et al.,
2011). The MAS1 receptor was also shown to constitutively
couple to Gαi, Gαq and Gα12/13 proteins (Zohn et al., 1998;
Whitehead et al., 2001; Booden et al., 2002; Chen and Ikeda,
2004; Dias-Peixoto et al., 2008; Shemesh et al., 2008; Singh
et al., 2010; Zhang et al., 2011; Gomes et al., 2012; Tirupula
et al., 2014a). Conventional G protein signalling by MAS1 re-
ceptors was reported upon stimulation with neuropeptide FF
(Dong et al., 2001; Tirupula et al., 2014a), MBP7 (Bikkavilli
et al., 2006), the angiotensin metabolites, AngIII and AngIV
(Gembardt et al., 2008; Tirupula et al., 2014a), novel non-
peptide ligands, AR234960, AR244555 and AR305352 (Zhang
et al., 2011; Tirupula et al., 2014a) and CGEN-856/P61
(Shemesh et al., 2008; Savergnini et al., 2010). Thus, this atyp-
ical G protein response may be due to the functional selectiv-
ity of the MAS1 receptor, which allows different ligands to
activate different signalling pathways (Tirupula et al.,
2014a). Calcium-independent activation of NOS, and Gi/o-
mediated cAMP signalling is reported for Ang(1–7) engaged
with AT2 and MRGPRD receptors. However, additional vali-
dation studies are required to elucidate the ligand selectivity
of different modes of signalling in these receptors.

Heterodimeric interactions of AT1 and MAS1 receptors
was reported in transfected cells. MAS1-AT1 receptor hetero
oligomerization resulted in the altered trafficking of AT1
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receptors in transfected cells (Kostenis et al., 2005; Canals
et al., 2006; Santos et al., 2007). The physiological effects of
Ang(1–7) treatment in mice may involve MAS1 receptors
interacting with AT1 and AT2 receptors (Castro et al., 2005).
The MAS1 receptor was shown to function as a physiological
antagonist of the AT1 receptor by altering the response to
AngII in the mice (Von Bohlen und Halbach et al., 2000;
Kostenis et al., 2005; Rakusan et al., 2010). Thus, the interac-
tion of MAS1 receptors with AT1 and AT2 receptors may be a
mechanism for the MAS1 receptor in RAS pathophysiology
(Villela et al., 2014a). In experimental disease models
Ang(1–7)/MAS1 signalling suppress AngII-induced patho-
genesis. For example, AngII-induced ROS overproduction
and apoptosis in cerebral endothelial cells (Xiao et al.,
2015), phosphorylation of c-Src and MAPKs, leading to pro-
duction of TGF-β1 and collagen in cardiac fibroblasts (Meng
et al., 2014; Tao et al., 2014; Zheng et al., 2015a), muscle atro-
phy of gastrocnemius (Cisternas et al., 2014), pancreatic cell
damage (Wang et al., 2014), ICAM-1, VCAM-1, and MCP-1
expression in HUVECs (Liang et al., 2015a,b) is suppressed
by Ang(1–7) activated MAS1 receptors.

Similarly, receptor heterodimer dependent crosstalk
between the bradykinin B2 receptor and MAS1 receptor was
implicated in vasorelaxation responses. Microvessels in
MAS1-deficient mice lacked the capacity to relax in response
to both Ang(1–7) and bradykinin (Peiro et al., 2013). Fluores-
cence resonance energy transfer analysis showed that the B2

receptor and MAS receptor formed a constitutive heteromer,
leading to potentiation of agonist binding to both receptors.
B2 receptor or MAS1 receptor antagonists promoted
heteromer dissociation. Agonist stimulation promoted inter-
nalization of the heteromer into early endosomes. B2

receptor-MAS1 receptor hetromers have been shown in hu-
man glomerular endothelial cells by proximity ligation assay
(Cerrato et al., 2016).

G protein independent signalling scaffold proteins have
been shown to interact with the MAS receptor C-terminal tail
in a tissue specific manner (Tirupula et al., 2015). This mech-
anism may explain the signalling events that were demon-
strated to be not associated with the generation of G protein
mediated second messengers. The MAS receptor has been
shown to interact with postsynaptic density 95 (PSD95), a
novel binding protein. MAS interacts with the PDZ1–2
domain of PSD95 through engaging the last four amino acids
[ETVV (Glu-Thr-Val-Val)] of MAS-CT. This interaction with
PSD95 enhanced the expression and proteolysis stability of
MAS receptors in cells (Bian et al., 2013). An agonist driven
‘MAS-signalosome’ model has also been proposed as molecu-
lar mechanism of MAS receptor function. Identifying the
hierarchy of interactions of ‘signalosome’ components with
MAS receptors will be a necessary step in the future to fully
understand the physiological and pathological functions of
this enigmatic receptor (Tirupula et al., 2015).

Conclusion
Initially, the pairing of Ang(1–7) with the MAS1 receptor
generated huge excitement, in part, due to the lack of a
reasonable alternative target for Ang(1–7) at the time.
However, now three Ang(1–7) receptor candidates have been

proposed by independent groups, all of which meet some of
the criteria used by IUPHAR in their de-orphanization efforts.
Firstly, the findings that Ang(1–7) stimulates the MAS1,
MRGPRD and AT2 receptors with potencies consistent with
physiological function have been independently established.
Secondly, the distribution of ACE2 – the enzyme producing
Ang(1–7) at physiologically significant concentrations – is
anatomically co-localized with endogenous MAS1, MRGPRD
and AT2 receptors, which supports the local production and
action of Ang(1–7). Thirdly, genetic modification affecting
each of these three receptors alters the physiological response
to Ang(1–7) in experimental models. The Ang(1–7)/MAS1
receptor axis currently seems to be most studied beneficial
counter-regulator of the effects of activation of the renin-
angiotensin system in several neurological and cardiovascu-
lar diseases. In comparison, the Ang(1–7)/MRGPRD and
Ang(1–7)/AT2 receptor pairing require extensive further eval-
uation. A recent paper has proposed an Ang(1–7)/AT1 recep-
tor biased signalling mechanism (Galandrin et al., 2016),
but this needs independent confirmation. Improving the va-
lidity of the pharmacological tests, including saturation,
competitive radioligand binding and signalling assays, which
may further support and strengthen the Ang(1–7) pairing
with each of these GPCRs would be most helpful. The criteria
that selective agonists should mimic and antagonists should
selectively block the signals of the endogenous ligand
through each of these GPCRs are not uniformly established
for all putative ligands. The recent discovery of an AT2

receptor-selective antagonist PD123319, which inhibits the
action of Ang(1–7) mediated through MAS1 and MRGPRD
receptors, is a case in point for the confusing state of molecu-
lar pharmacology of Ang(1–7) receptors. However, the exis-
tence of multiple receptors responding to Ang(1–7) may
have evolved for tissue-specific sensitive effects. A specific
Ang(1–7) receptor axis may mediate a particular effect, which
depends on the concentration of one or other of the receptors
in a tissue. Until the unique distinctions of each receptor
pairing with Ang(1–7) emerges, the adoption of these recep-
tors strictly as Ang(1–7) receptors by the nomenclature
committee may well be provisional.
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Methodology

Compiler note
We performed a systematic computerized literature search of
the PubMed database, Scopus andWeb of Science (last search:
16 September 2016) to identify all published articles onMAS1
from 1 January 2013 to 16 September 2016. The syntax/key
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words used in the literature search are MAS1 or MAS1 recep-
tor or Ang(1–7) receptor. The reference lists all articles we
recovered and those of relevant review articles were also
cross-referenced.
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